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STRONG LAWS OF LARGE NUMBERS FOR WEAKLY
ORTHOGONAL SEQUENCES OF BANACH
SPACE-VALUED RANDOM VARIABLES

By ANATOLE BECK AND PETER WARREN

London School of Economics and University of Denver

This paper studies Strong Laws of Large Numbers for Banach space-
valued random variables which are subject to the Banach space analog of
orthogonality called weak orthogonality.

1. Summary. The Strong Law of Large Numbers for Banach space-valued
random variables, in its generic form states:

THEOREM. Let 527 be a specified Banach space. Let {X\}, k =1,2, ..., be a
sequence of Z-valued random variables subject to a certain set of conditions. Then
we have that n~' } %_, X, converges to a constant function in the norm topology of
&2 almost surely.

Strong Laws for independent -Z2~-valued random variables have been studied
inBeck [1]. Inthis paper we relax the requirement of independence and consider
instead a form of orthogonality. For real-valued random variables, the following
result is well known.

TueoreM (Radamacher [7] and Mensov [5]). Let {X,} be a sequence of mutually
orthogonal scalar-valued (real or complex) random variables with 6, = Var X, < oo,
Vk=1,2,.... If 7., k%alog’ k < oo, then the sequence of random variables
satisfies the Strong Law of Large Numbers.

The authors have studied a Banach space analog of orthogonality called weak
orthogonality (cf. Beck and Warren[2]). Here we prove a Strong Law for strictly
stationary sequences of weakly orthogonal Z~valued random variables. In the
case of independent sequences of “Z-valued random variables, identical distri-
bution is sufficient for the Strong Law. This is not so for weakly orthogonal
sequences, as we show by means of an example. This same example shows that
a sequence of identically distributed, uniformly bounded “Z~valued random
variables satisfying the Strong Law in the weak linear topology of -2” does not
necessarily satisfy the Strong Law in the norm topology of 22”. This is interesting
because similar sequences of Z-valued (for -2~ separable) random variables
which satisfy the Weak Law of Large Numbers (convergence in probability) in
the weak linear topology also must satisfy the Weak Law in the norm topology
(cf. Taylor [8]). The notion of orthogonality is more natural in a Banach algebra
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where a multiplicative structure is available. One might expect to find, in that
context, a counterpart of the Radamacher and Mensov Strong Law. However,
the same example shows, in general, that such a conjecture is false. Finally, we
give two theorems which state conditions when identical distribution and weak
orthogonality are sufficient for the Strong Law.

2. Preliminaries. -2~ denotes a Banach space with norm ||| ., &2* denotes
the dual of 27 (Q, B, Pr) denotes a probability space. A mapping X: Q — 27
is strongly measurable if for every Borel set B < 2%, X~)(B) is measurable.
Strongly measurable functions from Q into 27 are called Z=valued random
variables (rv’s). L,(Q, g, Pr, 27), for 1 < p < oo, hereafter written simply
L,(Q, Z), denotes the space of all Z%-valued rv’s on Q for which the norm

XN = (Sa [ X(@)]] 2" Pr (d))” < oo

A finite collection of Z%valued rv’s X,, --., X,, is independent if, for every
collection of m Borel sets B,, - - -, B,, C £, we have

Pr{w: X(w)e B, ---, X, (0)eB,} =[], Pr{w: X (0)eB}.

An infinite collection of Z~valued rv’s is independent if every finite subcollec-
tion is independent. A collection of Z%Zvalued rv’s X,, X,, - .. is identically
distributed if, for every Borel set B C .27, and for all positive integers i and j,
Pr{o: X(w)e B} = Pr{o: X;(w)e B}. A sequence of Z%valued rv’s is strictly
stationary if, for every nonnegative integer 4 and every positive integer n and
each collection of Borel sets B, c 2, i = 1,2, .-.,n, we have that Pr {w:
Xyu(0) € By, - -+, X, (0) € B,} is independent of 2. Note that the rv’s of a strictly
stationary sequence are identically distributed.

An Z7valued rv X is strongly (Bochner) integrable if § || X(w)|| . Pr (do) < oo.
This is not the usual definition of strong integrability, but is employed here to
avoid a longer definition. If X is strongly integrable, then there exists an element
y € &2 such that, for every x* e Z27*, we have x*(y) = {, x*(X(0)) Pr (dw). y
is called the integral' of X and is written y = {, X(») Pr (dw). This integral, if
it exists, is also called the expectation of X and is written E(X). If X e L,(Q, 2°),
then we define a Variance:

6’ = Var X = {y || X(w) — E(X)||* Pr (dw) .
A sequence of Z=valued rv’s is weakly orthogonal if, for all x* € 22°*, we have
E(x*X; - x*X;) = § x*X(®) - x*X;(0) Pr (dw) = 0.
Throughout this paper, unless otherwise noted, we shall consider only “Z-valued

rv’s which have their expectation equal to the zero element of .2°. This is not a
serious restriction since all rv’s which have an expectation are readily “centered”

! In this definition, y is defined as the weak or Pettis integral. We rely on a theorem which
states “‘every strongly integrable function is also weakly integrable and the integrals have the
same value.” Cf. E. Hille and R. S. Phillips [4] page 80.
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at zero by subtraction of a constant. In particular, X — E(X) always has expec-
tation zero. A consequence of this assumption is that independent random
variables, say X; and X,, are weakly orthogonal. This follows since, for all
x*eZ*,

E(x*X, - x*X,) = E(x*X,) - E(x*X;) = x*E(X)) - x*E(X,) .

Finally, a sequence of Z~valued rv’s X,, X,, - .-, satisfies the Strong Law of
Large Numbers (SLLN) iff

lim, ... |17 2oy Xu(@)| — O a.s.

3. Strong laws in Banach spaces. Our first theorem was originally proved
by substantially more complex techniques. A result of E. Mourier, which we
present next, considerably simplifies our original proof. Hereinafter, for a se-
quence of rv’s X, X,, - -+, wWe use the notation Y, = n7%(X; + --- + X,)-

TueoreM (E. Mourier, [6]). If 227 is a separable Banach space, then every
strictly stationary sequence of Z-valued 1v’s X,, X,, -+, with E(||X}||) < oo, has
the property that there exists an Z°-valued tv Y such that ||Y, — Y|| — 0 a.s.

LemMMA 1. Let 2 be a Banach space and let X,, X;, - - -, be a weakly orthogonal
sequence of identically distributed Z-valued 1v’s with Var (X;) < co. Then, for
each x* ¢ 7%, we have x*(Y,) — 0 a.s.

Proor. x*(Y,) = n~Y(x*X, 4+ .-+ + x*X,). Weak orthogonality implies that
the sequence x*X;, x*X,, - . -, isan orthogonal sequence of identically distributed
scalar-valued rv’s. Thus Var (x*X;) = Var (x*X,), Yk = 2, 3,. ... Furthermore,
it is easy to see that Var (x*X;) < 1 + ||x*|| Var (X;) < 0. Now the lemma is
an immediate consequence of Radamacher and Mensov’s Strong Law.

LEMMA 2. Let 7 be a separable Banack space and suppose ||Y, — Y|| — 0 a.s.,
where Y, and Y are Z-valued rv’s. If x*(Y,) — 0 a.s., for each x* € 27, then
Y =0a.s. *

Proor. Suppose, to the contrary, that there is a set of positive measure on
which Y # 0. By hypotbhesis, ||Y, — Y|| — 0 except possibly on a set B of meas-
ure zero. Let x,, x,, - - -, be a countable dense subset of 27 and let o,, 05, - -+,
be a collection of spheres in 2" such that 0, = {x € 27 ||x — x| = ||x.[|/4}. The
spheres form a countable cover for 227 — {0}. There must exist at least one k,
say k = p, such that Pr{»: Y(») € 0,} > 0. Otherwise Y(w) =0 for almost every
o. Let E, = {w: Y(w) € 0,} — B. Asaconsequence of the Hahn-Banach theorem
we can choose x,* € 27* so that ||x,*|| = 1 and x,*(x,) = ||x,||. Foranarbitrary
o, € E, we can find n, such that ||Y, (o) — Y(@,)|| < ||x,||/4 for n = n,. This
implies that ||Y, (@) — x,|| < ||x,l|//4 for n = n,. Therefore, for n = n,,

”xp*Yn(wO)“ = |xp*(xp)| - pr*(Yn(wO) - xpl
> [[%,]1/2 -
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Since w, was chosen arbitrarily from E,, it follows that x,*(Y,,) does not converge
to zero almost surely, in contradiction to the hypothesis.

TueoreM 3. If 527 is a separable Banach space, then every sequence of Z°-valued
rv’s X, X,, - - -, with Var (X;) < oo which is weakly orthogonal and strictly stationary
satisfies the Strong Law of Large Numbers.

Proor. Since the random variables of a strictly stationary sequence are nec-
essarily identically distributed, it follows from Lemma 1 that, for each x* ¢ 2%,
x*(Y,) — 0 a.s. Mourier’s theorem assures us that there exists an .2Zvalued rv
Ysuchthat||Y, — Y|| - 0 a.s. Lemma 2 now implies that ¥ = 0 a.s. which is
what we wanted to prove.

It is clear that identical distribution of the rv’s X,, X,, - .- is enough for the
Strong Law in conjunction with some other adequately stringent condition.
Mutual independence, when .2~ is separable, is one such condition (cf. Beck
[1]). In this connection, we give a pair of theorems which state conditions when
identical distribution and weak orthogonality are sufficient for the SLLN.

THEOREM 4. Let 27* be a separable Banach space, & a convex subset of 27
with compact closure, and let X,, X,, - - - be a weakly orthogonal sequence of identi-
cally distributed Z-valued 1v’s with Var (X,) < oco. If the range of X, < & for
each k, then the sequence satisfies the SLLN.

Proor. Since & is convex, it is clear that the range of Y, is contained in &
for each n. Furthermore, Lemma 1 implies that, for each x* ¢ 27*, x*(Y,) — 0
except possibly on a set B(x*) of measure zero. Let x,*, x,*, . .. be a countable
dense subset of 27*. Let B = |J., B(x,*). Then B has measure zero and, if
w, ¢ B, we have x,*(Y,(w,)) —, O for each k.

Let A(w)) = {Yy(®,), Yy(w,), - --}. For each o, A(w,) has at least one limit
point in the closure of .& since .57 is compact. Now suppose that w, ¢ B and
A(w,) has at least two distinct limit points, say y, and y,. Let M = max {||y,|,
[ly:l|}- Then, since 22”* separates points, there exists some £* ¢ .22°* such that
| M(X*(p,/ M) — X*(p,/M))| = |£*(;) — £*(»,)| = ¢ > 0. Since the x,* are dense
in 2Z27*, we can find a k, say k = p, such that ||#* — x,|| < ¢/4M. This implies
that [£%(y,/M) — x,*(y,/M)| < ¢/4M for i =1,2. Tt follows that |x,*(y,) —
x,*(y2)| > ¢/2. This, however, contradicts the fact that x,*(Y,(w,)) — 0. Indeed
A(w,) has a unique limit point.

Let ¥: Q — .2° be defined as the function which equals the unique limit point
of A(w) when w ¢ B and otherwise is arbitrary. Clearly||Y, — P||—0a.s. Since
&2 is separable, Lemma 2 implies that ¥ = 0 a.s. which completes the proof of
this theorem. ‘

THEOREM 5. Let 22 be a finite dimensional Banach space. Let X,, Xy -oesbea
weakly orthogonal sequence of identically distributed Z.valued tv’s with Var (X;) <
co. Then the sequence satisfies the SLLN.

ProoF. Let by, -, b, be a Hamel basis for 2. Every x € 22” can be uniquely
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writtenas x = 7, a;b;, where the a, are suitable scalars. Define linear maps
b*: 2 — @, into the field of scalars, by b,*(x) = «, if x = 37, a;5,. These
maps are continuous since every linear operator on a finite dimensional space
is continuous. Thus b*e 2Z7* for i=1,2,...,m and x = 3|7 b*(x)b,.
Clearly if x,, x,, - - - is a sequence such that for each i, b,*(x,) — 0, then x, — 0
as k — co.

Suppose 27 is m-dimensional. Then, by Lemma 1, for i=1,2, ..., m,
b,*(Y,) — 0 as n — co except possibly on a set B, of measure zero. Let B =
U7~ B;, so that B has measure zero. Thus, for o ¢ B, b,*(Y,(w)) — 0 for each
i=1,2,...,m. Hence Y, (w)— 0asn— oco'except on a set of measure zero
which is what we needed to prove.

It is reasonable to wonder whether Theorem 3 might be strengthened by re-
laxing the hypothesis of strict stationarity- to, say, identical distribution of the
rv’s in our sequence. This is not the case as we show next.

EXAMPLE 6. Let 227 = ¢, the subspace of I, consisting of sequences which
converge to zero. Then there exists a sequence of 2=valued rv’s which are

(i) uniformly bounded in norm,
(ii) identically distributed,
(iii) weakly orthogonal, but which
(iv) do not satisfy the Strong Law of Large Numbers.

ConsTRUCTION.? We proceed by constructing first a probability space (Q, P)
and then describing a sequence of c,-valued rv’s X,, X,, ---, which satisfy the
requirements of Example 6.

(Q, P) is constructed as a product probability space with Q of the form Q, x
Q, x ... where, for each k, (Q,, P,) is a probability space. The probability
measure P on Q is the direct product measure of the factor spaces (R, P,).

Before describing the details of the construction of the factor spaces, we shall
choose two increasing sequences of positive integers {M(k)} and {N(k)}, k = 0,
1,2, .... These sequences involve the essential parameters for the factor spaces
and are chosen in order that the SLLN will fail. Let M(0) = 0 and define Q(k) =
21— M(i). Let {0,} be a positive sequence converging monotonically to 0. Let
M(k) be the first integer larger than Q(k — 1)/d,. It follows that

M(k) — O(k — 1)
M(k)

>1-3,.

* Editorial space limitations prohibit our expostulating the rather long and difficult proof of
this example and we therefore restrict ourselves to a description of the rv’s and probability space.
The details will appear in a subsequent paper wherein the technique of this example is expanded
to show that, in addition to (i), (ii) and (iii), there is a single set Sy of probability zero, such that
x*(Yn(w)) — 0 as n — oo for each x* e 2°* and w ¢ S,. Furthermore, a small modification of the
method used here will produce the same example in a Banach space which is not only separable,
but which is also reflexive and, in fact, locally uniformly convex. Cf. Beck and Warren [3].
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Choose N(k) such that
(1_2—M(k))N(k)<%’ Vk=1,2,..-,
and define R(k) = X%, N(i).
For each k, we shall construct the factor space (,, P,) to have the property
there exists a sequence of measurable subsets {Q, ;}7_, such that

kaglmDQk,zD DQk,:‘D cee,
1
Pk(Qk,j)_—_”JT

and
n;;l Qk,j = ¢ .
For simplicity, let
D, ;= {Qk.j/gk,jﬂ}
so that
Qk = U‘;?=1 Dk,j .

Let w, be a point of Q,. To describe these points it will thus be sufficient to
characterize the points in each of the sets D, ;, j = 1,2, .... If 0, € D, ;, then,
in our construction, we let w, correspond to an M(k)-tuple of non-terminating
row vectors having 0 for the first R(j — 1) coordinates, +1 or —1 in the next
N(j) coordinates and 0’s thereafter. There are exactly 2¥®~ distinct points,
w,, in D, ;. The points in D, ; are taken to be equiprobable. Thus, we assign
probabilities

1 1 _ .
Pyo,) = <—j— — m) 2-MNG) for w,eD, ;.
According to the assignment of probabilities
1 1
PD,)= "~ — —
k( k,:) 1 ] + 1
and
! 1
Py(Qi;) = 2% Pu(Dy,0) = 5
from which it follows that
Py(Qy) = P(Q,) = 1
so that (Q,, P,) is indeed a probability space.
We proceed now to define the random variables X;, i = 1,2, ---. For any
positive integer #, there exist uniquely integers s and 7 such that
i=0(—1)+1¢ where 1 <t < M(s).

Define Y, ,: Q, — ¢, for 1 < t < M(s), by
Y, (®,) = tth row of o,

and define X;: Q — ¢, by
Yiw) =Y, (o,) when i =Q(s — 1) 4 ¢.
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As defined, the random variable X, picks out the tth row vector from points
in Q, where s is determined by i = Q(s — 1) 4 ¢. Clearly X,(w) € ¢, since each
row vector becomes zero after finitely many entries.

Property (i) is immediate whereas verification of (ii) and (iii) depend on the
equiprobability of the points in the sets D, ; and on a straightforward cardinality
argument. The verification of (iv) is, however, quite intricate. The key idea is
that certain collections of coordinate rv’s are independent relative to the sets
D, ;. In particular, if we let [X;], denote the value of the uth coordinate of X;,
we can show that the elements of

Coy ={[XJu: R(j — 1) <u = R(j) and Q(k — 1) <i = Q(k)}
are independent relative to the conditional probability measure on Q, with re-

spect to the set D, ;. This fact enables us to show that

1
lW Zg(:kQ)(k—lHl X(0)| =1 -9,

with probability at least 1/2k. The Borel Cantelli lemmas and some further esti-
mates produce the final result. This completes our discussion of Example 6.

4. Banach algebras. This paper would not be complete without some inves-
tigation of the consequences of investing a general Banach space with a multi-
plicative structure. Indeed it is the absence of multiplicative structure which
motivates our interest in this notion of weak orthogonality. We limit our atten-
tion to commutative B*-algebras (Banach algebras with an involution) for the
convenience of having B(S) and C(S) as examples. These are, respectively, the
algebras of all bounded functions and all continuous functions on a topological
space S.

Let 22° be a Banach algebra. Two Z*-valued functions f and g are orthogo-
nal provided {, f(w) - g(w)u(dw) = 0 where the multiplication is that of the
algebra 27,

THEOREM 7. Let 2 = C(S) or B(S). If f and g are weakly orthogonal Z"-valued
functions, then f and g are orthogonal.

Proor. The argument for C(S) and B(S) is the same so we will assume that f

and g are C(S)-valued functions such that, for each 227* in the dual of C(S),
§o x*(fl@))x*(9(@)) = 0.
Each valuation at a point se S induces a multiplicative linear functional x,*
defined by x,*(¢) = ¢(s) for all ¢ € C(S). The set {x,*: s S} is norm determin-
ing since, if ¢ e C(S), then ||@|| = sup,.s|#(s)| = sup,.s|x,*(¢)|. Since these
functionals are multiplicative, we have that
0 = §o x,*(f(@)X,*(9(@)) = §o %,*(f(0) - 9(@)) = x,* §a f(®) - 9()

for each se S. It follows that {, f(®) - g(w) = 0 which proves this theorem.
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The strong analogy which obtains here with Hilbert space suggests that an
analog of the Radamacher-Mensov SLLN or Theorem 3 may be true in the
context of a commutative B*-algebra.

CoNJECTURE. Let 227 be a commutative B*-algebraandlet X,, k = 1,2, .-,
be a sequence of Z~valued rv’s with Var (X,) < oo for k = 1,2, .... Suppose
that both of the following are satisfied:

(i) the rv’s are either a weakly orthogonal or an orthogonal sequence,
(ii) either the rv’s are identically distributed or they satisfy

X,
e Va/iz Elogk < oo .

Then this sequence satisfies the SLLN.

In general, this conjecture is false. The ¢,-valued rv’s of Example 6 satisfy
both conditions of (i) in view of Theorem 7 and also satisfy both conditions of
(ii). The space ¢, can be imbedded in the B*-algebra C(Z), where Z is the space
of integers with the discrete topology. Here, as shown in Example 6, the SLLN
does not hold. Also, it is worth noting that the conjecture is false in the case
& = C(S) where S is compact and Hausdorff. This follows from the Gelfand-
Naimark theorem which tells us that the commutative B*-algebra C(Z) is iso-
metrically isomorphic to C(S) for some compact Hausdorffspace S. In particular,
S is the structure space (or maximal ideal space) of C(Z).
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