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ON SYMMETRIC MOMENTS AND LOCAL BEHAVIOR OF
THE CHARACTERISTIC FUNCTION

By R. A. MALLER
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Let F(x) be a probability distribution function and ¢(¢) its characteristic
function. Define ¢(f) = Im ¢(t) = — §;° sin tx dG(x), where G(x) =1 —
F(x) — F(—x) is the tail difference of F. In general G is known only to be
of bounded variation on [0, co]. The purpose of this paper is to relate dif-
ferentiability of ¢ at 0 and Lipschitz behavior of ¢ to asymptotic behavior
of G. Let C, be the class of real valued functions g such that Sj’: |dg(u)| =
0(x=%) (x > +o0), and let p,* be the symmetric moment of order «. Then
it is shown that G e C; implies ¢’(0) = pr* if either exists, while G € Co im-
plies ¢ e Lipa for 0 < « < 1. Extensions of these results to higher deriva-
tives and values of a« > 1 are indicated. Finally it is shown that, for 1 <
a <3, G(x) = 0(x~%) (x — +oco) and -~ 1(¢(f) — tm*) € L(0, 1) imply that
o™ exists.

1. Introduction. Let F(x) be a distribution function and ¢(r) its characteristic
function. Results of Boas [2] relate local behavior of Re ¢ to asymptotic be-
havior of 1 — F(x) + F(—x), while Pitman [4] and Zygmund [7] give necessary
and sufficient conditions for the existence of ¢’(0). It is natural now to inves-
tigate differentiability of Im ¢ at 0 and Lipschitz behavior of Im ¢. Conditions
on F ensuring such behavior are the subject of this paper. Since Im ¢(r) =
— {5 sin tx dG(x), where G is a function of bounded variation, the results derived
here apply in general to the theory of Fourier-Stieltjes transforms of functions
of bounded variation.

2. Notation. Let H(x) = 1 — F(x) + F(—x) and G(x) = 1 — F(x) — F(—Xx)
be the tail sum and tail difference of F.

Let p,* = lim,_, §7, sign x|x|* dF(x) = —{¢ x* dG(x) be the symmetric mo-
ment of order a, and define ¢(f) = Im ¢(r) = — {7 sin tx dG(x). Differentiating
this equation formally gives ¢’(0) = z,*, and conditions on G guaranteeing this
equality are sought. In this paper the result has not been achieved in its greatest
generality, and a subsidiary condition on G has been introduced to make the
proofs work. This condition will be shown not to be necessary. Define now
the class C,: g e C, if g is a real valued function defined on [0, o], having a
representation g = g, — g,, where g, and g, are bounded and non-increasing,
with g,(x) and g,(x) being o (x~%) (x — 4-oo0). It is useful, and not hard to show
that, for @ > 0, g € C, if and only if {2 |dg(x)| < + oo for x > 0 and is o(x™%)
(x — + oo)
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Now if H(x) = o(x™*) (x — + o0) then G € C,, while if G is ultimately mono-
tonic and o(x~%) (x — 4 oo), then G € C,. Relevant to these points see Pitman
[5], who gives results on local behavior of ¢ under regularity conditions on G.

3. Derivatives of ¢ at 0.
THEOREM 1. If G € C, then ¢'(0) = p,* if either exists.
Proor. Write
th(r7) + §5x dG(x) = {5 (x — tsin xt7) dG(x) + ¢t {7 sin xt71 dG(x) .
Since ¢ is an odd function it suffices to show that the right hand side vanishes
ast — 4 oo. Fixe > Oand choose T'so large that |G(x)| < ex™* wheneverx > T.
Taking ¢ > T and integrating by parts,
§6 (x — tsin xt™*) dG(x) = o(1) — §§(1 — cos xt71)G(x) dx (t — +o0).
Further,
[§6(1 — cos xt™)G(x) dx| = |{§5 + §%}|(1 — cos xt71)G(x) dx|,
< o(1) + t|§%,, (1 — cos x)G(xt) dx| (t— +o0),
< o(l) 4+ e s x(1 — cos x) dx (t— +00),
hence is arbitrarily small. Finally,
| § sin xt7 dG(x)] < 17 [dG(x)| = o(1)  (t— +o0),
since G € C,.
REMARKs. (i) The condition G € C, can be replaced by G(x) = o(x™*) (x —
+o0) (o > 1). Then p,* exists.
(ii) The condition G € C, is not necessary in Theorem 1. Define
G(x)=0 0<x<«l
= ax~?sin x x=1.
G is of bounded variation hence for some choice of a = 0 it is the tail difference
of a distribution. Clearly, by remark (1), ¢’(0) = p,* = a {7 x~*sin x dx. How-
ever G ¢ C,. To see this, for x > 1,
a'x {2 |dG(u)| = x {2 |u*cOsu — 2u~*sin u| du
= |x §2 u?cos u| du — 2x {2 u=3|sin u| du|
= (P u?cos ux|dx + o(1) (x = +o0)
- Futdu=1 (x = +o00).
Hence {7 |dG(u)| + o(x™) (x > +o0) and so G ¢ C,.
(iii) Let n > O be an integer. Then G € C,,,, implies ¢*"+(0) = (—1)"p ,,

if either exists, while G e C,, implies ¢*”(0) = 0. Proof of this extension is
similar to Theorem 1 and will be omitted.
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4. Lipschitz behavior of ¢.

THEOREM 2. (I) For 0 < a <1 let GeC,. Then ¢(t + h) — ¢(t) = o(|h|%)
uniformly in t as h — 0.

(II) Let n = 0 be an integer and 2n + 1 < a« < 2n + 3. Then G e C implies
R

~ Gy O = o)

$0 + 1) — 90 — hy'()) = gy -
uniformly in t as h — 0.
Proor. Proof of (II) is similar to the proof of (I) and will be omitted. To
simplify the notation write 4 for |k|=*. Then
h(p(t + 2h7Y) — @(1)) = h* §§ (sin tx — sin (¢ + 2h7")x) dG(x)
= —2h*{§k 4 {7} cos (t + A™)x sin xh~! dG(x) .
The second integral is o(1) uniformly in 7 as # — + oo, since Ge C,. To deal
with the first integral, define A(x) = {7 cos (¢ + ~A™")u dG(u), which is in C,,
hence in particular A(x) = o(x™*) (x — +o0). Then, integrating by parts
h* §& cos (t 4+ h~')x sin xh~* dG(x)
= o(l) + h*~* §} cos xh™*A(x) dx (B — 4 o00)
=o(l) + A=t §lo(x~*) dx (h — +o0)
=o(l) (h > +00),
uniformly in ¢, which proves the theorem.
REMARKS. (i) Theorem 2 is most useful at r = 0. In this case (II) can be

strengthened. In fact, if » > 0 is an integer and 2n + 1 < @ < 2n 4 3, then
G(x) = o(x™*) (x — 4 o) implies
—1 n a
Q) — 4 (‘2—)1), B = o(1) (1 04).
(ii) As an application of Theorem 2, Lemma 3 of Koopman [3] and Lemma 1

of Binmore and Stratton [1] can be deduced immediately.

5. Sufficient condition for existence of y,*. Von Bahr [6] has given an ex-
pression for the absolute moment of non-integer order of F in terms of an integral
of the real part of the characteristic function. The next theorem gives an analo-
gous result for the symmetric moments.

THEOREM 3. For1 < a < 3 let G(x) = o(x™%) (x > + o) and let =7 (¢(t) —
tp*ye L(0, 1). Then p,* exists and

L = % T(a + 1) cos% §o 17 P(t) — tp*) dt .

Proor. Take 1 < @ < 2. Now p* exists and equals {;° G(x)dx. Define
A(x) = — {2 G(u) du. Under the hypothesis {5 |G(x)| dx < + oo, which is guar-
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anteed by G(x) = o(x™*) (x — 4o0), it is easy to verify that 4 is of bounded
variation on [0, co], that

17(P(r) — tp*) = §5 sin txA(x) dx
and that

A(x) = .72? §6>sin tx - t73(P(1) — tp*) dt .
Further it is easily shown that, for 7 > 0,
§7 x5 A(x) dx = % §o t=((t) — 1) §T x“~2sin tx dx dr .
Now for a = 2,
§7 A(x) dx = _:_ §o (1) — tu*)(1 — cos 1T) dr

5 % §o 15 (p(r) — 1) dt (T — +o0),

by the Riemann-Lebesgue lemma, since by hypothesis 1=3(¢(r) — #,*) € L(0, o).
Forl <a <2,

§7 x*2A(x) dx + = T(a — 1) cos ST i3 17X (1) — 1) dr
T

— 2 (e (@) — tp*) §3, x*?sin x dx di
T
— 0as T — + oo by dominated convergence, since the inner integral is a bounded

function of . Thus for 1 < a < 2,
o x* 2 A(x) dx = _% P — 1) cos &7 § 1=e(0) — 1157 dt

and the theorem follows on integrating the left hand side by parts, remembering
that G(x) = o(x ) (x — +o00). Finally, for2 < a < 3define 4,(x) = {2 A(u) du;
then it is easy to see that

73(P(t) — tpy*) = (5 cos txA(x) dx .

This transform can be inverted, and proceeding exactly as before, the theorem
follows.

REMARKS. (i) Theorem 3 can be extended in an obvious way to values of
a > 1, @ not an odd integer.

(ii) It is easy to give a sufficient condition for r=*~Y(¢(r) — tp,*) € L(0, 1) for
I < a < 3. Infact, ¢(f) — ty,* = o(#*) (t — 04), B > a, is sufficient for this,
and by Remark (i) following Theorem 2, G(x) = o(x~?) (x — -+ o) is sufficient
for ¢(t) — ty,* = o(#) (t — 0+4) (B > 1). Of course in this case g, * exists for
a < B, and Theorem 3 is just a formula for calculation of p *.
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