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FUNCTIONAL CENTRAL LIMIT THEOREMS FOR RANDOM
WALKS CONDITIONED TO STAY POSITIVE!

By DoNALD L. IGLEHART
Stanford University

Let {¢x: k = 1} be a sequence of independent, identically distributed
random variables with E{¢1} = 0 and E{£:2} = ¢2, 0 < ¢2 < co. Form the
random walk {S,: n = 0} by setting So =0, Sp =¢1 + +-+ + &n,n = 1. Let
Tdenote the hitting time of the set (—co, 0] by the random walk. The main
result in this paper is a functional central limit theorem for the random
functions Sia:1/ont, 0 < ¢ < 1, conditional on T > n. The limit process,
W+, is identified in terms of standard Brownian motion. Similar results
are obtained for random partial sums and renewal processes. Finally, in
the case where E{¢:1} = ¢ > 0, it is shown that the conditional (on T > n)
and unconditional weak limit for (Sta:] — pnt)/ont is the same, namely,
Brownian motion.

1. Introduction. Let {§,: k = 1} be a sequence of independent, identically
distributed random variables with E{§,} = 0 and E{§;’} = ¢°,0 < ¢* < co. Form
the random walk {S, : n = 0} by setting §, = 0and S, =§, + --- + §,,n = 1.
Define the random function X, by

X(1) = Sanfont s 0<r=1,

where [x] is the greatest integer in x. Next let 7' be the hitting time of the set
(— o0, 0] by the random walk:

T = inf{n>0: S, =0},

where the infimum of the empty set is taken to be 4 co.

Our goal in this paper is to obtain a functional central limit theorem (f.c.l.t.),
or so-called invariance principle, for the random function X,, conditioned on
T > n.

To be more specific we assume that {§,: k > 1} are the coordinate func-
tions defined on the product space (R, 5, P). If A, ={T > n}, then we
let (A,, A, n F,P,) be the trace of (R, .5, P) on A,, where A, n & =
{A, n F: Fe & }and P,(A4) = P(A)/P(]A,) for Ae A, n 5. The expectation
with respect to P, is denoted by E,{-}. Next let D = D[0, 1] be the space of real-
valued, right-continuous functions on [0, 1] having left limits and 7 be the
o-field of Borel sets generated by the open sets of the Skorohod J;-topology. Let
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D, ={xeD:x=0}, and Z, =D, n . The measurable mapping X,*:
(Aas Ay N F) > (D, Z,) is defined by

X”+(.’ (l)) = S[,,.](w)/ani‘ ’ [ONS] Aﬁ .
The random function X,* induces a p.m. g,* on Z,: for 4e Z, .
pt(A) = P{X,* e A} = P{X,* e A}/P{A,} .

The main result of this paper is that p,* = u*, the p.m. of a random function
W+, if py = E{|§,°} is finite and ¢, is nonlattice or integer-valued with span 1;
the symbol — means weak convergence. Alternatively, we write X,* = W+
for this result. The finite-dimensional distribution (f.d.d.’s) of W+ will be given
explicitly and W+ identified in terms of Brownian motion W. Roughly speaking,
W+ is the first-half of the absolute value of a Brownian excursion. This result
for conditioned partial sums can easily be converted into a result for conditioned
renewal processes using the methods of Vervaat (1972), or alternatively Iglehart
and Whitt (1971). We also give a conditioned f.c.l.t. for random partial sums.

These results have an application to queueing theory, as well as the obvious
interpretation as the fortune of a gambler or insurance company prior to ruin.
For the general single server queue the waiting time of the nth customer, W,,
can be expressed in terms of the random walk as

W, =max{S, — S,:0<r<n}, n=0;

see [9] for this relation as well as other aspects of the sample-path behavior of
{W,: n=0}. In this context T is the number of customers served in the first
busy-period. Observe that W, = §, on theset {T > n}. Thus the result X+ — W+
can be thought of as a limit law for the waiting time process in the first busy
period of a general single server queue with traffic intensity equal to 1.

The ordinary central limit theorem corresponding to X,* — W+ is

(1.1) lim,_, P(S,/on* < x|T > n} = 1 — exp(—x?2), x=0.

This result (without the finite third absolute moment condition) was announced
by Spitzer (1960), page 162, in a footnote “added in proof.” Apparently the
proof of (1.1) was never published. The form of the limit distribution of (1.1)
was given in Dwass and Karlin (1963), equation (52) page 1159 and page 1160,
under the assumption that the limit exists. A complete proof of (1.1) is given
here in Proposition 2.1. Note that the limit is the Rayleigh distribution.

Related results have previously been obtained by Belkin (1970), (1972) and
Stone (1971). Belkin considers an integer-valued random walk in the domain
of attraction of a stable law and conditions on the walk not having entered a
finite set of integers. The proof of tightness given here follows that of Belkin;
however, the W, variables must be used rather than the S,’s. Port and Stone
consider infinitely divisible processes on a locally compact Abelian group and
condition on not having entered a compact set.
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This paper is organized in the following manner. Section 2 contains a proof
of the convergence of the f.d.d.’s of X, * to those of W*. In Section 3 the sequence
{X,,: n = 1} is shown to be tight and hence converge weakly to W+. Also the
identification of W+ in terms of Brownian motion is given in Section 3. Con-
ditioned random partial sum and conditioned renewal processes are treated in
Section 4. Finally, in Section 5 a simple proof is given which shows that
when p = E{£,} > 0 the conditioned (on {T > n}) and unconditioned limit of
(Sinsy — pnt)jont is the same, namely Brownian motion W.

2. Convergence of finite-dimensional distributions. Our goal in this section
is to show that the finite-dimensional distributions (f.d.d.’s) of the random func-
tions X,* converge to those of the random function W+. The first step in this
direction is the ordinary central limit theorem.

(2.1) ProrosSITION. If =0, 0 < ¢* < o0, E{|§,])} < o0, and &, is nonlattice
or integer-valued with span 1, then for all x = 0
(2.2) lim, ., P{X,*(1) < x} = 1 — exp(—x*2).

Proor. First recall that S, = W, on {T > n}. So if we can show (2.2) with
X, *(1) replaced by W, Jon}, the result will be established. Let f, = P{T = n}
and r, = P{T > n}. A simple path decomposition yields

@3 ROfon 2} = R Jov 5 3
— rn—l Zl':=1 P{Wn/gni <x,T= k} .

Using the fact that T is an almost everywhere finite, optional random variable
and that W, = 0, we can write after a simple manipulation

P (W, Jont < x}
(2.4) = P{W,[ont < x} — 32, (fk/rn)[P{Wn—k/on* = x)
— P{W, [ont < x}].

It is well-known that when ¢ = 0 and 0 < ¢ < oo
2.5) r, ~cnt as n— oo,

where ¢ is a positive constant whose precise value need not concern us; see
Spitzer (1960), Theorem 3.5, for this result. Furthermore, under the hypotheses
of (2.1)

(2.6) [ ~ (c]2)n~} as n— oo ;

This result is contained in Borovkov (1970), Corollary 9. Hence, combining
(2.5) and (2.6) we see that for an arbitrary ¢ > 0, f,/r, ~ (3)(k/n)~*n~' as
n — oo, uniformly for [en] < k < n. If we let M, = max{S,: 0 < r < n}, then
W, and M, are known to have the same distribution; cf. Feller (1971), page
198. Also when ¢ =0 and 0 < ¢*® < o0, M,[/ont = |N|, the positive normal
with density (2/z)} exp{—x?/2}, x = 0. If in addition E{|¢,|*} < oo, Nagaev (1969)
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page 443, has obtained the Berry-Esséen type bound

@.7) SUP, 5o |P{M,ont < x} — |N|(x)| < Kn~

for all n > 1, where |N|(x) = (2/x) {§ exp(—#4*/2) du and K is a finite, positive

constant. We shall in general use K for such a constant without further mention.
Returning to (2.4), the first term on the right-hand side of the equation con-

verges to |N|(x). Hence, to obtain (2.2) we must show that the sum in (2.4)
converges to exp(—x*/2) + |[N|(x) — 1. Select ¢ > 0 and consider the sum

(2-8) T (ful ) [PWaifont < x} — P{W, [on® < x}].

Using (2.7), we see that this sum is majorized for n sufficiently large by the
expression

@9) [+ 9/2] D (k!
X (NI = K] ™) = INIGE) + K — K 4 )] - L

The principal term of this sum is the Riemann approximating sum for the integral

(2.10) [(1 + &)/2] i v HIN|(x{1 — 0]™) — [N|(x)] dv .
The remainder term of (2.9) is dominated by
(2.11) [(1 4+ ¢)/2] s v tdv . O(nH).

Combining (2.10) and (2.11) we see that for n large (2.8) is majorized by a term
which is arbitrarily close to the finite integral

(2.12) (2z)~t §ic vt do 2"t exp(—u?/2) du ,

for n sufficiently large. The fact that (2.12) provides an arbitrarily close lower
bound for (2.8) is shown in the same way. A simple interchange of integrals
shows that

(2.13) (27)~t (L vt dv (20" exp(—u?[2) du = exp(—x*[2) + |N|(x) — 1.
Thus, we will have completed the proof of (2.2) if we can show that
(2.14) lim sup, , im sup, ... | 2252 + Zioa-amies (f2/72)

X [P{W,_,Jont < x} — P{W,[on} < x]| = 0.

First take the sum }7_;,_,)n;4:- Itis easily bounded by 2[r;,_.,,; — 7,]/7, which
converges to (1 — €)™t — 1 as n — oo, Consequently,

lim sup,_,, lim sup, .. | 25 (1-epujer] = 0 -

To handle the sum ;") we first select M so large that for M < k < [en]
(fu/ra) < (k/m)~*.n~*and 37, k~# < . So we obtain for n large

2k (fk/ WDIP{W,_ifont < x} — P{W, Jont < x}]
ki (km) 3 [IN(x[1 — k/n]™*) — [N|(x) + K([n — k]* + n7H)] -
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{enl, (kfm)-3 [|N] (x[l - fﬂ‘*) - [N](x):| . %

is the Riemann approximating sum for

(2/m)t §5 07 §50-0 74 exp(—2/2) du

The term

which can be made arbitrarily small by selecting ¢ small by virtue of the finiteness
of the integral in (2.13). The term

1
ik (kfm) ([ — KT 4 ) -
is easily bounded by a finite positive constant times

Trakt<e

by the selection of M. This disposes of the term Y]i"} in (2.14).

To treat the term Y/, in (2.14) we need to establish for x > 0,1 < k < M,
and n = 1 the bound
(2.15) [P(W,_ifont < x} — P{W,_, ,Jon} < x}] = a,, < K[n'—
where 0 < ¢ < 1 may be arbitrarily small. Using the fact that W, and M, have
the same distribution, it is easy to see that

a,, = P(M,_, < onix, S, .., > onix}.

Next note that for m > 1

P {Mn_k < ondx, S,y > ont (x + L)}
m

= an,k(m)

={*. P {51 > ont <x + 1_ y)} - P(M,_, < onix, S,_,[ont e dy} .

m

Use Chebyshev’s inequality to obtain
Elé |2—J . 1 —(2—38)
@16 aum s DM s (- )
X P{M,_, < onx, S,_, [onte dy} .

From Donsker’s theorem we know that (M,_/ont, S, [ont) = (M, W(1)),
where {W(r): t = 0} is Brownian motion and M = sup {W(r): 0 < ¢ < 1}; see
Billingsley (1968) page 77. On (—oo, x], (x + m™ — y)==% is a bounded con-

tinuous function of y and thus by weak convergence the integral in (2.16)
converges to

1 —(2-3)
. (x +-— y> P(M < x, W(1) e dy)

< §2o (x — ) O VP(M < x, W(1)e dy)
= 2[m)t §2, (x — y)~*2§2 (22 — y) exp[—(2z — y)}/2]dzdy < oo ;
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for the joint density of (M, W(1)) see It6-McKean (1965) page 27. Hence, we
conclude that forallm,n > 1,e >0, 1 <k< M

a,(m) < K[n=",

where K does not depend on m. Since a, ,(m) /' a,, as m — oo, , we have the
bound (2.15).
The term

S (Sl )P, _yJont < x} — P{W,Jont < x}]
< Kn* T, a,, < Kn~4+91 0

as n— oo provided 6 < 1. The second inequality above uses (2.15). This
completes the demonstration of (2.14) and establishes (2.2).

(2.17)  REemARk. Without conditioning P{W,/on? < x} — |N|(x), the limit
distribution having mean (2/z)}; with conditioning P {W, jon} < x} —> 1 —
exp(—x?/2), the limit distribution having mean (z/2)!. Hence, conditioning
to stay positive increases the mean of the limit distribution by a factor of x/2.

Next we state a standard result similar to one used by Belkin (1972) page 54.
Alternatively, see Billingsley (1968) Theorem 5.5.

(2.18) LEMMA. Let {y,: n = 1} be a sequence of finite measures on %, the
Borel sets of R = (—o0, +00). Suppose p, = p, finite. If {f,:n=1}is a
sequence of uniformly bounded, Borel measurable functions converging uniformly on
compact sets to an everywhere bounded continuous limit f, then

lim, o, § 5 fu(X)tn(dX) = § 5 f(x)12(dx)
for Be 2 provided 11(6B) = 0.
For convenience we let
9(t, Xy, x,) = (2wt)~Hexp(—(x, — x,)*/2t) — exp(—(x; + X,)*/21)]
for x,, x, >0and 0 < r < 1. Also set
p(0,0; 1, x) = t~ix exp(—x?/21)|N|(x/(1 — £)})
forx >0,0< <1, and
Pt %5 1y X3) = g(t; — 1, Xy, %) [N|(x/(1 — B)H/IN|(6/(1 — 1))
for x,x,>0,0< <, 1.
The next step in showing that the f.d.d.’s converge is
(2.19) PROPOSITION. Forallx > 0and 0 < t < 1, under the conditions of (2.1)
(2.20) lim, ., P{X,"(r) = x} = §p(0, 052, y)dy .

ProoF. An elementary calculation shows that

(2’21) Pn{Xn+(t) é X} = rn_l S(O,zni/[nt]i] P{X[nt](l) € dya Sl > O’ D) Sn > 0} .
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Now use the path structure of {S,: n > 0} to write

P{Xp, (1) edy; S, >0, ---, 8, > 0}
(2.22) = N P{X (1) €dy | T > [nt]}

X P {maxosksn me( = Sefo(n — [ne])}) < y( [nt] >&}

Under the conditions of (2.1) we know from (2.7) that the last factor on the right-
hand side of (2.22) converges uniformly in y to [N|{y(t/(1 — #))}}. On the other
hand, from (2.5) ry,,/r, — ¢t and the probability measure represented by the
second factor on the right-hand side of (2.22) converges weakly to the Rayleigh
distribution by (2.3). Now appealing to (2.18) yields
lim, . PX,*(0) < x} = 174 571 ye2IN|(p(t/(1 — 1))}} dy .
Finally, make the change of variables 7ty = u to obtain (2.20).
The final step in showing convergence of the f.d.d.’s is

(2.23) THEOREM. Forallk =1, x;, -+, %, >0, and 0 < t, < t, < --- <
t, = 1, under the conditions of (2.1)
n—oo Pn{Xn+(t1) é Xy 200y Xn+(tk) é xk}
(2.24) = §o' - §05P(0, 05 1, y)p(ths yis 1oy ) - - -
P(tecss Yioss tis i) Ay -+ - dy, .

Proor. The proof is by induction on k. This result holds for k = 1 by virtue
of (2.20). Suppose (2.24) is true for k = m — 1, we show next that it can be
extended to k = m. We begin by writing

P X, () < xpy -+, X5 (1) < X4}
= rn_l SO-T ! s P{X (tl) < Xys m 00y Xn(tm—Z) é Xm—2s
Xn(tm—l) e dym—l, n(tm) e d)’,,,?
$>0,8>0,.-.,5, >0}
(2-25) _ I‘[nt —1] Sxm 1 xm P{ (tl) é Xy ¢y
r

n

Xn(tm—l) S dym—l | T > [nt'm—I]}

X Pvn%ym_l {S—-——[nt"’]_[ntm_ll € dym’
ont

lim

minosks[nthTIntm_ll (Sifon?) > 0}
X P”“ym{minoglogn—[mml (Sifont) > 0},
where P#{.} is the p.m. for {S,: n > 0} when S, = x.
We have used in the proof of (2.19) the fact that
lim, _,, Pan%ym{minogkgn—[mm] (Syfon*) = 0}
(2.26) = lim, P{maxogkgn—[mm] (=Sifon?) < ya}
= [N(ya/(1 — 1))
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uniformly in y,. Furthermore, for x > 0

Iimn_’w P"""iym—l { S[ntm]—[ntm_ll é X,
ont

@.27) My st0 0,300 (SeloE) > O]

= Sg g(tm - tm—l’ym—l’y) dy 4

uniformly in y,_,; cf. It6-McKean (1965) page 30, for the value of the limit
and Billingsley and Topsge (1967) Theorem 2, for the uniformity.
Finally, by our induction assumption

limnﬂeo P{Xn(tl) é xl’ R ] Xn(tm—l) é xm—l l T > [ntm—l]}
(2.28) = §ivnt - §im1ne1 p(0, 05 4/t s, 3y)
X P(tl/tm—l’ Y15 tz/tm—l’ PO RER
P(tm—z/tm—l’ ym—z; l,ym—l) dym—l trt dyl .

Combining (2.25), (2.26), (2.27), (2.28), and using (2.18) twice plus the Lebesgue
bounded convergence theorem, we obtain

limn—»oo Pn{Xn+(tl) é X1yttt Xn+(tm) é x‘m}

— - _ ok it
=t} (em-1 (Em (21/tmy oL (Em=d/tny

(2.29) X PO, 05 8./t 1y )Pt tmss Y35 toftm—ss Ys) « - -
P(tm—z/tm—l, Ym—2s l,ym_l/l‘}’n_l) dym—l . dyl
X Itn = tmess Ymo1s V) NP/ (1 = 1))

Now make the change of variables ¢} _,y, = u,, ---, t}_,x,,_, = u,,_, in (2.29)
and one obtains (2.24) for k = m.

The f.d.d.’s on the right-hand side of (2.24) are those of a random function
W+, whose existence will be shown in the next section.

3. Weak convergence in D. In this section we prove that the sequence of
processes {X,*: n = 1} converge weakly as random functions in D, to W+, the
random function in D, whose f.d.d.’s are given in Section 2. We use Theorems
15.1 and 15.5 of Billingsley (1968) as the basic tool in the proof.

To this end we define the following modulus of continuity for functions
xeD:

w(0, a, b) = sup {|x(s) — x(1)]};
where 0 <a < b <1,0<d< 1, and the supremum extends over s and ¢ satis-
fyinga<s<t<band t — s <. In Section 2 we showed that the f.d.d.’s

of X+ converge to those of W*. Thus to complete the proof that X,* — W+ is
suffices from Theorems 15.1 and 15.5 of [3] to show for every ¢ > 0 that

(3.1 lim, |, lim sup, ... P,{w_+(3,0,1) = ¢} = 0,
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since X,(0) = 0. This will show at the same time that W+ exists as a random
function on (D,, Z,) and that P{W+* ¢ C} = 1.

The first step in demonstrating (3.1) is the next lemma, whose proof follows
the argument of Belkin (1972) page 49, and will be omitted.

3.2) LEMMA. For every ¢ > 0,
(3.3) lim_,lim sup,_, ,7"P{sup,,.. X,(s) = ¢, T > [nz]} = 0.
With this lemma in hand it is an easy matter to show

3.4) THEOREM. A random function W+, on (D, Z+) exists with finite-dimen-
sional distributions given by (2.24). X,* = W* as n — oo and P{W+ ¢ C}=1.

PRrooF. As remarked above, it suffices to show (3.1). For every r ¢ (0, 1],
e>0,and0 <<
P {wy +(3,0,1) > ¢}
(3.5) = rP{wy (0,0,1) > &, T > [nr]}
= rnTP{wy (9,0, 1) = ¢, supy, .. X, (5) <&, T > [nr]}
+ 1.7 P{sUpyg,<. Xo(s) 2 &, T > [ne]}.

Using the path structure of the random walk we have

r,'P{wy (0,0, 1) = ¢, sup,g, .. X, (5) <&, T > [nz]}

=rnTPwy (0,7 —0,1)=¢, T > [nr]}

(3.6) SrnTPwe (0,7 —0,1) = ¢, T > [n(z — d)]}

— Nuz—o) P{WX (5, T —0, 1) = 6}
r " a

n

< ftse=01 Ply, (5,0,1) > ¢} .
r " -

Since X, — W and P(WeC} =1,
lim, , lim sup, ., Plwy (9,0,1) > ¢} =0;

see, for example, [10] Lemma 3. Thus combining (3.5), (3.3), and (3.6) we
obtain (3.1) which completes the proof of (3.4).

Next we relate W+ to W, Brownian motion. This job has essentially been
done by Belkin (1972). Let

T =sup{re[0, 1]: W(r) = 0}
and set
A = 1 — T.

Then the f.d.d.’s of W+ coincide with those of
(W + Ayjat: 0 < 1 < 1)

see [2] page 61. Since the class of finite-dimensional sets is a determining



RANDOM WALKS CONDITIONED TO STAY POSITIVE 617

class, [3] page 123,
W) = [W(e + A-)/AY.

Note that this identification also shows that W*(.) is continuous a.e.

4. Conditioned renewal and random partial sum processes. Assume now that
the random variables {§,: kK = 1} are nonnegative with finite mean x# > 0 and
otherwise satisfy the conditions of (2.1). Let

Yo(t: ) = (So(@) — pnt)font o<r<1,
and A, = {S, — #k > 0:1 < k < n}. Denote the restrictionof Y, to [0, 1] x A,
by Y,*. Then our previous results, (3.12), can be reinterpreted as Y,* = W+.
Next let {N(#): t = 0} be the renewal process, with rate x~* = 2, associated with
the sequence {§,: k > 1}

Nt 0) = $fn = 1: S,(0) < 1} .
Then form the random functions

N,(t, ) = (Ant — N(nt, w))[oAin} , 0t

and let ©, = {Ar — N(z) > 0: 0 < r < n}. We let N,* denote the restriction
of N,* to [0, 1] x ©,. The f.c.L.t. for N,* is
4.1 PROPOSITION. N,* = W+t asn— co.

Proor. We use the method of Vervaat (1972). From (3.12) the random func-
tions (Sy,;.; — n+)/o(nd)} restricted to A, converge weakly to W+, hence so
does (n71S},,;,; — +)/oAtn=t. Now use the method of Vervaat (1972) page 251, plus
the fact that P{W* e C} = 1 and .7\[,, 1C0,C .7\[,, 2141 to conclude that N, * = W+,

Now we return to the original case x = 0 together with the conditions of
(2.1) and assume our random walk {S,: n = 0} and a renewal process {N(¢):
t = 0} are both defined on a common probability space. Let the times between
renewal epochs be {u;: i > 1} with E{y;} = 27!, 0 < 1 < o0, and E{y,’} < co.
Define the random function

Z,(t, ©) = Syme,m(@)/o(An)t, 0=sr=1,
and let I', = {T > N(n)}. Denote the restriction of Z, to [0,1] x I', by Z,*.
Our goal now is to show that Z,* = W*. We shall simply sketch the proof.
The proof of the next result is straightforward and therefore omitted.
4.2) LEMMA. s, = P{T > N(n)} ~ ¢(4n)"t as n— oo, where c is the same
positive constant appearing in (2.5).

To show that the f.d.d.’s of Z,* converge to those of W* we condition on
the values of N(nt,), ---, N(nt,) and N(n). Using essentially the same proof
employed in (4.2) together with the continuity of the joint density of ( W+(t1)
W+(t,)) as a function of (¢, - - -, t,) we obtain

(4.3) Lemva. IfO0< < - <1, <1, then
(Za" (1) -+ 5 Z5(1) = (WH(1), -+, WH(L)) -
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To complete the proof that Z,+ — W+ we must, of course, show that the
sequence {Z,*: n = I} is tight. For that proof we need the following result
which is proved using Kolmogorov’s inequality.

(4.4 LeMMA. Foreverye >0,a < 1,andz >0

@4.5)  lim,_.nP {sup‘,gmé, Nnt) — Nins) _ > e} —0.
n

At — )

The tightness of {Z,*: n > 1} follows from [3], Theorem 15.5 and the next
(4.6) LeMMA. Letr w,(d, 0, 1) = w,(0) for xe D. For everye > 0,
4.7) lim, , lim sup, ., P{w, (8) = ¢|T > N(n)} = 0.

Proor. It will suffice to take 0 < ¢ < 2. Decomposing on the value of N(n)
we obtain

P{w,,(0) 2 ¢|T > N(n)} = 5,7 Lo P{w,,(0) = &, T > k, N(n) = k} .

Now use the easily proved fact that P{|N(n)/n — 2| > ¢} = o(n~%), (4.2), (4.4),
(3.12), and standard arguments to conclude (4.7).
Now since Z,*(0, w) = 0, (4.6) plus Theorem 15.5 of [3] yields

(4.8) THEOREM. Z,* = W' asn— oo.

5. The case of positive mean. Suppose now that x = E{£,} > 0 and let
Y, (t, ®) = (Spuy(@) — pnt)font, 0 <t < 1. Recall that A, = {T > n} and let
Y,* denote the restriction of Y, to [0, 1] x A,. In this case lim, 7, = ¢,
0 < ¢ < 1; see, for example, Chung (1968), proof of Theorem 8.4.4. Since
the random walk is drifting to -+ oo, one would not expect the conditioning on
{T > n} to affect the weak limit of ¥,. We proceed to sketch the proof of this
fact; namely, that X,* = W as n— oo.

From (2.3) we have for all real x
(51) rnPn{(Wn - nlu)/gn5 é X}
= r,P{(W, — np)font < x} — T3S il P{(Waoy — np)fon < x)
— P{(W,_, — np)jont < x}].
It is well known that (W, — ng)/on* = N(O, 1), a standard normal random vari-
able. The first term on the right-hand side of (5.1) converges to ¢, and the

sum converges to ¢;(1 — ®(x)), where, ® is the standard normal distribution
function. Hence

lim, ., P{Y, (1) < x} = O(x), —o < x < oo
The convergence of the f.d.d.’s of Y, to those of 1 is obtained using the methods

of (2.19) and (2.23) and the fact that min,,., S, converges a.e. to a finite random
variable. Finally, for tightness observe that

Pwy +(0,0,1) = ¢} < r,”'Plwy (9,0, 1) = ¢}
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and thus lim, ,lim sup, ., P,{w, (6,0, 1) > ¢} = 0. Hence we obtain

(5.2) ProrosITION. If p > 0and 0 < 6 < o, then Y, ¥ = Wasn — .
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