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FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR THE
PARTIAL SUMS OF LLD. RANDOM VARIABLES IN THE
DOMAIN OF ATTRACTION OF A COMPLETELY
ASYMMETRIC STABLE LAW?!

BY MICHAEL J. WICHURA
University of Chicago

Suppose X and Xy, n = 1, are i.i.d. random variables whose common
distribution lies in the domain of attraction of a completely asymmetric
stable law of index « (0 < a < 2), so that (i) as ¥ — o0, ¥ — P{X = v} varies
regularly with exponent —a, and (ii) limy.e P{X < —9}/P{X = v} =0.
Under a condition only slightly more stringent than (ii), we present
Strassen-type functional laws of the iterated logarithm for the partial sums
S» = Yimsn Xm, n 2 1. Our laws hold in particular when X = 0; the proofs
in this case utilize some new large deviation results for the Sy’s.

1. Introduction. Suppose V,, n > 1, are i.i.d. random variables with mean
0 and variance 1. Put S, = ¥, + --. + V,, and define random functions H,,
n= 3, on [0, co) by

H,(f) = (St + (0t — [11])V1a141)/(2n 10g (log n))?

(t = 0). H,takes values in the space C[0, oo) of continuous functions on [0, co).
Strassen (1964) showed that with probability one (w.p. 1)

(1.1) the sequence (H,) is relatively compact in the topology of uniform
convergence on compact intervals, and its limit points coincide with K, = {x ¢
C[0, o0): x is absolutely continuous, with § X*(7) dt < 1}

(actually Strassen worked with the restrictions of the H,’s to [0, 1], but his
argument yields (1.1)). Various improvements of (1.1) can be obtained. For
example, (1.1) implies the Hartman-Wintner law lim sup, |H,(1)] =1 w.p. 1
and this in turn implies lim, _, lim sup, sup,,, (|H,(?)|/(tlog log 7)}) = 0 w.p. 1; it
follows that

(1.2) (H,) is relatively compact in the topology @,

induced by the metric d(x, y) = sup, |x(f) — y(¢)|/(w(?))}, where w(f) =
(max (¢, 3) log log (max (¢, 3)))}, t = 0.
Our purpose here is to describe similar results when 7, lies in the domain of
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attraction of a completely asymmetric stable law of index @, 0 < a < 2. Under
a mild condition that the negative tail of the distribution of ¥, decrease rapidly
enough as compared to the positive tail, we obtain analogues of (1.1) for the
“small value” behavior of the partial sums. We do not, however, have a satis-
factory analogue of the more interesting (1.2). One can formulate functional
laws of the iterated logarithm for the “large value” behavior of the partial sums;
these laws are closer in spirit to those of Wichura (1974) than they are to those
presented here, and we will give them elsewhere. In Section 2 we discuss the
function space that plays the role of C[0, o) in Strassen’s work. The main
results, including some large deviation theorems hof independent interest, are
presented in Section 3 for a = 1, and in Section 4 for a = 1; we limit attention
to nonnegative random variables in these sections. Some complements and ex-
tensions are given in Section 5. Section 7 sets up some general machinery for
proving limit theorems of the kind involved here. The proofs of the main results
appear in Section 8, with some of the spade work having been done in Section 6.
Proofs of some of the applications are sketched very briefly in Section 9.

In regard to the partial sums S,, strong forms of the law of the iterated loga-
rithm have been established under various conditions by Lipshutz (1956b) for
a # 1 and Mijnheer (1972) for @ = 1, and again by Kalinauskaite (1966) for
a # 1 and Breiman (1968) for @ < 1. These results imply weak laws, which
have been dealt with further by, e.g., Zolotarev (1964) for 0 < a« < 2, Miller
(1967) for @ < 1, and Fristedt and Pruitt (1971) for & < 1, the latter under very
weak conditions. The normalizations used in our functional laws were suggested
by those of Fristedt and Pruitt.

In the context of completely asymmetric stable processes, Mijnheer (1973) has
a result which implies that points outside the sets K, introduced in Section 2
cannot be limit points of the random functions of Sections 3 and 4. Bingham
(1973) has elaborated on the functional central limit theorem for stable processes;
his results do not overlap with ours. '

We shall make use of the terminology established in the last part of Section 1
of Wichura (1974); in particular ¢~ denotes the inverse of a function ¢, and the
notation ¢ € #7 (p) means that ¢ is regularly varying at co with exponent p.
Given a number a, we write a* for max (a, 0), and a~ for (—a)*. Given a real
function x on the line and a finite interval 4, we write x(A) for x(f) — x(s), where
s and ¢ are the endpoints of 4, and |4| for t — s.

2. The space A. Our goal in this section is to describe the function space, A,
that plays the same role in our work as C[0, co) does in Strassen’s. We first
introduce an auxiliary space, D, which we will later use in defining A.

For D, we take the space of all real-valued functions on [0, co) which have
finite left and right limits at each ¢ > 0, which are right-continuous at each
t > 0, and which vanish at + = 0. It is to be emphasized that the functions in
D need not be continuous at 0; the assumption that they all vanish at t = 0 is
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not particularly important, but is convenient for our purposes. We shall endow
D with a topology analogous to the so-called M,-topology introduced (on a dif-
ferent function space) by Skorokhod (1956), and treated further by Whitt (1974a
and b) and Vervaat (1974). This topology is defined in terms of the closeness
of the initial segments of the parametrized graphs of the functions of D, in the
following manner.

Let xe D. The graph, T',, of x is the subset of [0, co) x (— oo, co) consisting
of all pairs (¢, 8) such that 8 belongs to the closed interval whose endpoints are
x(t—)and x(t+); here x(0—) is to be interpreted as x(0), i.e. as 0. A parametri-
zation of x is a one-to-one continuous mapping

5 — (2(3), 7(5))

of [0, co) onto I', such that r is nondecreasing. If y and y’ are both parametri-
zations of x, then there exists a continuous, strictly increasing mapping, say ¢,
of [0, co) onto itself such that ' = y¢. Given a parametrization y = (r, ) of
x, and positive numbers s and ¢, we put

N, 0. = {y € D: for some parametrization y' = (¢, ') of y,
() — 2Nl < e for 0 <r<s};

here
[x'(r) — 2D = |'(r) — =()]| + |7'(r) — 2(7)] .

Roughly speaking, N, , .. consists of those y in D such that some initial segment
of the graph of y can be “matched up” to within ¢ with the initial segment {y();
r < s} of the graph of x. Although the individual sets N, ,. depend on the
parametrization y, the family {N, ,.: s > 0, ¢ > 0} does not.

Now put & = (N, ,.: xeD, s> 0,¢>0, and y parametrizes x}. It is
easily checked that the class of unions of elements of <% is a topology, which
we will call the M,-topology on D. Under this topology, Z is second countable
and regular, hence metrizable and separable. One may define the distance be-

tween x, and x, in D to be

Zismew 27 inf {min (1, sup (|5, ™ (s) — 1™ ($)]: 0 = 5 < o0))}

where the infimum in the mth summand is taken over all parametrizations y,™
of the functions x,™, i = 1, 2; here x,/™ denotes the function in D whose value
at 1€ [0, oo) is x,(f) min (1, max [0, m 4+ 1 — ¢]). D is not complete under this
metric; however an equivalent complete metric, of interest for weak conver-
gence, has been constructed by Whitt (1973).

Given functions x,, n = 1, and x in D, we write x, — x to mean that the x,’s
converge to x in the M,-topology. Necessary and sufficient for x, — x is the
existence of parametrizations y, of x,, n = 1, and y of x, such that y,(s) — x(s)
uniformly for s in compact subsets of [0, c0). The following examples may help
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to give some feeling for M,-convergence. Put

X, = Im’w), if t=0,
:I[t’w), if 0<t< oo,
=0, if t=oc0.

Then as n — oo,

(a) x,, — %,and x, — x,,
(1) Xi_1/n/2 + X111/0/2 — x,, Whereas
(c) the sequence (x;,_;,, — X; + X;41/s)nz1 dO€s nOt converge.

Example (b) shows that the M,-topology is weaker than the analogue of
Skorokhod’s J;-topology (cf. Stone (1963) and Lindvall (1973)).

Here are some necessary and sufficient conditions for convergence and com-
pactness in D. These conditions make use of the moduli m,,, d >0, v > 0,
which are defined on D through the formula

2.1) m; (x) =sup{A(x;s,t,u): 0<s<t=u=sv,u—s<0},

where

A(x; s, 1, u) = (|x(u) — x(D)] + |x(6) — x(3)| — |x(v) — x(s)|)/2
is the Euclidean distance from x(f) to the closed interval whose endpoints are
x(s) and x(x). One has (cf. Skorokhod (1956) Section 2.4) x, — x iff

(2.2) lim, , lim sup, m, ,(x,) = 0 foreach » >0, and
(2.3) x,(t) — x(t) for each point ¢ in a dense subset of (0, c0).

Moreover, x, — x implies x,(f) — x(f) at each continuity point ¢ of x; if x is
continuous at each point of some finite interval [0, u], then the convergence is
uniform for ¢ in [0, #]. A sequence (x,) of points of D is relatively compact in
the M,-topology iff (2.2) holds and

2.4 lim sup, |x,(f)] < oo  for each point ¢ in a dense subset of (0, o).

We are now in a position to introduce the function space A that figures pro-
minently in our results. Roughly speaking, what we wish to do is allow + oo
as a positive value for the functions in D; an expedient way to accomplish this
is the following. Put D, = {xe D: x(f) < 1 for all t+ = 0}, and endow D, with
the subspace M,-topology. Define a mapping ® on D, by letting @(x) (for x in
D,)) be the furction on [0, co) defined by

(2.5) D(x)(1) = p(x(1))
where
(2.6) o(a) =a, if a<o0

=a/(1 — a), if 0a<1.
We take

@2.7) A = ®(D,)
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to be the image of D, under the mapping @, and define the M,-topology on A to
be that topology which makes ® a homeomorphism. The function x in A for
which x(f) = co for all # > 0 has neighborhoods which are admittedly rather
“coarse”; this is of no consequence here because our results are concerned with
the “small,” as opposed to “large,” values of the random functions introduced
in the following sections.

Throughout this paper, the convergence (or relative compactness) of a sequence
of points in A is to be understood as convergence (or relative compactness) rela-
tive to the M,-topology. Given a sequence (x,) of points in A, we write, say,
(2.8) x, > K
to mean that (x,) is relatively compact and has X for its set of limit points.

Two subspaces of A will frequently be encountered in the sequel. The first is

(2.9) A, = {xeA: x is non-decreasing} ;
the second is
(2.10) A, = {xeA: x has no negative jumps} .
Each x in A, is nonnegative, because x(0) = 0 by assumption. Every sequence
(x,) of points in A, is relatively compact, and x, — x iff x,(f) — x(7) at each
continuity point ¢ of x. Inother words, the M,-topology relativized to A, is just
the usual topology of weak convergence. In relationto A, useful moduli are the
m¥,, 8 > 0, v > 0, defined on A by the formula

(2.11) mi (x) = sup {(x(u) — x(?))": 0= t<usv,u—t<0};
here (co — o)~ is to be interpreted as 0. One has (cf. (2.1) and (2.5))
(2.12) m; o(@(x)) < m(P~(x)) = m3.(%)

for each 6 > 0, v > 0, and x in A. It follows that if (x,) is a sequence of points\ ’
in A for which

(2.13) lim, , lim sup, m¥ ,(x,) = 0 forall v >0,

then (x,) is relatively compact and all its limit points are in A,.

The following mappings from A to A, were studied by Whitt (1971) and
(1975) in a slightly different context. The supremum operator & is the mapping
which sends x in A into the function &x in A;, defined by

(2.14) (X)) =sup{x(s): 0= s < ¢}.
The first passage time operator & is the mapping which sends x in A into the
Fxin A, defined by
(2.15) (%)) =0. v if t=0
=inf{u: t < x(u)}, if t>0;
here the infimum of an empty set is taken to be co. One has
(2.16) F =< and FF =9
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in particular, when restricted to A,, % isits own inverse. Both &~ and & are
continuous (relative to the M,-topology).

In the following paragraph we shall establish some terminology and notation
concerning functions x belonging to A. Let xe A. For ¢t > 0, set

(217) V() =sup Tyeo (X(4))”  and V(1) = sup X, (X(A))T S
where the suprema are taken over all finite partitions % of [0, ] into disjoint
intervals; in computing the increments x(A4), use the convention that co — co =
co. Put

(2.18) F&-(0)=0=,V,0).
We will call ,V_ (resp. V) the negative (resp. positive) variation of x. We assume
henceforth in this discussion that ,V_ is absolutely continuous over [0, 7] for

each t < oo, as this is the only case of interest to us here. Then from the
representation

(2.19) x(t) = Vi) — V(1)

holding for all # > 0, it follows that there is a point ¢, (possibly 0, possibly co)
such that x(f) < oo for t < ¢, and x(f) = oo for t > t,. Thus

(2.20) F, = {t: x(t) < oo}

is a (possibly degenerate) interval. Let v be the measure on the Borel sets of F,
such that v([0, ¢]) = x(¢) for each 0 < t € F,. Define the function x, over F, by
setting x,(¢) = v ([0, t]), where v, is the component of v which is absolutely
continuous with respect to Lebesgue measure on F,. x, is absolutely continuous
on each subinterval of F, over which it is bounded. We will call x, the absolutely

continuous component of x. The derivative of x, is the almost surely unique func-
tion x, on F, such that

(2.21) x,(f) = ¢ %,(s) ds

for all # in F,. Frequently we will suppress the subscript a on X,, and just write
%. Making use of this convention, one has

(2.22) GO =V  and  (KO) =P

for each ¢ in F,.

We are now going to define some compact subsets of A which will arise later
on as the almost sure limit points of certain sequences of random functions.
The reason for indexing these sets in the way we do will become clear in the next
section. '

Suppose first that « is a number in (0, 1). Put 4, = a/(a — 1), and note that
2, < 0. For each xin A,, set '

(2.23) io(X) = \r, (Xa())'=dt

where %, and F, are defined by (2.21) and (2.20) respectively. In Lemma 6.2(a)
we show that

(2'24) . ia(x) = ja(x) ’
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where

(2.25) Ja(¥) = SUP Xaes (X(A)/|4]) 4] 5

with the supremum being taken over all finite collections % of disjoint bounded
subintervals of F,. Now put

(2.26) K,={xel,:i(x)=1}.

The “singular” component of an x in K, need not satisfy any condition, but
(because 2, < 0) the integral condition in (2.26) forces x to be strictly increasing
over F,. In view of (2.24) and (2.25), K, is closed in A, and therefore compact
in A.

Suppose next that « = 1. For each x in A, set

(2.27) Ju(X) = sup X ., eI\ 4]

where the supremum is taken over all finite collections % of disjoint bounded
subintervals of [0, o), and co — oo is to be interpreted as co. Then (cf. Lemma
6.2(b)) j.(x) < oo iff ,V_ is absolutely continuous over [0, o) and

(2.28) i(x) = §p, e % dt < o0
moreover j,(x) < oo implies

(2.29) i) = Jul®) -

Set

(2.30) K, ={xeld: ,V_

is absolutely continuous and i,(x) < 1}.

The positive variation of an x in K, must have an absolutely continuous com-
ponent which increases fast enough to guarantee i,(x) < 1; however, there is no
constraint on the singular component of ,V,. By (2.29), (2.27), (2.13) and (6.2),
K, is a compact subset of A, hence also of A.

Next suppose a € (1, 0); only a’s < 2 will be of interest in the sequel. Set
A, = a/(a — 1), and note that now 1, > 1. For each x in A, put

(2.31) Ja(%) = SUp X4 ((X(A))7/|4])*=| 4]
where the supremum is taken over all finite collections & of disjoint bounded

subintervals of [0, co). Then (cf. Lemma 6.2(c)) j,(x) < oo iff ,V_ is absolutely
continuous over [0, co) and

(2.32) (%) = §¢ V() adt < o0
moreover j,(x) < oco implies

(2.33) i(x) = ju(%) -

Set

(2.34) K, = {xeA: ,V_ isabsolutely continuous and i (x) < 1}.

There are no constraints on the positive variation ofan xin K. In view of (2.33),
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(2.31), (2.13), and (6.1), K, is a compact subset of A,, hence also of A.
Finally, suppose 8 > 1. We shall have occasion to make use of the set

(2.35) L,={xeA;: x isabsolutely continuous and {7 (x(¢))*sdr < 1}.
A function x in A; belongs to L, iff
(2.36) Sup Faew ((A)/|AD94 = 1,
where the supremum is taken over all finite collections % of disjoint bounded
subintervals of [0, co).

There are a couple of relations among the above sets that will be used later on.

Recalling the definition of the supremum operator .5 and the first passage time
operator & (cf. (2.14) and (2.15)), we have

(2.37) FK,) =L, and K, = (L,
fora<1,8>1,and af =1, and
(2.38) A—-K,) =L,

for I < a < 2. These relations follow easily from the characterizations of the sets
involved by means of the various “” functions (cf. (2.25), (2.31), and (2.36)).

3. Statement of main results for a == 1. Let a e (0,1) U (1,2). We shall
have occasion to make use of several quantities dependent on «, and for con-
venience we collect them together here. The first of these is

3.1) 2 = af(a — 1)

which was introduced in the previous section (cf. (2.23) and (2.31)). Frequently
we shall suppress the subscript a from 2,. Notice that 2 is conjugate to « in the
sense that

(3.2) la + 1/a=1;

this fact will be used in the proofs in conjunction with Holder’s inequality. The
remaining quantities are

3-3) so=+1, if a<l
=-1, if a>1
and
(3.4) 0, = afla — 1} = aqlequ3
Throughout this section we let ¥, V,, ¥,, - - - be i.i.d. nonnegative random

variables in the domain of attraction of a stable law with index «. There thus
exists a function L, slowly varying at oo such that for all v > 0,

(3.5) Pr{V = v} = v==L,(v)/IT(1 — a)| ;
here I' is the usual Gamma function. For s > 0, set
(3.6) 9.(s) = —log Ee~*" , if a<l1

= log Ee~*V-£V) | if a>1.
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g, is continuous and strictly increasing. By a standard Tauberian theorem (cf.
Feller (1971) Section XIII. 5),

(3.7) 9u(8) ~ s°Ly(1/5)
as s ] 0.
For each n > 1, put
(3.8) S,=Vi+ - +V,
and set
(3.9) T,=3S,, if a<l1

=S, —ES,, if a>1.

The following probability estimate, which will be established in Section 6B, plays
a crucial role in the proof of Theorem 3.1 below. Recall that g,, 4, o,, and @,
are defined by (3.6), (3.1), (3.3), and (3.4) respectively.

LeMMA 3.1. Let (B,) be a sequence of positive numbers such that

(3.10) B, > and  B,[n—0.

Set

@.11) A, = B,/9.~(B,/n) .

Then for each ¢ > 0,

(3.12) Pr{T,/4, = oqc} = exp(—(1 + o(1))(c/0.)"B,)
as n — oo.

To put this result in perspective, set
(3.13) Tw = 1/9,~(1/n) .

Then from (3.7) it follows immediately that the random variables T, /7, converge
in distribution to the completely asymmetric stable law, &, having transform

(3.14) log (§2., e~ F(dv)) = —0,5*

(s = 0). The support of &, is [0, co) when @ < 1, and (— oo, co) when a > 1.
Since g,~ € Z7(1/a), one has

(3.15) A, = B,1,(9.~(1/n)/9,>(B,[n)) = B,/ **ny,

where ¢, — 0 as n — co. Bearing in mind that 2, < 0 if a < 1, and 2, > 1 if
a > 1, it is clear that the lemma is a statement about the probability with which
T, takes on very “small” values. Sharper results have been obtained by Lipschutz
(1956a) under certain restrictions on the function L, appearing in (3.5); when
applicable, her conditions imply B,*» — 0.

Here is the main result:

THEOREM 3.1. Let T, be defined by (3.9). Define random functions H,, n > 1,



LOG LOG LAWS FOR STABLE PROCESSES 1117

on [0, oo) by setting

(3.16) H,(t) = Ty,,/0,a,

(t = 0), where

(3.17) a, = log, n/g,~(log, n/n)
(¢f. (3.4) and (3.6)). Then w.p. 1

(3.18) H, > K,

in the M,-topology (cf. (2.8)), with K, defined by (2.26) if a < 1 and by (2.34) if
a>1.
Theorem 3.1 will be established in Section 8. A word or two is in order
concerning the normalizing constants a,. By (3.15) one has
an = Tn(log2 n)1/1+0(1) .

In “nice” cases, the o(1) term tends to 0 so rapidly that (log, n)°® — 1; this is
the situation when e.g., L,(v) = (logv)® for some constant c. However, in
general (log, n)°¥ may diverge to co (or 0); this is the case when, e.g., g,~(f) ~

exp((log £)(1 — 1/log, (1/t))/a) as ¢ | O.
Next let N = (N,),, be the counting process derived from the S,’s (cf. (3.8)):

(3.19) N, =0, if t=0
= Dlosk<oo 110,:1(Sk) 5 if t>0

(S, = 0). The process N and the partial sum process S = (Sp,;).s0 are inverses
in the sense that

(3.20) N=%(S) and §=.7(N)

where & is the first passage time operator of (2.15). According to Theorem
9.1 below, Theorem 3.1 is thus equivalent to the following Theorem 3.2. Recall
that @, is defined by (3.4), g, by (3.6).

THEOREM 3.2. Let N be defined by (3.19).
(@) Suppose a < 1. Define random functions H,, n = 1, on [0, co) by setting

H,(t) = Niu/(0." 10g, n/g.(l0g, n[n))
(t = 0). Then w.p.1
H, - L,
in the M,-topology, with L, defined by (2.35).
(b) Suppose a > 1. Let a, be defined by (3.17), and put p = E(V). Define
random functions H,, n > 1, on [0, co) by setting

Ho(t) = — (Nt — [n1]/1)/(@n]2"*/%)
(t=0). Then w.p.1
H -K,

in the M-topology, with K, defined by (2.34).
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Suppose now (£7,) is any sequence of random functions in A which w.p. 1
is relatively compact and has K, (defined by (2.26) or (2.34)) as its set of limit
points. Here are some consequences, which are proved by making use of the
so-called mapping principle (cf. Strassen (1964) page 218 or Wichura (1974)
Lemma 2.1).

(i) Lety,, n > 1, and v be nonnegative finite measures on the Borel sets of
[0, o), such that v, — v weakly, in the sense that § f dv, — { f dv for all con-
tinuous bounded real-valued functions f. Suppose that all the v,’s and v are
concentrated in some finite interval; one consequence of this is that § x dv is
defined for all x in A. To avoid trivialities, suppose that »((0, c0)) > 0. Set
9(f) = y([t, o0)) and put

(3.21) o, = (V5 (0(0))* dt)¥= .
Then w.p. 1 the limit points of (§ 57, dv,) coincide with [o,c, ,, o], and in
particular

(3.22) lim inf, § SZ,(Hv.(df) = o,c,,

(see (3.3) for the definition of ¢,). This result is true even if the v,’s are random
and converge weakly to v w.p. 1.

There is some extra information available as to the shape of the function 57,
when § 52, dv, is near o,c, ,. For this, let ¢, be the largest point of support of
v. Set
(3.23) Xa(t) = §5 (9(5)/€q,,) " ds
for t < t,. Define a subset &, , of A as follows. For a < 1, &, , consists of
the single function in A; which coincides with x, , over [0, ,) and equals co
over [t,, o). Fora > 1, &,  consists of those functions in A, which agree
with —x,  over [0, ¢,) and which are non-decreasing on [¢,, c0). The following
statement is then true for almost all sample points @ in the underlying proba-
bility space on which the 57 ’s are defined: for each subsequence (n,),.; such
that (§ 57, dv, )(@) converges to g, c, ,, the distance in A between the function
7, (v) and the set & , tends to 0. Loosely speaking, for large n, { 57, dv, is
near g,c, , only if 57, is near &, ,.

When v is Lebesgue measure on [0, 1], one has

(3.24) € = 1/(1 + )

and

(3.25) %o (0) = (1 + a@faX(1 — (1 — 1)

for 0 <t < 1. When v is a unit mass af the point u € (0, o),

(3.26) c,,, = u'* . and
(3.27) %o 0) = (/W)c,,,

for0 <t <u.
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Applying the last result with # = 1 to the random functions H, of Theorem
3.1, we get
(3.28) liminf, T,/a, = 0,0, .

When a < 1, (3.28), with the right-hand side replaced by an unspecified con-
stant, is contained in Theorem 4 of Fristedt and Pruitt (1971). Under supple-
mentary conditions on L,, (3.28) (for « > 1 as well as a < 1) follows from
Lipschutz’s strong form of the law of the iterated logarithm.

(ii) Let ¢ = 1 and define the “cth-norm” of 5#, to be

|25, = (83 |22, di)¥e if a<1
= — (G (@) )ydy”, if a>1.
Let ZZ(r, 5) = I'(n)I'(s)/T'(r + s) be the usual Beta coefficient. Then w.p. 1

(3.29) lim inf, |57, = o,u,,,
where
(3-30) Uy = (¢ + a)(a(a + ) (c/(a + c))/*|Z(1]a, 1]c) .

Moreover for large n, |57,|, is near o,u, , only if 57, is close to a certain subset
7 .. of A which we shall now describe. Put

o) = §§ 591 — s)a=t ds| (1 a, 1c)

f#) = (u(cf(a + e))"ZZ(1]a, 1[c)c) .

For 0 <t < 1, put
(3.31) Yaot) = k2 (1) -
When a < 1, 77, , consists of the single function in A, which agrees with y,,
over [0, 1) and equals co over [1, co). When a > 1, .77, consists of those
functions in A, which coincide with —y, , over [0, 1) and are non-decreasing
over [1, c0).

(iif) For the final application, we suppose that the 5#,’s have a special

structure, namely, that there exist a random process %~ and a fixed function
be B7 (1]a), such that

(3.32) SE,t) = Z(nt)|b(n)

for all # and n. This is the situation, e.g., in Theorems 3.1 and 3.2. We shall
give a sharpening of (3.22) in the case that v is a unit mass at the point 4 = 1
(cf. (3.24)). For each positive integer p, let f, , be the random variable which
records the number of integers n < p for which 5#,(1) < o,c; here 1 < ¢ < oo
ifa>1l,and0<c<lifa>1. Put

(3.33) Ty = €041

where

Then w.p. 1
(3.34) limsup,f,.,.=1—1,,.
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Moreover for large p, f, , is near 1 — z,, only if 5%, is near a certain subset
#,,, of A which we shall now describe. Put

(3.35) Zo(f) = (tfra)etds,  if 0<t<r,,
= etV if r,,<t<1.

If « < 1, Z,,, consists of the single function in A, which coincides with z,,
over [0, 1) and equals co over [1, o). If @ > 1, then %/, consists of those
functions in A, which agree with —z, , over [0, 1) and are non-decreasing over
[1, oo0).

REMARKs. (a) The similarity of these results to Strassen’s for Brownian mo-
tion is striking. Indeed, if one formally sets a = 2 in (3.21), (3.30), and (3.33),
one gets the quantities that figure in Strassen’s applications (ii), (iv), and (V)
respectively.

(b) In view of part (a) of Theorem 3.2, it would be desirable to have results
corresponding to (i), (ii), and (iii) above in the case that the sequence (5£7) is
relatively compact and has as its limit points the set L,, defined by (2.35). These
results are easily obtained. In fact, using the same notation and conventions as
above, one has in this case

(3.36) limsup, § 52, dv, = ¢c,,
(3.37) lim sup, §§ (Z2,*(t))° dt = u,,
(3.38) limsup,p-tcard(n < p: £, (1) > ¢)=1—17,,.

The sets corresponding to &, ,, .7, ., and %/, , above are respectively {x}.},
{yx.}, and {zF}. Here, e.g., x}, is the continuous function which coincides
with x, , over [0, ¢,) (cf. (3.23)) and is constant over [¢,, co0); y}, and z}, are
obtained from y, , and z, , (cf. (3.31) and (3.35)) in a similar fashion.

4. Statement of main results for « = 1. Throughout this section, we let V,
Vi, Vy, + - be i.i.d. nonnegative random variables in the domain of attraction
of a stable law of index a = 1, so

4.1 1 — F(v) =Pr{V = v} = L(v)/v

(v > 0) for some function L varying slowly at co. For s > 0, set
4.2) 9(s) = —log (Ee™").

In contrast to (3.6), one has here

(4.3) 9(s) = s(M(1[3) + O(sM¥(1/5))) ~ sM(1[s),

as s | 0, with

(4.4a) M(t) =t §¢ (1 — em")F(dv) = §¢ e~"{(1 — F(v)) dv
(4.4b) =t {¢ min (1, v/t)F(dv) — (¢ + o(1))L(¢)

= §(1 — F(v))dv — (x + o(1))L(?)
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(4.4c) =t §§ (W[t)F(dv) + (1 — & + o(1))L(r)
(4.44) = t ¢ sin (v/r)F(dv) + o(1)L(¢);
here £ = 0.57721. .. is Euler’s constant. M varies slowly at co, but is asymp-

totically much larger than L: lim,_, M(f)/L(t) = oo (cf. Feller (1971) Sections
VIII. 9 and XIII. 5). For ¢t = 0, put

4.5) At = M'(t) = {5 (1 — et — (v[t)e™"/*)F(dv)
=ty e (1l — F(v))dv.

As t runs from 0 to oo, .# decreases strictly and continuously from 1 to 0;
moreover (cf. again Feller (1971) Sections VIII. 9 and XIII. 5)

(4.6) A(t) ~ L(t)/t

ast— oo, 50 A € B (—1). In other words, if we define .~ on (0, co) by
the relation

“4.7 A1) = At
(t > 0), then & is slowly varying at co, and
(4.8) A1) ~ L(t)

as t — oo. From the identity
M(t) = §¢ L(s)[sds
we get the often used relation
4.9) lim, ., (M(ct) — M(1))| £ (t) = logc

for each ¢ > 0.
Put now

(4.10) S,=Vy+ - +V,
and set
(4.11) o= A2"(1]n)

so that
7’«»/” = =<Z(rn) ¢

Then from (4.3) and (4.9) it follows immediately that as n — oo the random
variables (S, — nM(y,))/r, converge in distribution to the completely asymmetric
stable law, %, having transform

(4.12) log (§=., e~**F(dv)) = slog s
(s = 0). Skorokhod (1961) showed that
Fifv: v < &} = exp(—(1 + o(1))e~te~¢)

as § | —oo. The corresponding result for the S,’s is given by the following
analogue to Lemma 3.1.
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LEMMA 4.1. Let (B,) be a sequence of positive numbers such that

(4.13) B, — oo and B,/[n—0.
Set
(4.14) A, = B, #~(B,[n)

so that A,|n = <£(A,|B,). Then for each c € (— oo, o)
(4.15)  Pr{(S, — nM(A4,/B,))/4, < c} = exp(—(1 + o(1))e~"e~B,)
as n— oo.

We note in passing that since .Z~e Z7 (1), 4, =r,B,°’" (cf. (4.11)).
Here is the main result.

THEOREM 4.1. Let S, be defined by (4.10). Define random functions H,, n = 1,
on [0, oo) by setting

.(4.16) H,(t) = (Stay — [nt]1M(a, /(e log, n)))/a,
where
(4.17) a, = log, n.#Z~(log, njn) .
Then w.p. 1
(4.18) H, — K,

in the M, -topology, where K, is defined by (2.30).
To illustrate the norming, we consider the case in which
(4.19) Pr {V = v} = (log v)?/v

for v > v,, where g = —1, and v, satisfies (log v,)?/v, = 1. After some simpli-
fication (cf. (4.4b)), (4.18) becomes

(4.20) (Stw1 — [n+]h,)/(n(log n)*) — K,
with
(4.21) h, = (log n)?**/(g + 1) + (log n)?(9 log,n — log;n — x — 1) 4 ¢

(recall & denotes Euler’s constant); here

c=0, if ¢g=0
(4.22) = —(logw)*)(g + 1), if —1<g<0

Suppose now (5£7,) is any sequence of random functions in A which w.p. 1 is
relatively compact and has K, (defined by (2.30)) as its set of limit points. Here
are some consequences.

(i) As in Section 3(i), let v,, n = 1, and v be nonnegative finite measures on
the Borel sets of [0, oo), all concentrated in some finite interval, and suppose
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that v, — v weakly, and that y((0, c0)) > 0. Put 9(r) = v([t, o)) and set

(4.23) b, =y o(r)dt.

Let ¢, be the largest point of support of v, and set

(4.24) x, () = —§tlog (5(s)/b)ds, if 0<t<t,
= 00, if tv g t < O .

Put

(4.25) ¢, = —§& o(t) log (5(r)/b,) dt = §§ x, ,(t—)v(dt) .

Then w.p. | the limit points of (§ &7, dv,) coincide with [¢, ,, 0], and in par-
ticular

(4.26) lim inf, § SZ,(Hv.(df) = c,, ;

moreover for large n, § 57, dv, is near ¢, , only if 57, is close to x, ,.
When v is Lebesgue measure on [0, 1],

(4.27) ¢, = —27'log (2) + 1 = —0.09657
and

(4.28) X, =0 —1tlog(l —1) + 11 — log2)
for 0 <t < 1. When v is a unit mass at the point # > 0,
(4.29) ¢, = ulog (u)

and

(4.30) x,,(t) = tlog ()

for 0 < t < u. In particular
(4.31) lim inf, 57,(1) = 0 a.s.
The analogue of (4.31) for the completely asymmetric Cauchy process was es-

tablished by Mijnheer (1972).
(ii) Suppose now that for all #» and ¢,

(4.32) (1) = (Z(nt) — [nt]g(m))/b(n) ,

where 2~ is some random process, be #2 (1), and g is a non-decreasing
function on (0, co) satisfying

(4.33) lim, ., (9(uc) — g(u))/(b(u)[u) = log c

for all ¢ > 0. This is the situation, e.g., in Theorem 4.1. Forc¢ > 0, let So.c D€
the random variable which records the proportion of integers n < p for which
(1) < c. Set

(4.34) Ty, = e~
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and put
2, (1) = (t[71,.)(71,. l0g 710 + €T10) if 05t<1y,
(4.35) =tlogt+ct, if r,,ft<1
= 00, if l é t < oo .
Then w.p. 1
(4.36) limsup,f,.=1—17,

and for large p, f, . is near 1 — ¢, , only if 57, is near the function z, ,.

5. Extensions and complements. A. For the processes H, of Theorems 3.1
and 4.1, one can relax the assumptions made in Sections 3(i) and 4(i), in the
following manner. Assume as before thatv,, n > 1, and v are nonnegative finite
measures on [0, o), with v, converging weakly to v. Suppose now that there
exists a number ¢ > 0 such that

(5.1) SUP, 21 § 5%, (d5) < o0 ;

automatically {;° s¥/**+<u(ds) < oo also. If @ # 1, all the assertions of Section 3(i)
hold, with 57, replaced by H, of (3.16). If @ =1, all the assertions of Section
4(i) hold, with 5#, replaced by H, of (4.16).

This result suggests that there should be an analogue of (1.2), but it is not
clear as to just what it should be. The difficulty lies in the fact that the “large-
value” behavior of the processes involved is strikingly different from the “small-
value” behavior treated here (cf. Chover (1966)).

B. The condition that the random variables figuring in Theorem 3.1 and 4.1
be nonnegative can be weakened substantially. Suppose, for example, that
a < 1, and that V, V,, V,, - - . are i.i.d. random variables, not necessarily non-
negative, satisfying (3.5). Define 6, by (3.4), g, by (3.6) with ¥ replaced by
v+, and a, by (3.17). For n =1, t = 0, set H,(f) = ,H,(f) — _H,(), where
Ho) =W + -+ + V8)(.a,), for o = 4, —. By Theorem 3.1 \H, — K,
w.p. 1, and so to get ’

(5.2) H, K, wp.1,

it suffices to impose a condition on the distribution of ¥~ which will ensure
_H, -0 w.p. 1. Because n — a, is increasing and regularly varying, it in turn
suffices to guarantee that (V,~ + --- + V,7)/a, — 0 w.p. 1, or, what is the same
(cf. Feller (1946)), that

(5.3) YL.Pr{Vr=za} < oo.
For this suppose that
(5.4 Pr {V- = v}/Pr {V+ = v} = O(1/(log v)'*?%)
for some § > 0. Then, with 7, defined by (3.13),
Pr{V-=a,)=Pr{V-=a}/Pr{Vt=a,})
X @r{ytza}/Pr{y* =) PriV* = 7.} ‘
= O((1/(log n)**?)((log, ny'=*+*®)(1/n)) ,
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whence (5.3), and so also (5.2), holds. It would be of interest to know whether
(5.2) holds when ¥ satisfies (3.5) along with

(5.5) Pr{V- = v}/Pr {V* = v} = o(1),

these being the necessary and sufficient conditions for ¥’ to lie in the domain of
attraction of the stable law ., defined by (3.14).

C. Let X = (X(?));», be a homogeneous process with independent increments,
and let II be its Lévy jump measure: for each Borel set B of (— oo, co) disjoint
from {0}, ¢II(B) is the expected number of jumps of X which occur prior to time
t and which lie in B. Put II(§) = II([§, o0)), II_(§) = II((— o0, £]). Under
the assumption that II, € &7 (—a) for some a € (0, 2), and that II_(§)/II,(§)
tends to O sufficiently rapidly as § — co, one has

(5.6) (X(z+) — (z+)b(7))/a(r) > K, w.p.1
as ¢ — oo for suitable normalizing functions a and b.
" The case in which X is a completely asymmetric stable process, so II_(§) = 0

and II (d¢) = m d&/&**= for some a € (0, 2), is of special interest. When a = 1,
and E(X) = 0 if a« > 1, one has

(5.7a) log (Ee—**1) = —(mI'(1 — a)/a)s*
(5.7b) log (Ee**1) = —(mI'(1 — a)/a) cos (an[2)|u|*(1 — i(u/|u|) tan (ax[2))
and the normalizations in (5.6) are b(r) = 0 and
a(r) = 0,(mT'(1 — a)|/a)/*c*/*(log, T)"*.

When a = 1 and the process is centered so that
(5.8a) log (Ee~**1) = mslog s
or equivalently
(5.8b) log (Ee®*1) = — (x/2)mlul(1 + i(2/m)(u]|u]) log |u])
the normalizations in (5.6) are

ar)=mr and  b(r) = m(log (r) — log, 7 — log (e/m)) .

It is possible to deduce Theorems 3.1 and 4.1 from (5.6) by means of the
following standard imbedding procedure. Suppose, for example, that o < 1
and that V, V,, V,, - .. are nonnegative i.i.d. random variables satisfying (3.5).
Define a process X = (X(t)),5, by setting’

X(0) = Zaswir Vas
where 4" = (_#(t)),5, is a Poisson process of unit intensity, independent of the
sequence (¥,). Then X is a homogeneous process with independent increments,
whose Lévy measure is just the restriction of the distribution of ¥ to (0, co).
Moreover, V; 4 ... + V, is the value of X at the time 7, of the nth jump of
4. By the strong law of large numbers, r,/n — 1 w.p. 1. Using properties of
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the M,-topology, one can easily go on from here to deduce the conclusion of
Theorem 3.1 from (5.6).

It would be of interest to know whether Theorems 3.1 and 4.1 could be
derived using imbedding schemes involving the completely asymmetric stable
processes (5.7) and (5.8).

6. Proofs of auxiliary results. A. Characterization of the sets K,. We will
have need of the following “linearization” lemma.

LEMMA 6.1. Let B be a finite interval, and let y be absolutely continuous over B
with derivative y. Then

(6.1) (B)/|B))*|B| = §5(s) ds
(6.2) e vV B/BIB| < (e ds
provided in (6.1) y = 0 and either { < 0or{ = 1.

The proof is an immediate consequence of Jensen’s inequality. Roughly
speaking, the lemma says that the linearization of y over B has no greater

“variation” than does y itself.
We proceed now to characterize the sets K, defined by (2.26), (2.30) and

(2.34). Recall that ¥, is defined by (2.17)—(2.18).

LEMMA 6.2. (a) Let a < 1, and let i, and j, be defined by (2.23) and (2.25)
respectively. Then i (x) = j,(x) for all x in A;.

(b) Leta =1, and let i, and j, be defined by (2.28) and (2.27) respectively. Then
foreach xin A, j(x) < oo iff ,V_ is absolutely continuous over [0, o) and i (x) <
oo; moreover when this is the case, i (X) = J(X).

(c) Leta > 1, andlet i, andj, be defined by (2.32) and (2.31) respectively. Then
foreach xin A, j,(x) < oo iff ,V_ is absolutely continuous over [0, co) and i,(x) <
oo; moreaver, when this is the case, i (x) = J,(x)-

Proor. In the proof we shall make use of the partitions
S, = ([0, 277, (1277, 20277, - -+, (2% — 127, 2727}

of [0, 7], t >0, n = 1. Also we use g, to denote 1/ times Lebesgue measure on
the Borel sets of [0, ¢]; , is thus a probability measure for each t.

(a) First we show that for any x in A, i (x) < ju(x). For this, let 7 be an
interior point of F, (cf. (2.20)), and put

Ta = Dacury,, (/4D
(n = 1). The sequence (r,) is a martingale with respect to 1, which by standard

martingale theory (cf. Freedman (1971) (3.35)) converges almost everywhere on
[0, ] to the function x, (cf. (2.21)). Fatou’s lemma gives

{5 (%4(5))* ds < lim inf,, §§ (r, () ds < jo(x)

As t is arbitrary, we get i,(x) =< j.(x).
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The opposite inequality follows from the linearization inequality (6.1), with

= X,.

(b) Suppose first that x e A with j,(x) < co. Let ¢ be any point in (0, co).
We shall show that ,V_ is absolutely continuous over [0, ¢], and that

I o(X) = Yoe @ ds =sup 3} ,., e * M4 = Ja,e(%)

where the supremum is taken over all finite partitions .% of [0, ] into disjoint
intervals, and where (cf. (2.20))

(6.3) E(s) = %,(5) , if s<iu,
= o0, if s>¢,.
Because
§ Jo(s)ds < § 7 >0 €% ds
(cf. (2.22)), this will guarantee that ,J’_ is absolutely continuous over [0, o),
with i (x) = j(x).
Forn =1, set
T = Dacsr,, (/4D
(use the convention that co — co = o0). Since
e"»” < max (e~"s, 1),
one has
sup, {sen u,(ds) < j,..(X)[t + 1 < oo .
It follows that the sequence (r,~) is a uniformly integrable submartingale with
respect to p,, and thus converges in mean to an integrable random variable p,
which closes the submartingale. Moreover, the integrable rv e® closes the sub-
martingale (e"="), and so the e"»"’s are themselves uniformly integrable.
From the above mentioned L,-convergence, one gets

V_(2) = §; p(s) ds

for each = < t; consequently V' _ is absolutely continuous on [0, ¢#]. By standard
martingale theory, 7, converges almost everywhere to § (cf. (6.3)); remember
our convention that co — co = co. Moreover, since e~"» < e"»~, the e~"»’s are
uniformly integrable and we get

Jao(X) = lim, §f e ds = §{e*@ ds = i, (x).

For the converse, suppose ,V_ is absolutely continuous over [0, co) with
i(x) < co. If Ais a finite subinterval of F,, then the absolute continuity of
.V_ and (2.22) give

—x(A) =V (A) = V(A) = .V (A) = (V1)(A) = —x,(4) .
The linearization inequality (6.2), with y = x,, thus implies that
(6.4) SUp X4 e AMIA| S (5 e7%e® ds = i,(x)

where the supremum is extended over all finite disjoint collections of subintervals
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of F,. But since x is identically oo to the right of F,, the left-hand side of (6.4)
is in fact j (x).

(c) Suppose first that x ¢ A with j,(x) < co. Let ¢ beany pointin (0, o0). We
shall show that ,V/_ is absolutely continuous over [0, 7], with
(6.5)  iu(x) = §4.VHs) ds = sup X se ((A) /AN IA] = Joro(¥)
where the supremum is taken over all partitions % of [0, 7] into disjoint in-
tervals. This will give ,//_ absolutely continuous over [0, co) with i(x) =
s zV—Z(S) ds = ja(x)‘

Proceeding with the argument, put

To = Taesr,, ((A)) /4D

(with the convention co — co = oo). The sequence (r,) is a nonnegative sub-
martingale with respect to p, for which

sup, §§ (7.(5))*44(ds) = Jue(X)/1 -
There therefore exists a nonnegative function r on [0, ¢] such that r, converges
to r in mean of order A with respect to z,. But then

§s r(s)ds = .V_(7)

for each r < t, and so ,V_ is absolutely continuous over [0, 7], with ,V_=r.
Moreover, since the 2-norm of 7, converges to the 2-norm of r, we have (6.5).

Next suppose ,V_ is absolutely continuous with i,(x) < co. That j,(x) < oo
follows from the inequality (cf. (2.19))

(K(A)™ S V() < §4V(s) ds
and the linearization inequality (6.1), with y = ,V_. []

B. Proof of Lemmas 3.1 and4.1. We borrow the following result from Bahadur
(1971), page 5, in a form convenient for our purposes.

LeMMA 6.3. Foreach n = 1, let Z, be a random variable whose cumulant gener-
ating function (cgf)

(6.6) C,({) = log (Ee*“n)

exists for { e (0, oo) and for which C,’ takes on both negative and positive values.
Determine ¢, such that

(6.7) C,/(r,) =0.
Put

(6.8) r.= —Cy(z,)
(6.9) 0,0 = C,(z,)

and let Q, be the probability on (— oo, oo) whose cgf C,* is given by
(6‘10) Cn*(c) = Cn(r'n + C/z'n) - Cn(rn) :
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Suppose that as n — oo,

(6.11) r, — oo
(6.12) G, T[T — 0
and

(6.13) no subsequence of (Q,) converges weakly to the distribution degenerate at 0.
Then as n — co.
(6.14) Pr{Z, = 0} = exp(—(1 + o())r,).

Proor oF LEMMA 3.1. We shall give the proof only for @ > 1; the case o < 1
is similar. First consider the function g, defined by (3.6). Put ¢(s) = Ee~*".
Elementary considerations show that

9u(8) = ¢(s) — 1 — 5¢’(0) + O(s”)
9./(5) = ¢'(s) — ¢'(0) + O(s)
9."(s) = ¢"(s) + 0(1)
as s | 0. After expressing ¢(s) — 1 — 5¢’(0), ¢’(s) — ¢'(0), and ¢"’(s) as Laplace
transforms of measures on [0, co) and using the Tauberian theorems of Feller
(1971) Section XIII. 5, one finds that as s | 0

9.(8) ~ s*L,(1/s)
9.'(8) ~ as® 1L, (1/5) ~ ag,(s)/s
9."(s) ~ a(a — 1)s* L (1/s) ~ a(a — 1)g,(s)/s*,
where L, is defined by (3.5).
To establish (3.12) we will apply Lemma 6.3 with
Z,=—c—T,A,.

Notice that (3.11) implies ¢,(B,/4,) = B,/n, and so B,[/A, — 0 by (3.10). For
¢ on the same order of magnitude as B, the regular variation of g, gives (cf.

(6.6))
CJ/(€) = —c + (n[A4,)9./(C[4,)

= —c¢ + (1 + o(1))ani™g.((5/B,)(B./ 4.))

= —c¢+ (1 + o(1))anl™}(C/B,)"9u( B/ 4.)

= —c + (1 4 o(1))a(¢/B,)**.
In the notation of Lemma 6.3 we thus have =, ~ B,(c/a)V/*?, 1, ~ B, ca~*(a —
1), 6, ~ O(1/B,}), while C,*""({) — 1 uniformly for { in bounded intervals, so

Q, converges to the standard normal distribution. Consequently (3.12) follows
from (6.14). [T

Proor or LEMMA 4.1. Consider first the function g defined by (4.2):
9(s) = —log ¢(s) with  ¢(s) = Ee™*" .
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Several applications of the Tauberian theorems of Feller (1971) Section XIII. 5
show that as s | 0
o(s) — 1 = —sM(1]s)
¢'(s) ~ —M(1/s)
¢(s) ~ AYs)[s* = Z1s)]s 5
where M, _#; and . are defined by (4.4), (4.5), and (4.7) respectively. Since
M and . are slowly varying, it follows that as s | 0

9(s) = sM(1/s) + s**te®
06 = M(1s) — L(1s) + 5o
9" (s) ~ —ZL(1/s)/s .
To establish (4.15) we will apply Lemma 6.3 with
Z, = ¢ — (S, — nM(4,/B,))/4, .
By (4.13) and (4.14), A4,/B, = _#~(B,[/n) — oo as n — co. Thus for { of the
same order of magnitude as B,, (4.9) and the slow variation of & give
C(Q) = ¢ — (n]/A4,)9'(E/4,) + (n[4,)M(A,/B,)
= ¢ + (M(A4,[B,) — M((4./B,)(B,[C)))|-Z(A.B,)
+ LA(Au/ BB LA B,) + 1[(Au/Ba)**
= ¢+ (1 +o(1))log (&/B,) + (1 + o(1)) + o(1) -
Thus in the notation of Lemma 6.3 we have r, ~ e=“*YB,, r, ~ 7,, 0, ~ 1z},

while C,*""({) — 1 uniformly for { in compact sets, so Q, converges weakly to
the standard normal distribuiion. And (4.15) follows from (6.14). [J

C. Some large deviation results. The preceeding subsection established esti-
mates of the left tails of the distributions involved. The following lemma is
concerned with estimates for the right tails. The first assertion is essentially
due to Heyde (1968).

LEMMA 6.4. (a) Suppose a + 1, and let T, be defined by (3.9), 7, by (3.13).
Then for any sequence (c,) tending to oo,
(6'15) Pr {T» g cnrn} ~ nPr {Tl g C»Tn} *

(b) Suppose a = 1, and let S, be defined by (4.10), 7, by (4.11), and M by (4.4).
Then for any sequence (c,) tending to oo,
(616) Pr {Sn - nM(Tn) Z cnrn} ~ nPr {Sl g c»?’»} *
Moreover, (6.15) and (6.16) continue to hold when the random variables figuring in
them are replaced by their absolute values.

Proor. (a) Simple modifications of arguments due to Heyde (1967) and (1968)
yield (6.15); we will briefly indicate the changes that need to be made. Putrz, =
Pr{T, = c,7}/(nPr{T, = c,1,}). For the proof of lim inf, 7, > 1, replace the
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events 4, and B; in Heyde (1967), page 1576 by
(X;i= (1 +¢x,} and {3, X; = —ex,}

respectively (Heyde’s notation). For the proof of lim sup, 7, < 1, replace the
event E, in Heyde (1968), page 255, by

E* ={X, = (1 — ¢)x,B, for at least one k < n}
and observe
{Sn g x”Bﬂ} C En* U Fﬂ U G”
(Heyde’s notation). ,
(b) The proof is similar. In verifying the analogue of (11)—(12) in Heyde
(1968), one uses (4.4c) and (8.9) below. [

D. A fluctuation inequality. The following lemma is well known (cf. Kiefer
(1969) page 325 for the method of proof)

LEMMA 6.5. Let Y,, Y,, --., Y, be i.i.d. random variables with partial sums
Z,=0,Z,=Y,+ --- +Y,, 1 <m < n. Then for each number c,

(6.17) Pr {miny_,;., (Z; — Z;) < ¢} < Pr{Z, < c}/(min,;_, Pr{Z;, < 0})*.

7. How to identify limit points. The lemma below is a useful aid for identi-
fying the limit points of a random sequence. In order to state the result, we
need to introduce the notion of a limit determining system (LDS). Let x be a
point in a metric space S, and let (N;),,, be a decreasing sequence of neighbor-
hoods of x in S; we’ll say that (N;);,, isa LDS at x if x is the limit of every
convergent sequence (x,) of points of § such that, for each j, x, € N; for all large
n. For example, suppose (t,),, is a dense subset of (0, o), and for j > 1, put

(7.1) Ny={yed:y@) =1,1=si<]}-

Then (N;);,, isa LDS at x = 0 in the M,-topology on A. As this example shows,
a LDS at x need not be a neighborhood base at x.

LeMMA 7.1. Let (Q, 7, P) be a probability space. Let S be a separable metric
space and let 57,, n = 1, be mappings from Q to S.
(a) Let C be a subset of S. Suppose there exists a sequence (n;) tending to infinity
such that
(7.2) P{the sequence (%,),», has a limit point in C}
< P{the sequence (7, ));z: has a limit point in C})

and such that each x in C has a neighborhood N, for which

(7.3) P{ZZ, € N, for infinitely many j} = 0.
Then
(7.4) P{the sequence (5#,) has no limit pointsin C} = 1.

(b) Let B be a subset of S, B, a dense subset of B. Suppose that for each x ¢ B,



1132 MICHAEL J. WICHURA

there is a LDS (N;);,, at x such that

(7.5) P{ZZ, € N; for infinitely many j} =1
for each j. Suppose also that

(7.6) Pfthe sequence (Z,) is relatively compactin S} =1.
Then
(7.7 Pfevery point of B is a limit point of (,)} = 1.

Proor. Most of this was proved in Lemma 5.1 of Wichura (1974). The only
thing left to do here is to show that for each x in B,, one has

lim inf, d(&Z,, x) = 0

w.p. 1, where d is a metric for S. For this, fix x and let (N;) be a LDS at x for
which (7.5) holds. Then for almost all sample points w in Q, one can induc-
tively construct an w-dependent sequence (r;) such that n; 1 co and such that
S, (w)ye N; for each j. Because the N;’s decrease with j, one then has
%&1;(‘”) e N; for k = j. But for almost all w, the sequence (%, (w)) is itself
relatively compact, by (7.6). So for almost all o, there exists an w-dependent
subsequence (n;),,, such that 227 . (@) converges to some point of S as [ — co;
the limit must be x because (N;) is a LDS at x. []

Typically, one would verify (7.3) and (7.5) using some form of the first and
second Borel-Cantelli lemmas. It should be noted that (7.3) is more stringent
than the condition P{x is a limit point of (227,)} = 0 for each x in C; take, e.g.,
Q = § = C = [0, 1], P = Lebesgue measure, and set 5, (w) = o for all w and n.

The following remarks are of use in verifying condition (7.2). Say that a
sequence (x,) of points of S is cokesive if, whenever (m;) and (n;) are sequences
tending to oo such that

(7.8) n;/m; — 1 and lim; x,, . exists,
then
(7.9) lim; x, .  exists and equals lim; x,, . .

For example, in the context of § = A endowed with the M,-topology, a sequence
(x,) is cohesive if there exist numbers a,, ,, b, ,, and ¢, , such that

(7‘10) x'a(t) = am,n'xm(bm,'nt) + Cm,nt
for all ¢, and such that
(7.1 1) Apon — 1 , bmm — 1 . Conn — 0

as m and n tend to oo in such a way that n/m — 1.
LeMMA 7.2. Condition (7.2) in Lemma 7.1 holds for any sequence (1;) satisfying

(7.12) n; — co and n;n;_y —1
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provided
(7.13) P{the sequence (5Z,) is cohesive} = 1.

8. Proofs of Theorems 3.1 and 4.1. We shall first give the proof of Theorem
4.1, which is a little more delicate than Theorem 3.1. Here are some preliminary
remarks. For notational convenience, set

b, =log,n and ¢, = a,/(b,e)
where a, is defined by (4.17). Notice that
8.1) n—a, is l-varying, n—b, is O-varying,
n—c, is l-varying.
For any m and n, one has (cf. (4.16))
(8:2)  Hy() = (Sun — [IM(c,)]a,
= (an/a,)H,((n/m)t) 4 ([n]/n)(M(c,) — M(c,))[ £ ec,) -
It follows from (4.9) and Lemma 4.1 that as n — oo
(8.3) Pr {H,(t) < ¢} = exp(—(1 + o(1))te=**b,)

for each ¢ and c.
We proceed now with the proof, which will be divided into three lemmas.

LemMa 8.1. W.p. 1, the sequence (H,) defined by (4.16) is relatively compact
and all its limit points lie in A .

Proor. By (2.13) we need to check that for each v > 0
(8.4) lim, |, lim sup, my,(H,) =0 w.p. 1,

where mj , is defined by (2.11). For this fix v and let ¢ > 0 be given. For any
integer k > 1, one can find approximately 2kv intervals of length 1/k such that
every subinterval of [0, v] of length 1/(2k) is contained in some one of them; it
follows from this and the fluctuation inequality (6.17) that

Pr {ms1,,,(H,) 2 ¢}

(8-3) < 0(1) Pr {inf.,ocop (Ho(r) — Ho(5)) = —¢}

< O(1) Pr{H,(1/k) = —e}/(inf,g,, Pr {H,(7) = O})".
Now for ¢ < 1/k,

Pr{H,(1) < O} = Pr {S, — [n1]M(c,) = 0}
= Pr (S, — [nf]M(cp,y) < 0} = Pr{Hp,4(1) = 0},
and (8.3) implies that Pr {H,(1) < 0} =1 /(log m)*+*® as m — co; thus
inf,,,, Pr {H,(f) < 0} = 1/(log n)**°® .

Combining this with (8.3) we find that the right-hand side of (8.5) is dominated by

1 /(Iog n)(1+o(1))(e"‘/k-—2) .
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So if we choose k sufficiently large and take n; = [e#/'°¢4], the first Borel-Cantelli
lemma gives
lim sup; mik/(zk),v(Hnj) =e¢

w.p. 1. As ¢ is arbitrary, we have
lim, ,lim sup; m;",v(H,,j) =0
w.p. 1, and together with (8.1) and (8.2), this gives (8.4). [J

LemMA 8.2. W.p. 1, the sequence (H,) has no limit points outside of the set K,
defined by (2.30).

Proor. We shall verify the conditions of part (a) of Lemma 7.1. Since (8.1),
(8.2), and (4.9) imply that (H,) is cohesive in the sense of (7.8)—(7.9), Lemma
7.2 implies that (7.2) holds with C = A, — K, and n; = [e¥/'°¢4]. So by (7.3),
it suffices to check that each x in A, — K, has a neighborhood N such that
(8.6) Pr{H, e N for infinitely many j} =0.

Suppose then that x has no negative jumps and (cf. (2.27))

Ja(x) = sup X, |Alem @M > 1.
One can then choose continuity points 0 < £, < £, < --- < ¢, < oo of x such
that x(7,) < oo for each p and such that

Dispsq Ot €700 > 15
here
ot,=t,—t,, and ox, = x(t,) — x(t,-,) -
Choose g,, k,, 1 < p < g such that
gl’ < x(tﬂ’) < hl’
for each p, and
C = Zlépsq atpe—(hp_yp_l)/“p > 1.
Put
N={yel: 9, < y(t,) < h].
Then by (8.3)
Pr {Hne N} _S_. Hp Pr {hp—l — 9 < Hn(tp) - Hn(tp—l) < hp - gp—l}
— 1/(10g n)@+omNt

and so (8.6) follows from the first Borel-Cantelli lemma. []

LemMA 8.3. W.p. 1, each point of K, is a limit point of (H,).

Proor. The set

K*={xelA:j(x) <1 and x(f) < oo forall ¢ > 0}

is dense in K,. So by Lemma 7.1(b), it is enough to show that each x in K,* has

a LDS satisfying (7.5).
Suppose then that x € K,*. In view of example (7.1), it suffices to show that for
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any system t, < t, < - - - < t, of points in (0, oo) and any sufficiently small ¢ > 0,
one has
8.7) Pr (lim sup, F,) = 1 = Pr (lim inf, G,) ,

where
G, = {|H, (t)| < ¢}

Fk = nISqu {gp < an(tp) - an(tp—l) < hp}

with
n, = [exp(k'*)], ty = ty(k) = t,ny_yny
and
g,=0x,—¢, h,=0x,+¢.
By (8.3),

Pr (F,) = 1/(log n,)d+e®) Z1spsqdtpexpl=hp/dty)

Because j,(x) < 1, we have only to take ¢ sufficiently small to get 3}, Pr (F,) = oo

and thus Pr (lim sup, F,) = 1 by virtue of the second Borel-Cantelli lemma.
Next we show Pr (lim inf, G,) = 1 regardless of the value of ¢, thereby com-

pleting the proof of (8.7). Put m, = [t,n,_,]. If |H, (t,n,_,/n,)| exceeds ¢, then

(8.8) Sm, — M M(r )| Z ea,, — |m(M(c,,) — M(ra,))l >
where 7, is defined by (4.11). Because .~ is slowly varying
(8.9) (M(ct) — M(1))]A(1) = §¢¢ (L)L (t))u= du = ¢ log ¢ = ¢
if ¢ = ¢(7) and ¢ both tend to co (compare (4.9)). Consequently the rightmost
term in (8.8) is majorized by
T‘mk(M(cﬂk) - M(ka))/g(rmk) = o(aﬁk)
because ¢, < a, and a, = b,°Vy,, whence
(8.10)  (rmyfa,)"* " = B (T Twy) = o) (mymp) o
— (log k) exp(—(1 + o())(1 + e)k?) = o(1) .
Thus the right-hand side of (8.8) is (1 + o(1))ea, . By Lemma 6.4(b),
Pr{|Sn, — mM(rm)| = ca,} ~ m, A ea,,) = m, A(b7,)
= b‘:l(:)%(rnk)/‘%(r‘mk) = b:(,:)(rmk/rﬂk)l-}-ou) ¢

By (8.10) the sum of these terms over k is finite, and so the first Borel-Cantelli
lemma implies the desired result. [J

The proof of Theorem 3.1 follows a similar pattern and will be omitted.

9. Proofs of applications of the main theorems. A. On the equivalence of
Theorems 3.1 and 3.2. The equivalence of Theorems 3.1 and 3.2 is a consequence
of the following result, which is modelled after Vervaat (1972) and Whitt (1975).
It is to be noted that although the process U is assumed to be finite-valued, its
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limit points can take on infinite values. Let I be the identity map on [0, o), put
Ay>={xel;: x(f) < oo forall ¢ and lim,, x(f) = oo}
(cf. (2.9)), and recall that & is defined by (2.15).

THEOREM 9.1. Let U = (U(7)),>, be a A,>-valued random process. Let C be a
subset of A, and let ¢ be a mapping from (0, co) into itself.

(a) Suppose ¢ is ultimately continuous and strictly increasing, with lim,_,, ¢(v) =
co. The following two statements are then equivalent (cf. (2.8)):

(i) W.p. 1, U(zD)/¢{(z) — Cast— co.

(i) W.p. 1, (FU)(zD)/¢~(r) = F(C) as t — co.

(b) Suppose ¢(zr) = o(z) as T — o0, and let p be a strictly positive number. The
following two statements are then equivalent.

(i) W.p. 1, (U(zl) — zpl)[d(r) — C as © — oo.

(i) W.p. 1, —((FU)e]) — el])](z) — {~y(Ijp): y € C} as = — 0.

B. Proofs of (i), (ii), and (iii) in Section 3, and (i) and (ii) in Section 4. The
proofs of these results follow pretty much along the lines of Strassen (1964), and
will be omitted (see also (Wichura (1974)). We will point out, however, two of
the tools which, in addition to the linearization Lemma 6.1, are used in the proofs.

The first part of the following lemma is just a special case of the Holder in-
qualities (cf. Hardy, Littlewood, and Pélya (1934) pages 24-25):

LemMMA 9.1. (a) Let ae (0, 1) U (1,2), and let 2 = 2, be defined by (3.1), so
that 1)a + 1) = 1. Let E be a Borel measurable subset of [0, co) and let x and y
be two Borel measurable mappings of E into itself. Put

©.1) llxlle = (Ve x() dry’=  and  ||yll, = (§zY°(t) d)* .

Then, using the convention that 0 - oo = 0, one has

(0-2) §s x(00(@) dt Z [l

according to whether a < 1. When the right-hand side of (9.2) is finite and strictly
positive, equality holds in (9.2) iff (x(2)/||x||.)* = ( y®/|y|l:)? for almost all ¢t in E.

(b) Let E be as in (a), and let x and y be two Borel measurable mappings of E
into [— o0, oo}, withy = 0. Then

(9:3) §ex(t(r)dt Z —§z (7 + y(O)(log (y() — 1)) dt .

When the right-hand side of (9.3) is finite, eqﬁality holds in (9.3)iff x(t) = —log (y(¥))
for almost all t in E. :

ProoF oF (b): For any a in [—oo, oo] and b in [0, co], one has

9.4) ab = —e=* — b(log (b) — 1) .
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Moreover, when equality holds in (9.4), a = —log b unless b = oo and —oo <
a<0,0r0<b< co0anda= —oo. (9.3) follows easily. [

LEMMA 9.2. Suppose v,, n = 1, and v are finite nonnegative measures on the
Borel sets of [0, co), and that v, converges weakly to v. Suppose further that these

measures are all concentrated on some finite closed interval F. Let y,—y in the
M,-topology on A.

@) Ifyel,, then

9.5) liminf, § y, dv, = § y(s—)v(ds) .
(b) If y is finite and continuous at each point of F, then
(9.6) § Yndv, > §yav.

Proor. (a) From the M,-convergence of y, to y, it follows that the y,’s and y
are uyniformly bounded away from — oo over finite intervals. Moreover because
y has no negative jumps, lim inf, y,(#,) = y(t—) whenever ¢, — ¢ in [0, c0). The
weak convergence version of Fatou’s lemma implies (9.5).

(b) From the continuity of y, one has y, — y uniformly over F.
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