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ON A CHARACTERIZATION OF THE FAMILY
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MULTIVARIATE FAILURE RATES
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Let f(t1, ---,tx) be the probability density function of a vector
(Yh, + -+, Yi) of nonnegative random variables. Let the multivariate failure
rate (M.F.R.) r(t1, - -+, tx) be defined by the ratio f(ts, ---, tx)/P(Y: > ti,
i=1,2,---,k),fort; 20,i=1, -.., k. Itisshown that r(t, ---, #) is con-

stant if and only if the distribution of (Y3, - -, Y%) is @ mixture of expo-
nential distributions. Analogous results hold for the nonnegative integer
valued random vector with mixture being of geometric distributions.

Let (Y,, Y,, ---, Y,) be a vector of nonnegative random variables admitting
a probability density function (pdf) with respect to Lebesgue measure, given
by f(ty, -+, ), for t, >0, i =1,2, ..., k. Let the multivariate failure rate
(M.F.R.) r(t,, - - -, t,) be defined by

1 r(ty, - ty) = [f(t, -, )/PY; > t,i=1,2, ..., k)],

fort; =0,i=1,2, ..., k. In[2], the question was raised whether or not mix-
tures of exponential distributions are the only absolutely continuous distributions
with constant M.F.R., or equivalently

(2) ﬁf(tn""tk)ZP(Yi>ti’i:1’2""’k)»

forall, =2 0,i=1,2, ..., k, and for some positive constant 8. The following
Theorem gives the answer to this question in the affirmative.

THEOREM 1. For a given 8 > 0, the only absolutely continuous distributions satis-
fying (2) are the ones which are mixtures of exponential distributions with pdf given by

3) Sl oo ty) = B - §5 expl— i, u,1,]G(duy, - - -, duy)
fort, =20,i=1, ..., k, where the probability measure G is concentrated on the set
A= [Ht,'c=lui = ‘B—l, u; > O,i: 1: 2: Sty k]'

Proor. It is easy to check that a pdf given by (3) satisfies (2). Conversely,
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let a pdf f satisfy (2), or equivalently
(4) ﬂf(tl, cee ) = S;’;’ S;’;f(xl, s, Xy) dxy - e dxy
t,>0,i= 1, .-, k.
It is clear from (4) that the pdf f must have derivatives of all orders with respect
to #, - -+, t,, and that each of these is zero when evaluated at infinity for any of
its arguments. In particular (4) is equivalent to
Mf(ty, -+, 1) .
5 ty oo ty) = (=) g T kL t,>0,i=1,2, ..., k.
©) L >0, i
By a routine induction argument on r,, - - -, r,, which involves a repeated use of
(4), it can be easily shown that the functions

. azzc:lrif(tla ) tk)
oty ... ot

(6) Driroory(tis =02 1) = (— 1217 B

are nonnegative for all t, >0, r,=0,1,2, ..., i=1,2,...,k, and like the
function f they also satisfy the relation (5). On the other hand the nonnegativity
of ¢, .., forall r;’s and for positive #;’s, imply that f must be given by (3) for
some probability measure G (see for instance page 87, Bochner [1]). Finally, in
order that (3) satisfies (2), it is easy to see that G must be concentrated on the
set A. This completes the proof.

We now consider briefly the analogous problem for the discrete case (see Puri
[2]). Let(Y,, ---, Y}) be a vector of k nonnegative integer valued rv’s satisfying
for some 3 > 0, the relation

(M) P> n,i=1,2,- k) =pP(Y,=n,i=1,2.,k,
forn,=0,1,2,...,i=1,2, ..., k. The solution to the problem of character-
izing the distributions of such vectors (Y,, ---, Y,) is given in the following
theorem.

THEOREM 2. For a given 8 > 0, the only distributions of (Y,, - - -, Y,) satisfying
(7) are the ones which are mixtures of geometric distributions given by

(8) P(Yz = ny, i= 1’ 29 MR} k) - Sé te 83 [Hf:l Pznl]H(de M} dpk) )
forn,=0,1,2,...,i=1,2, ..., k, where the probability measure H is concen-
trated on the set B =[], {p/(1 — p)} =8,0< p; < 1,i=1,2,.-.,k].

OUTLINE OF THE PROOF. Let pu(ny,---,n) = p(Y;,=n;,i =1,2,...,k). The
proof is analogous to that of Theorem 1 and involves showing, by a similar
induction argument, the differences ®’s defined by

(I)"l"""'z(nl’ ey nk) = ‘BAIT] PP Akrkp(nl’ ey, nk)
(9) =8 Z;}l:o Z:‘nl;‘=0 {Hfﬂ /’::)}(_l)ml-‘.....*.m_k
X p(ny + my, - n, 4+ my),

are nonnegative for all r,=0,1,2,..-; n,=0,1,2,..-; i=1,2, .-, k.
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On the other hand, using the known results concerning the multi-dimensional
Hausdorff moment problem (see for instance Shohat and Tamarkin [3]), the
nonnegativity of these differences implies (8) for some probability measure H.
Finally, it is easy to see that the measure H must be concentrated on the set B
in order that the distribution given by (8) satisfies (7).
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