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Let Y, (n=0,1, ---) be a random variable and suppose that for suita-
bly chosen constants a, and b, (b, > 0) and each ¢ ¢ (0, «), the random
variable b, Y{at] + a» has a limit distribution function G;. If G; is non-
degenerate there are only two ways in which G; is related to Gi: there exist
real constants ¢ and @ such that either Gi(x) = Gi(c + t(x — ¢)) forall ¢ > 0
or else Gi(x) = Gi(x + clog?) for all £ > 0. This result provides a very
short derivation of the three types of extreme value limit distributions.

1. Introduction. We consider here stochastic processes {Z,: ¢t > 0} which are
constructed as the limit (in the sense of weak convergence on some metric space)
of a sequence y,(f) = b, Y, + a, where {Y,} is a sequence of random variables
and a, and b, (b, > 0) are norming constants.

If for each ¢ € (0, co) we have y, () —, Z, where Z, is a nondegenerate random
variable, then by the convergence of types theorem ([2] page 246) all the margi-
nal distribution functions G, of Z, belong to the same type, namely, G,(x) =
G(B,x + a,) for some scale and location functions §, (8, > 0) and a,.

Although we are dealing here with a completely general situation, the forms
of all the possible @, and B, are derived explicitly. This result is then used to
give a short derivation of the extreme value limit distributions.

2. Main result.
THEOREM 1. Suppose
(1 b, Y, +a,—>,7Z (n— o0)

where Z is a nondegenerate random variable. If for each t e (0, o) there exists a
random variable Z, such that

(2) b, Y + a, —>p Z, (n — o)
then there exist real functions B, and a, such that

(3 Z, =pB:Z + a, (8:>0).
Moreover, there exist real 8 and c¢ such that

(4) po=1t
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and
) a, =clogt if 6=0,
(6) a, = c(1 — 1% if 6+0.

Proor. Let H be the group of all positive affine transformations y = (8, @)
on R (i.e. y e Hiff yx = fx + « for all xe R with 8 > 0) and let 4, = (b,, a,).
We shall first prove that for each 7 e (0, oo) there exists y(f) = (8,, a,) € H such
that

(7) lim, . k, kil = 7(f) -

n-—00 n

Fix t > O and put 7,(f) = &,h;};,. The following facts are needed in the proof.

Fact 1. 7,(f) converges to a limit y(¢) (possibly not in H). Indeed we have
by (1) and (2)
Wo = htay Yiay = Z
and
Tu(OWy = b, Yy —>p Z, .
Hence either Z, = c (a constant) and 7,(f) — (0, ¢) or Z, is nondegenerate, in
which case by the convergence of types theorem y,(t) — y(t) € H and

® Zy=p1(0)Z .

Let T be the set of all + > 0 for which y,(¢) converges to an element in H
and let e be the identity in H. We consider the product 0,(¢) = &, k). =
7a(O7 1yt for a fixed + > 0.

Fact 2. If e is a limit point of J,(¢) then ¢, t~*e T and 9,(f) — e. Indeed by
Fact 1 7,(f) — 7(?) and y(,4(t7*) — r(t7*). By the assumption of Fact 2 both r(¢)
and y(¢+7?) belong to H. Hence 7,(t™*) — r(¢~") and both ¢ and ¢! lie in T.

Fact 3. If ¢ is rational then t ¢ 7. Indeed for rational ¢, J,(¢f) = e whenever
nt is integral. Thus Fact 3 follows from Fact 2.

Fact 4. h,h;'; —e. For nodd 0,(3) = A, k2, but 6,(3) — e by Fact 3. (By

n - n—

trivial induction 4, 4;}, — e for all integers g.)

Fact 5. If t > 1 is irrational then te 7. Indeed in this case d,(¢) = A, h;*,
for each n and Fact 5 follows from Fact 4.
From Facts 2-5 follows that 7 = (0, co) hence (7) holds and (3) follows from (8).
For given s, t € (0, co) consider the identity

72(18) = 7207 a1 () Prtnirer e -
Since 0 < [nts] — [[nf]s] < s + 1 for all n, Fact 4 implies that Ay, 454, — €
and thus y(ts) = 7(?)r(s), or equivalently
Bio = BiBss ay, = a,f, + a,=a,f, + a,.
Since y(f) is the limit of measurable functions it is measurable and the only
measurable solution for g is given in (4). If ¢ = 0 then «,, = a, + @, and (5)
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follows. Otherwise a, = (1 — t))a,(1 — s%)* (s #1). Thus for all s+ 1,
a,(1 — 5%~ is constant and (6) follows. []

Notice that

bn ; a, = lim“_,oo a‘nb[nt] _ a[nt]bn .

‘Bt = lim
b[‘nt] b[nt]

n—oo

Thus, if 6 + 0, by replacing a, by a, — ¢ (and Z by Z — c) one gets a new
a, = 0. Thus, in terms of the marginal distribution functions G, of Z, Theorem
1 can be restated as follows.

THEOREM 1*. Let {H,} be a sequence of df’s and let b, > 0 and a, be norming
constants such that Hp,((x — a,)/b,) — G,(x) (weakly) for all t > 0. If G, is non-
degenerate then one of the following holbs

(i) There exists a real constant c such that
G(x)=Gy(x +clogt)y  forall t>0.
(ii) There exist real constants 0 + 0 and ¢ such that
Hp,((x — a&,)/b,) — G(t°x)  forall t>0,

where a, = a, — ¢ and G(x) = G,(c + x).

REMARK. The function A(u) = hy,; is regularly varying since it is measurable
and for each 7 ¢ (0, o0)

lim,_,, A(u)h=Y(ut) = 7(¢) .

Hence (see [1] page 95) the convergence of 7,(¢) is uniform on compact subsets
of (0, co).

3. The extreme value limit distributions. With Theorem 1* at hand the deri-

vation of the extreme value limit distributions is immediate.

THEOREM 2. (Gnedenko [3]). The class of nondegenerate limit laws for F™((x —
a,)/b,) where b, > 0 and a, are suitably chosen constants contains only laws of the

types

D, (x) = exp(—x7%) (x>0,a>0)
¥, (x) = exp(—(—x)%) (x<0,a>0)
A(x) = exp(—e™®) (—oo < x < 0).

Proor. If F*((x — a,)/b,) — G(x) (weakly) then F!")((x — a,)/b,) — G'(x)
(weakly) for all + > 0. Thus by Theorem 1* we conclude that either

) Gi(x) = G(1’x)
or else
(10) G!(x) = G(x + clogt).

Suppose we have (in (9)) € < 0. Since G'(x) is decreasing in ¢ we must have
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G(0 —) = 0 and hence G(t) = G¥(1) = exp(—»bt) (b > 0) or equivalently G(x) =
exp (—bx"?) (x > 0), which is of the same type as @ ,(x) witha = —1/6. Simi-
larly, when @ > 0, G is of ¥ -type with « = 1/6 and when 6 = 0 we use (10) to
conclude that G is of A-type.

Another application of Theorem 1* is made in [4].
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