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ON THE WEAK CONVERGENCE OF EMPIRICAL
PROCESSES IN SUP-NORM METRICS

By NEeviLLE E, O’REILLY
Rutgers University

Necessary and sufficient conditions for the weak convergence in
stronger than the usual metrics of empirical, inverse empirical and partial
sum processes are obtained. The results are related to work of Chibisov
and of Pyke and Shorack.

1. Introduction. Let U, < U,, < ... < U,, be random variables obtained

m =

by ordering n independent observations from the uniform distribution on [0, 1].
Set U, =0, U,,,, = 1 and let F, and F,™* be defined by

(11) Fn(t) = k/n’ Ulm é t < Uk+1,na k = 0, 13 ceey
=1, t =
and
(1'2) Fn~l(t) = Ulm’ k/(n + 1) é t < (k + 1)/(” + 1)’ k = Os 13 ey,
=1, t=1.

That is, F, is the empirical distribution function of a sample of n uniform random
variables and F,~'is a version of its inverse. Two sequences of related processes
are the empirical process

(1.3) U, (1) = n¥(F,(t) — 1), 0l
and the inverse empirical process
(1.4) V. (t) = n¥(F,”(t) — 1), 0t

These processes have realizations in the space D[0, 1] of real valued functions
on [0, 1] having only jump discontinuities.

In studying the asymptotic distribution of statistics based on ordered obser-
vations (in particular linear rank statistics and linear combinations of order
statistics) various authors, starting with Pyke and Shorack in [7], have made
use of the weak convergence of U, and V, to a tied down Wiener process in
metrics stronger than the usual Prohorov and sup-norm metrics; that is, weak
convergence in metrics of the form

(1.5) d,(x, y) = d(x/q, y/9) and
P, (x, y) = o(x/q, y/9)

where d is the Prohorov metric, p is the sup-norm metric and ¢ is a nonnegative
function approaching zero at the endpoints of the interval [0, 1].
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A question naturally arises as to how fast the function ¢(¢) can be allowed to
approach zero at the interval endpoints and convergence in the metric p, and
d, continue to hold. Pyke and Shorack [7] give a sufficient condition which
essentially is monotonicity of ¢ near the endpoints and convergence of the
integral

(1.6) Lty dt .

A finer result was given by Chibisov [2] for the process U,. Chibisov showed
that, roughly speaking, U, has in the limit as n — oo the same sets of upper and
lower class functions as the Wiener (and tied-down Wiener) process. He also
gave, under the assumption that g(r) and ¢(1 — ¢) are regularly varying at 0 of
order 0 < & < §, a necessary and sufficient condition for the convergence of
U, to a tied-down Wiener process in (D, p,); namely

(1.7 §ot7texp (—eh(t)) dt < oo for every ¢> 0, i=1,2

where hy(t) = t~1q(f) and hy(f) = t7}q(1 — ). (Chibisov’s proof utilises a cri-
terion, 2.2 on page 148 of [2], for membership in the upper and lower classes
of the Wiener process which is given without proof and does not appear to be
in the literature; in particular it is not in P. Lévy’s monograph [5] to which the
reader is referred in [2]).

In this paper necessary and sufficient conditions for the weak convergence of
V, and U, are given in Section 3 and Section 4, respectively. These results are
more general than those of Pyke and Shorack and Chibisov’s result is stated as
a corollary to Theorem 2. Section 2 contains preliminary results and in Section
3 itis indicated how the corresponding results for the partial sum and two sample
empirical processes can be similarly derived. Only the metric p, where

Po(x, y) = sup {|Ix(1) — y(x)l/9(1): 0 < 1 < 1}
is treated; the results for d, are immediate consequences of those for p, since
the limiting process involved is almost everywhere continuous.

2. Preliminary results. Let W(f) denote a standard Wiener process; that is
a separable Gaussian process with E W(r) = 0, E[W(s)¥(t)] = min (s, 7). Set
Wy(t) = W(r) — t W(1) so that W(t) is a Wiener process “tied-down” at ¢ = 1.
The proof of the main results requires that the probability that W(r)/q(r) exceed
an arbitrary e near zero (or one) be small and since the local behavior of W (1)
is the same as that of W(r) we need the following proposition.

PROPOSITION 2.1. Let q(t) be a continuous nonnegative function on [0, 1] which
is non-decreasing in a neighborhood of 0. Then a necessary and sufficient condition
that eq(t) be in the upper class of the Wiener process for every ¢ > 0 is the con-
vergence of the integral
(2.2) {6 171 exp (—eh¥(¢)) dt
for all e > 0 and where h(t) = t~4¢(¢).
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)

Proor. Suppose the integral in (2.2) is finite for every ¢ > 0. Then for 0 <
A<,
exp(—Hi(t)) £ (—log (2))~* §%, s~ exp(— Ak*(s)) ds
where the right side tends to zero with 7. Thus A(f) becomes infinite as ¢ ap-

proaches zero and for any ¢ > 0 and all small enough ¢

h(t) < exp(eh(1)[2) .
Hence for small 8

2.3) §0 £7h(r) exp(—eh¥(f)) dt < §0 1 exp(——;_ (r)) dr < oo .

By the well-known Kolmogorov criterion (see e.g., [4] page 33) the finiteness of
the integral on the left side of (2.3) is sufficient for ¢g(7) to be in the upper class.
(Although the Kolmogorov test is stated in [4] under a monotonicity assumption
on A(¢) this is not needed for the relevant half of the test).

For the proof in the other direction we first introduce some notation. Let
by = 023, L; = (027, 005, B;, = (—q'(b)—x < W(t) — W(b;) < q'(b,) — x for
alltin L,,all k =0,1, ---,j — 1}, 4;, = {b; W(t) — tW(b;) > b,;q'(b;) — tx for
some tinL;},j=0,1,2, ..., where forgivene > 0,0 < 2 < 1, ¢'(f) = (2¢/2)}
q(1). Further let F;(x) denote the distribution function of W(b;).

Then
P(W(t) > q'(t) some 0 <t < 6)

= PU{W() > q'(b;) some ¢t in L}

(2.4) = N P{W() > q'(b;) some ¢ in L;,
W) < q'(b,) all ¢t in L,k=0,1,...,j—1}
= N7 P{W() > q'(b;) some ¢ in L,
—q' (b)) S W) <4q'(b) all ¢t in L,k=0,1,...,j—1}.

Conditioning each term on W(b;) makes the right-hand side of (2.4) equal to
(C)) 25§20 P(A;,)P(B;,)Fy(dx)
which in turn is bounded below by

So, P{W,() > b,~tq'(b;) for some 0 < t < 1} § P(B,,)F;(dx)

3 D exp(— 2k (b))P{—q'() = W(1) = ¢'(1) all b; <1< 6}
1 5 exp(—Aeh*(047)) for small enough @

(—41log ()™ L §357 7 exp(—eh¥(1)) dt

= (—4log (2))7* §7 ¢  exp(eh*(r)) dt .

(2.6)

v v v

Since the left side of (2.4) approaches zero with ¢ and bounds the right side of
(2.6) from above, the convergence of the integral in (2.2) is shown. The two
lemmas below are needed to obtain bounds on distribution tails.

LEMMA 2.7. LetY,,Y,,-.-,Y, beindependent random variables. Forl < m < n,
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set $; =Y, +Y,+ .- 4+Y, T;=Y,+Y,,+ - +Y,, m<j<n and
T,,,=0. Leta<0<bandB; ={T, Za},y <min(P(B;)),m<j<n+1).
Then

(2.8) yPimax (S;,m < j < n) = b} < P{S, = a + b}.

Proor. See Freedman [3] on page 12.

LeMMA 2.9. Let Z,,, =Y, + Y, + --- + Y,,, where the Y, are independent
random variables each with distribution function
(2.10) F(y) =0, y<o

=1—exp(—y), y=0.

Then for any sequence a,, | 0,
@11)  P((Zyfn) — 1] > a,} < S(1/20)t exp(—na,’[8) = r(n) , say.

Proor. This lemma is due to Rosenkrantz and is proven in Lemma 4 of [9].

In order to avoid measurability problems occasioned by nonseparability of
(D, p,) (and overlooked by Chibisov in [2]) we understand “weak convergence”
in the sense of Definition 2.1 of [7]. For separable spaces this definition reduces
to the Prokhorov definition.

3. Inverse empirical process. For the process V, we prove the following
theorem.

THEOREM 1. Let g(f) be a continuous, nonnegative function on [0, 1], bounded
away from zero on [y, 1 — y] for some y > 0, non-decreasing (non-increasing) on
[0, 71 (11 — 7, 1]). Then

3.1 §o 7 exp(—eh (1)) dt < oo, forall ¢>0, i=1,2

is both necessary and sufficient for the weak convergence of V, to W, in p,, where
h(t) = t74q(t) and hy(t) = t73q(1 — 1).

Proor. Represent the empirical process V, in terms of a “partial sum”
process S, along the lines of Breiman [1] page 286. That is, let Y,, Y,, - .. be
independent random variables with distribution given by (2.10). Set Z;, =
Yi4+ Y, + ... +Y,i=1,Z,=0. The process S, is defined by

Sut) = (Zy — k)(n + 1) k[(n + 1)

St<(k+1/(n+1), k=0,1,...,n
=(Z,;y—n—1)(n+ 1)t t=1.
Then
(3.2) v,2 M e O+ 1) 0y
n+1 Zn+l
where

(3.3) T, = S,(1) — tS,(1)
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and e,(f) = [(n + 1)t]/(n + 1) ([x] denotes largest integer < x) and “=" means
the two processes have the same distribution.

Choose a version S, of S, (S, has same distribution as ) defined on a common
probability space with a Wiener process W such that o(S,, W) — 0 almost surely
as n— oo. Let T, be defined in terms of S, by (3.3) and V, be defined in terms
of T, by (3.2). Then p(V,, W) — 0 as n— co where W, ="W(t) — t W(1).
Suppose (3.1) holds. In order to show the weak convergence of V, to W, in
(D, p,) it is sufficient to show that p(V¥,, W) — 0 in probability as n— co.
This in turn will follow from

3.4 lim,_, lim sup,_,., P{|V,.(?)] > ¢q(f) some 0 <t <60} =0
forall ¢>0

since the corresponding result for 1 — 6 < ¢ < 1 is obtained by replacing ¢(r)
by g(1 — t)in (3.4). Let a, = (8 log n/n)} and apply Lemma 2.9 to get

P{|V,.(t)] > ¢q(t), some ¢ in (0, 6]}
< P{ED 7 > 2 g0,

n+1

some ¢ in (0, 8], |[Z, ., /n — 1| < a”I»

(3.5) +P{MCE Do) — 1 > 2 q0),

n+1

some ¢ in (0, 0], |Zy,ujn — 1] < an} + o(ni)
<P {]Tn| > %q(t), some ¢ < 0} + O(n7%), n large

= P, 4+ O(n7}), say.

Now bound P, from above;

(3.6) Py < P(e[6) + Py(e[6)
where
P,(¢) = P{|S,(t)] > eq(r), some ¢t in (0, @]}
and
Py(e) = P{t]S,(1)] > eq(f), some ¢ in (0, 6]}.
(3.7) = P{IS.(1)] > ¢q(9)/6}
—, P{|Z] > <q(0)/6}, where Z ~ N(0, 1)
—,0.

Choose 0 < 2 < 1 and let N = N(2, ) be the largest integer less than or equal
to —log [(n + 1)6]/log (). Set k; = (n + 1)04%,j = 0,1, ..., N and let k; be
the largest integer less than or equal to k;, j =0,1, ..., N. Then P,(c) is
bounded above by

(3.8) N P{|S,| > e(n + 1)}q(027*) for some k;,, < k < k;}
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where S, = Z, — k. Apply Lemma 2.7 and Chebyshev’s inequality to get the
jth term of (3.8) bounded above by

(3.9 4P(IS5,| > e(n + 1)iq(047) — 2(k; — k; 1)}
which in turn for § < 6*(2) is bounded by
(3.10) 4P(|S;,| = kifi)

where f; = ¢/2(k;,./k;)} k(627+"). Now apply the Berry-Esséen type bound of
Nagaev [6] to get
(3.11) Pe) £ § Tl — ®(f)] + L T k745"

where f; = ¢/2(627)"tq(27*"), L is a constant which depends only on E(Y;’) and
® is the standard normal distribution function. The first term on the right
side of (3.11) can be bounded above by a quantity which is independent of n
and goes to 0 as § — 0; for

Yol — O(f)] £ K D5 exp(—f3i'[3)
(3.12) < —K(log () Xigo V1 = exp ((— eAPI(1)2) dr
= —K(log (3))~* §¢* ¢! exp((—eA)*h(1)[2) dt
—0 as 6—0.

The second term on the right side of (3.11) is bounded as follows:
Dokt < Dok
(3.13) < (AN RV ki (R(6ATHY)) R
+ ()~} (R(62V+))*,  since nfA¥ = 1
< Cy(n + 1)780(0) §unys xF dx + Cob((n + 1))
where b(f) = max (h=(S): 0 < S < #). Performing the integration yields

(3.14) Dok < Cib(6) + Cb((n 4 1)7)
so that from (3.14), (3.12) and (3.11) it follows that
(3.15) lim,_, lim sup, ., P(¢s) = 0 forall ¢>0.

The sufficiency of the condition (3.1) follows from (3.4), (3.5), (3.6), (3.7) and
(3.15).

If, on the other hand, ¥, converges weakly to W, in (D, p,), choose versions
so that p (V,, W;) — 0 almost surely as n — co for these versions. Then for
anye >0 ‘

(Vs Wo) Z sup {(Va(1) — Wi()/9(D), t < &[(n + 1)}
(3.16) 2 sup {(—(nt)htt — Wy(1)[q(1), t < &f(n + 1)}
Z sup {(—ett — Wy(1)/q(0), t < €f(n 4 1)} -

For large enough n we have almost surely that

(3.17) — W) < et + b)) forall 1< &(n+1).
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This implies that ## (1 + A,(¢)) is in the upper class of the Wiener process for
every ¢ > 0. By Proposition 2.1

§3rtexp(—e(l + ) df < oo

and by Lemma 1 of [2], 1 + &,(¢) and hence A,(f) approaches infinity as ¢ — 0.
For large enough n then ‘

(3.18)  P{IWy()] > eq(t), t < (n + 1)7}
< Plsup ([V.u(f) — Wu(0)l/q(1): ¢ < (n 4 1)) > ¢/2}.
Thus eq(?) is in the upper class of the Wiener process for every ¢ > 0 and Pro-
position 2.1 shows that (3.1) holds for i = 1. The case i = 2 follows similarly
by mapping t — 1 — ¢ and replacing ¢(¢) by g(1 — ).
REMARK 1. The inverse empirical distribution function is often defined by
F,W(t) = inf(s: F,(5) = 1) .

If this version of F, !is used in (1.4), Theorem 1 continues to hold provided
¥V, modified by being set to zero for ¢ in [0, n~*] and ¢ in [1 — n7%, 1].

REMARK 2. Let Q,denote the class of all functions ¢* in D which are bounded
below by a function ¢ with the properties assumed in Theorem 1. Then V,
converges weakly to W, in (D, p,.) and (D, d,.) for all ¢* in Q,.

4. The empirical process. Theorem 1 applies to the empirical process U, as
well as to the process V,. This is stated and proved in Theorem 2 below. Since
in the proof of Theorem 2, U, is replaced by a Poisson process rather than a
partial sum process we need an analogue of Lemma 2.7 for the Poisson process.

LemMa 4.1. Let X,(t) denote a Poisson process with parameter 1 and all paths
constant except for upward jumps of height 1. Let a, b and c be nonnegative
constants with ¢ > 2(b — a)}. Then

4.2) P(|Xy(t) — t] = ¢, some a <t < D)
< $P(X(B) — bl Z ¢ — 2(b — @)?) .

Proor. The proof mimics that of Lemma 16 of [3] page 18. Namely, let
0 < ¢ <cand let

A, = {|X,(j2™™) — j2°"| = ¢’ for some j = [a2"] 4 1, ..., [b2"]}.
Apply Lemma 2.7 along with Chebyshev’s inequality to get
P(4,) < $P{IX,([62"]27") — [B2"27"] 2 ¢' — 2(b — @)’} = 4P(B,) ,

where B, = {|X,([6]"]27") — [b2"]27*| = ¢’ — 2(b — a)}}. Now A, increases to
A, say, and apart from a set of probability zero,

{IX;(t) —t| = ¢, some a<t=<b}C A
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so that
P{lX,(t) — t| = ¢, some a <t < b}
< P(A) < 4limsup,_., P(B,) < 4P(|X,(b) — b| = ¢ — 2(b — a)}).
Let ¢’ increase to c.

THEOREM 2. Let q(t) be as in the statement of Theorem 1 and let U, be as in
(1.4). Then(3.1) is both a necessary and sufficient condition for the weak convergence
of U, to Wyin (D, p,).

Proor. Suppose (3.1) holds. Let U, and W, be versions of U, and W, defined
on a common probability space such that p(U,, W,) — 0 almost surely as n — co.
It is sufficient to show that p (U,, W;) — 0 in probability as n — oo, which in
turn will follow from

(4.3) lim, , lim sup,_., P{U,(#) > eq(f), some 0 <t < 0} =0
for every ¢ > 0.

The arguments of Chibisov in [2] (Lemmas 3 and 4) show that in place of (4.3)
it is sufficient to establish

(4.4) lim, , lim sup, ., P{|X, () — nt| > eniq(t), some n' <t < 0} =0
where X,(¢f) denotes a Poisson process with parameter n. As in Theorem 1
choose 0 < 2 < 1 and let N = N(6, 4) be the largest integer less than or equal
to —log (nf)/log (4) and k; = nf2%,j = 0,1, ..., N. Now bound the probability
in (4.4) by

(4.5) NV, P{|X, (1) — nt| > entq(627%), some 07 <t < 627).

Replace nt by ¢ so that (4.5) becomes

(4.6) Yo P{|X,\(t) — t] > entq(047*"), some k;,, <t < k;}.

Apply Lemma (4.1) to majorise (4.6) by

(4.7) 4 B PlIX(ky) — K;| > emiq(03+) — 2/k;(1 — D)} ,

which in turn for small enough 6 is bounded above by
(4.8) § ZL P {10k — K| > S kthowm |

Apply the bound (8) of [2] page 151 to bound (4.8) by
(4.9) § Toexp[—e(1 — APROA1)8]
+ § 2170 eXp[—c,entq(627+7)/24]

where ¢, is positive constant depending on 4.
The same argument used in (3.15) of Theorem 1 bounds the first term in (4.9)
by a quantity independent of n which goes to zero as # — 0. Consider the
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second sum in (4.9). Let 5(f) = min (h(r): 0 < t £ 6). Then
(410)  Eiexp[—c,eniq(62i+)/24]
S T1M.0 eXp[—c, s(n62V+)b(G) A= +1[24] .

Use the fact that nfA¥*! 2 1 and write the terms on the right side of (4.10) in
reverse order so that (4.10) is majorised by

(4.11) o, exp[—sc;/b(6)A"1] — 0 as 6—0.

Sufficiency is thus proved. Necessity follows by an argument similar to that of
Theorem 1, except that (n + 1)~* is replaced by U,,, the first order statistic.
The deviation of U,, from (n + 1)~! is then bounded by a Chebyshev type in-
equality. The details are omitted.

Theorem 2 is more general than Theorem 3 of [2], since for any function ¢(f)
regularly varying of order 0 < @ < 4 at ¢ = 0, it is easily shown there exists
¢’(t), monotone increasing near zero, such that ¢(t) ~ ¢’(r) as +— 0. By
Theorem 2, U, converges weakly to W, in (D, p,) (and hence (D, d,)) for all
functions ¢ in the class Q,.

5. Partial sum processes. The proof of (3.18) Theorem 1 shows that if Y,,

Y,, -+, are a sequence of independent, identically distributed random variables

with E(Y,) = 0, E(Y;?) = 1 and E|Y,|® < oo then for the partial sum process
S.(t) = Z,nt, kingst < (k+1)n
Sy(1) = Z,n¥

where Z, = O and Z, = 3%, Y;, one may state the following theorem.

THEOREM 3. A4 necessary and sufficient condition for the weak convergence of
S.(t) to a standard Wiener process W(t) in (D, p,) for a continuous, nonnegative
Sfunction q(t), bounded away from zero on (y, 1) and non-decreasing on (0, r) for
some ¢ > 0 is the convergence for every ¢ > 0 of the integral

(5.1) § 1 exp(—eq(t)/1) dt .

The third moment assumption can be dropped and the theorem continues to
hold. A truncation argument along the lines of Robbins and Siegmund [8] in
Lemma 5 is needed for the proof which is omitted here.

The arguments of Pyke and Shorack, using Theorem 1 in place of Theorem
2.1 of [7], establish weak convergence of the two sample empirical process Ly
(modified at 0) to W, in (D, p,) for ¢ in Q,, a larger class of functions than their
class Q.
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