ON SYMMETRIC MOMENTS AND LOCAL BEHAVIOR OF THE CHARACTERISTIC FUNCTION

By R. A. MALLER

C.S.I.R.O., Wembley, Western Australia

Let F(x) be a probability distribution function and $\phi(t)$ its characteristic function. Define $\phi(t)=\operatorname{Im}\phi(t)=-\int_0^\infty \sin tx\ dG(x)$, where G(x)=1-F(x)-F(-x) is the tail difference of F. In general G is known only to be of bounded variation on $[0,\infty]$. The purpose of this paper is to relate differentiability of ϕ at 0 and Lipschitz behavior of ϕ to asymptotic behavior of G. Let C_α be the class of real valued functions g such that $\int_{\infty}^\infty |dg(u)| = o(x^{-\alpha})\ (x\to +\infty)$, and let μ_α^* be the symmetric moment of order α . Then it is shown that $G\in C_1$ implies $\phi'(0)=\mu_1^*$ if either exists, while $G\in C_\alpha$ implies $\phi\in \operatorname{Lip}\alpha$ for $0<\alpha<1$. Extensions of these results to higher derivatives and values of $\alpha>1$ are indicated. Finally it is shown that, for $1<\alpha<3$, $G(x)=o(x^{-\alpha})\ (x\to +\infty)$ and $t^{-\alpha-1}(\phi(t)-t\mu_1^*)\in L(0,1)$ imply that μ_α^* exists.

- 1. Introduction. Let F(x) be a distribution function and $\phi(t)$ its characteristic function. Results of Boas [2] relate local behavior of $\operatorname{Re} \phi$ to asymptotic behavior of 1 F(x) + F(-x), while Pitman [4] and Zygmund [7] give necessary and sufficient conditions for the existence of $\phi'(0)$. It is natural now to investigate differentiability of $\operatorname{Im} \phi$ at 0 and Lipschitz behavior of $\operatorname{Im} \phi$. Conditions on F ensuring such behavior are the subject of this paper. Since $\operatorname{Im} \phi(t) = -\int_0^\infty \sin tx \ dG(x)$, where G is a function of bounded variation, the results derived here apply in general to the theory of Fourier-Stieltjes transforms of functions of bounded variation.
- 2. Notation. Let H(x) = 1 F(x) + F(-x) and G(x) = 1 F(x) F(-x) be the tail sum and tail difference of F.

Let $\mu_{\alpha}{}^* = \lim_{T \to \infty} \int_{-T}^T \operatorname{sign} x |x|^{\alpha} \, dF(x) = -\int_0^\infty x^{\alpha} \, dG(x)$ be the symmetric moment of order α , and define $\psi(t) = \operatorname{Im} \phi(t) = -\int_0^\infty \sin tx \, dG(x)$. Differentiating this equation formally gives $\psi'(0) = \mu_1{}^*$, and conditions on G guaranteeing this equality are sought. In this paper the result has not been achieved in its greatest generality, and a subsidiary condition on G has been introduced to make the proofs work. This condition will be shown not to be necessary. Define now the class C_α : $g \in C_\alpha$ if g is a real valued function defined on $[0, \infty]$, having a representation $g = g_1 - g_2$, where g_1 and g_2 are bounded and non-increasing, with $g_1(x)$ and $g_2(x)$ being $o(x^{-\alpha})$ $(x \to +\infty)$. It is useful, and not hard to show that, for $\alpha \ge 0$, $g \in C_\alpha$ if and only if $\int_x^\infty |dg(u)| < +\infty$ for $x \ge 0$ and is $o(x^{-\alpha})$ $(x \to +\infty)$.

Received December 1, 1971; revised February 15, 1973.

AMS 1970 subject classifications. 60B15, 42A68.

Key words and phrases. Symmetric moments, characteristic function, differentiability, Fourier-Stieltjes transforms; local behavior.

Now if $H(x) = o(x^{-\alpha})$ $(x \to +\infty)$ then $G \in C_{\alpha}$, while if G is ultimately monotonic and $o(x^{-\alpha})$ $(x \to +\infty)$, then $G \in C_{\alpha}$. Relevant to these points see Pitman [5], who gives results on local behavior of ϕ under regularity conditions on G.

3. Derivatives of ϕ at 0.

THEOREM 1. If $G \in C_1$ then $\psi'(0) = \mu_1^*$ if either exists.

PROOF. Write

$$t\psi(t^{-1}) + \int_0^t x \, dG(x) = \int_0^t (x - t \sin x t^{-1}) \, dG(x) + t \int_t^\infty \sin x t^{-1} \, dG(x) \, .$$

Since ψ is an odd function it suffices to show that the right hand side vanishes as $t \to +\infty$. Fix $\varepsilon > 0$ and choose T so large that $|G(x)| < \varepsilon x^{-1}$ whenever $x \ge T$. Taking t > T and integrating by parts,

$$\int_0^t (x - t \sin x t^{-1}) dG(x) = o(1) - \int_0^t (1 - \cos x t^{-1}) G(x) dx \qquad (t \to +\infty).$$

Further,

$$\begin{aligned} |\int_0^t (1 - \cos x t^{-1}) G(x) \, dx| &= |\{\int_0^T + \int_T^t\}| (1 - \cos x t^{-1}) G(x) \, dx| \,, \\ &\leq o(1) + t |\int_{T/t}^1 (1 - \cos x) G(xt) \, dx| \qquad (t \to +\infty) \,, \\ &\leq o(1) + \varepsilon \int_0^1 x^{-1} (1 - \cos x) \, dx \qquad (t \to +\infty) \,, \end{aligned}$$

hence is arbitrarily small. Finally,

$$|t \int_t^\infty \sin x t^{-1} dG(x)| \le t \int_t^\infty |dG(x)| = o(1) \qquad (t \to +\infty),$$

since $G \in C_1$.

REMARKS. (i) The condition $G \in C_1$ can be replaced by $G(x) = o(x^{-\alpha})$ $(x \to +\infty)$ $(\alpha > 1)$. Then μ_1^* exists.

(ii) The condition $G \in C_1$ is not necessary in Theorem 1. Define

$$G(x) = 0$$

$$= ax^{-2} \sin x$$

$$0 \le x < 1$$

$$x \ge 1$$

G is of bounded variation hence for some choice of $a \neq 0$ it is the tail difference of a distribution. Clearly, by remark (1), $\psi'(0) = \mu_1^* = a \int_1^\infty x^{-2} \sin x \, dx$. However $G \notin C_1$. To see this, for x > 1,

$$a^{-1}x \int_{x}^{\infty} |dG(u)| = x \int_{x}^{\infty} |u^{-2} \cos u - 2u^{-3} \sin u| du$$

$$\geq |x \int_{x}^{\infty} u^{-2} |\cos u| du - 2x \int_{x}^{\infty} u^{-3} |\sin u| du|$$

$$= \int_{1}^{\infty} u^{-2} |\cos ux| dx + o(1) \qquad (x \to +\infty)$$

$$\to \int_{1}^{\infty} u^{-2} du = 1 \qquad (x \to +\infty).$$

Hence $\int_x^{\infty} |dG(u)| \neq o(x^{-1}) \ (x \to +\infty)$ and so $G \notin C_1$.

(iii) Let $n \ge 0$ be an integer. Then $G \in C_{2n+1}$ implies $\psi^{(2n+1)}(0) = (-1)^n \mu_{2n+1}^*$ if either exists, while $G \in C_{2n}$ implies $\psi^{(2n)}(0) = 0$. Proof of this extension is similar to Theorem 1 and will be omitted.

4. Lipschitz behavior of ϕ .

Theorem 2. (I) For $0 < \alpha < 1$ let $G \in C_{\alpha}$. Then $\psi(t+h) - \psi(t) = o(|h|^{\alpha})$ uniformly in t as $h \to 0$.

(II) Let $n \ge 0$ be an integer and $2n + 1 < \alpha < 2n + 3$. Then $G \in C_{\alpha}$ implies

$$\psi(t+h)-\psi(t)-h\psi'(t)-\frac{h^2}{2!}\,\psi''(t)\,\cdots\,-\frac{h^{2n+1}}{(2n+1)!}\,\psi^{(2n+1)}(t)=o(|h|^{\alpha})$$

uniformly in t as $h \rightarrow 0$.

PROOF. Proof of (II) is similar to the proof of (I) and will be omitted. To simplify the notation write h for $|h|^{-1}$. Then

$$h^{\alpha}(\psi(t+2h^{-1})-\psi(t)) = h^{\alpha} \int_{0}^{\infty} (\sin tx - \sin (t+2h^{-1})x) dG(x)$$

= $-2h^{\alpha}\{\int_{0}^{h} + \int_{h}^{\infty}\} \cos (t+h^{-1})x \sin xh^{-1} dG(x)$.

The second integral is o(1) uniformly in t as $h \to +\infty$, since $G \in C_{\alpha}$. To deal with the first integral, define $A(x) = \int_x^{\infty} \cos(t + h^{-1})u \, dG(u)$, which is in C_{α} , hence in particular $A(x) = o(x^{-\alpha})$ $(x \to +\infty)$. Then, integrating by parts

$$h^{\alpha} \int_{0}^{h} \cos(t + h^{-1})x \sin x h^{-1} dG(x)$$

$$= o(1) + h^{\alpha-1} \int_{0}^{h} \cos x h^{-1} A(x) dx \qquad (h \to +\infty)$$

$$= o(1) + h^{\alpha-1} \int_{0}^{h} o(x^{-\alpha}) dx \qquad (h \to +\infty)$$

$$= o(1) \qquad (h \to +\infty),$$

uniformly in t, which proves the theorem.

REMARKS. (i) Theorem 2 is most useful at t=0. In this case (II) can be strengthened. In fact, if $n \ge 0$ is an integer and $2n+1 < \alpha < 2n+3$, then $G(x) = o(x^{-\alpha})$ $(x \to +\infty)$ implies

$$\psi(t) - t\mu_1^* + \frac{t^3}{3!}\mu_3^* + \cdots + \frac{(-1)^{n+1}}{(2n+1)!}t^{2n+1}\mu_{2n+1}^* = o(t^{\alpha}) \qquad (t \to 0+).$$

- (ii) As an application of Theorem 2, Lemma 3 of Koopman [3] and Lemma 1 of Binmore and Stratton [1] can be deduced immediately.
- 5. Sufficient condition for existence of μ_{α}^* . Von Bahr [6] has given an expression for the absolute moment of non-integer order of F in terms of an integral of the real part of the characteristic function. The next theorem gives an analogous result for the symmetric moments.

THEOREM 3. For $1 < \alpha < 3$ let $G(x) = o(x^{-\alpha})$ $(x \to +\infty)$ and let $t^{-\alpha-1}(\psi(t) - t\mu_1^*) \in L(0, 1)$. Then μ_{α}^* exists and

$$\mu_{\alpha}^* = \frac{2}{\pi} \Gamma(\alpha + 1) \cos \frac{\alpha \pi}{2} \int_0^\infty t^{-\alpha - 1} (\psi(t) - t \mu_1^*) dt.$$

PROOF. Take $1 < \alpha \le 2$. Now μ_1^* exists and equals $\int_0^\infty G(x) dx$. Define $A(x) = -\int_x^\infty G(u) du$. Under the hypothesis $\int_0^\infty |G(x)| dx < +\infty$, which is guar-

anteed by $G(x) = o(x^{-\alpha})$ $(x \to +\infty)$, it is easy to verify that A is of bounded variation on $[0, \infty]$, that

$$t^{-2}(\psi(t) - t\mu_1^*) = \int_0^\infty \sin tx A(x) dx$$

and that

$$A(x) = \frac{2}{\pi} \int_0^\infty \sin tx \cdot t^{-2} (\psi(t) - t\mu_1^*) dt.$$

Further it is easily shown that, for T > 0,

$$\int_0^T x^{\alpha-2} A(x) \, dx = \frac{2}{\pi} \int_0^\infty t^{-2} (\psi(t) - t \mu_1^*) \int_0^T x^{\alpha-2} \sin tx \, dx \, dt \, .$$

Now for $\alpha = 2$,

$$\int_0^T A(x) dx = \frac{2}{\pi} \int_0^\infty t^{-3} (\psi(t) - t\mu_1^*) (1 - \cos tT) dt$$

$$\rightarrow \frac{2}{\pi} \int_0^\infty t^{-3} (\psi(t) - t\mu_1^*) dt \qquad (T \to +\infty) ,$$

by the Riemann–Lebesgue lemma, since by hypothesis $t^{-3}(\psi(t) - t\mu_1^*) \in L(0, \infty)$. For $1 < \alpha < 2$,

$$\int_0^T x^{\alpha-2} A(x) \, dx + \frac{2}{\pi} \Gamma(\alpha - 1) \cos \frac{\alpha \pi}{2} \int_0^\infty t^{-\alpha - 1} (\phi(t) - t \mu_1^*) \, dt$$

$$= \frac{2}{\pi} \int_0^\infty t^{-\alpha - 1} (\phi(t) - t \mu_1^*) \int_{T_t}^\infty x^{\alpha - 2} \sin x \, dx \, dt$$

 \rightarrow 0 as $T \rightarrow +\infty$ by dominated convergence, since the inner integral is a bounded function of t. Thus for $1 < \alpha \le 2$,

$$\int_0^\infty x^{\alpha-2} A(x) \, dx = -\frac{2}{\pi} \, \Gamma(\alpha-1) \cos \frac{\alpha \pi}{2} \, \int_0^\infty t^{-\alpha-1} (\psi(t) - t \mu_1^*) \, dt \, ,$$

and the theorem follows on integrating the left hand side by parts, remembering that $G(x) = o(x^{-\alpha})(x \to +\infty)$. Finally, for $2 < \alpha < 3$ define $A_1(x) = \int_x^{\infty} A(u) du$; then it is easy to see that

$$t^{-3}(\phi(t) - t\mu_1^*) = \int_0^\infty \cos tx A_1(x) dx$$
.

This transform can be inverted, and proceeding exactly as before, the theorem follows.

REMARKS. (i) Theorem 3 can be extended in an obvious way to values of $\alpha > 1$, α not an odd integer.

(ii) It is easy to give a sufficient condition for $t^{-\alpha-1}(\phi(t)-t\mu_1^*)\in L(0,1)$ for $1<\alpha<3$. In fact, $\phi(t)-t\mu_1^*=o(t^\beta)$ $(t\to 0+)$, $\beta>\alpha$, is sufficient for this, and by Remark (i) following Theorem 2, $G(x)=o(x^{-\beta})$ $(x\to +\infty)$ is sufficient for $\phi(t)-t\mu_1^*=o(t^\beta)$ $(t\to 0+)$ $(\beta>1)$. Of course in this case μ_α^* exists for $\alpha<\beta$, and Theorem 3 is just a formula for calculation of μ_α^* .

Acknowledgment. I am grateful to Dr. K. Vijayan, University of Western Australia, for reading the paper.

REFERENCES

- [1] BINMORE, K. G. and STRATTON, H. H. (1969). A note on characteristic functions. Ann. Math. Statist. 40 303-307.
- [2] Boas, R. P. Jr. (1967). Lipschitz behavior and integrability of characteristic functions. Ann. Math. Statist. 38 32-36.
- [3] KOOPMAN, L. H. (1968). An extension of Rosen's theorem to non-identically distributed random variables. *Ann. Math. Statist.* 39 897-904.
- [4] PITMAN, E. J. G. (1956). On the derivatives of a characteristic function at the origin. *Ann. Math. Statist.* 27 1156-1160.
- [5] PITMAN, E. J. G. (1968). On the behavior of the characteristic function of a probability distribution in the neighborhood of the origin. J. Aust. Math. Soc. 3 423-443.
- [6] VON BAHR, BENGT (1965). On the convergence of moments in the central limit theorem. Ann. Math. Statist. 36 808-818.
- [7] ZYGMUND, A. (1947). A remark on characteristic functions. Ann. Math. Statist. 18 272-276.

C.S.I.R.O.

Division of Mathematical Statistics Private Bag No. 1 Glen Osmond, S.A. 5064