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UPPER AND LOWER FUNCTIONS FOR MARTINGALES
AND MIXING PROCESSES!

By NAREsH C. JAIN,? KUMAR JoGDEO AND WILLIAM F. StoUT
University of Illinois, Urbana

An almost sure invariance principle due to Strassen for partial sums
{S»} of martingale differences {X,} is sharpened. This result is then used to
establish integral tests which characterize the asymptotic growth rates of
S» and M, = maxigis, |S:]. If, in addition, {X»} is a stationary ergodic
sequence, then integral tests are established for nonrandom normalizers of
{S=}. Improving a decomposition due to Gordin for mixing sequences, inte-
gral tests are established for mixing sequences and Doeblin processes. Inthe
independent case, the results obtained compare favorably with similar clas-
sical results due to Feller and strengthen a classical result due to Chung.

1. Introduction. Let {X,} be a sequence of random variables on some prob-
ability space (Q, &, P) and let S, = Y2, X,. The asymptotic growth rates of
S, and M, = max,_,, |S;| have been studied in two fundamental papers by Feller
[8] and Chung [5], respectively, when the sequence {X,} consists of independent,
but not necessarily identically distributed, random variables. Feller’s paper is
an excellent source for the historical development of the problem concerning
the asymptotic growth rate of S,; Chung was the first to consider M,. The basic
approach (by no means easy) in the above papers was to first obtain sufficiently
good probability estimates for the appropriate tail, and then to apply Borel-
Cantelli arguments to solve the problem.

Strassen [26] uses an entirely different approach to attack these problems. He
lets {X,} be a generalized martingale difference sequence (that is, E[X, | X}, - - -,
X,_,] is well defined—see Section 2 for an explanation of “well-defined”—and
E[X,| X, -+, X,_,] = 0 a.s.) with E[X,?| X, ---, X,_,] well defined. By using
the Skorokhod technique he embeds S, into a Brownian motion process and
under suitable conditions on {X,} proves an almost sure invariance principle.
By this latter phrase one means that if {S(r), # = 0} is the process obtained by
interpolating S, (in some suitable manner) then S(¢) is sufficiently close to a
Brownian motion &, almost surely for all sufficiently large ¢, so that an asymp-
totic property known for Brownian motion also holds for S(#). The main ad-
vantage of this approach is that it is easier to establish asymptotic properties of
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Brownian motion than of S, mainly because the appropriate tail probabilities
can be computed exactly for Brownian motion.

When Strassen’s [26] results are specialized to the independent case, one does
not get results quite as strong as Feller’s [8]. Our main motivation was to see
if this gap could be closed. We have succeeded in closing this gap considerably
by refining Strassen’s techniques.

Feller’s problem is to give an integral test for non-decreasing functions ¢ so
that the integral converges or diverges according as P[S, > V,t¢(V,) i.0.] is 0 or
1, where V, = 37 E[X}| X, - - -, X,_;]. If this probability is 0 we say ¢ is an
“upper function” for S,. The corresponding result for Brownian motion is due
to Kolmogorov (see I1t6 and McKean [14] page 163). We note that for a martin-
gale difference sequence Stout [22] has proved an exact analogue of Kolmogorov’s
law of the iterated logarithm. Stout’s approach is classical and the reason he
has been able to establish this exact analogue is that relatively crude tail prob-
ability estimates suffice; whereas, in the more delicate problem of establishing
an integral test, such as Feller’s, one needs much sharper estimates, and as far
as we know, no such sharp estimates are available in the case of martingale
difference sequences.

Chung’s problem is to find an integral test for non-decreasing ¢ such that the
integral converges or diverges according as P[M, < V Ho(V,)} *i.0.] = 0 or 1.
If this probability is 0, we say ¢ is a “lower function” for M,. Chung’s [5]
results can be used to derive the corresponding results for Brownian motion
which can then be used in finding such tests for M, via the almost sure invariance
principle. A simpler direct proof for Brownian motion concerning the asymp-
totic behavior of M(f) = max,,, |§,| has been recently given by Jain and
Taylor [16]. Combining this proof with an almost sure invariance principle we
considerably sharpen and at the same time get a simpler proof of Chung’s result.
Our results are, of course, proved for generalized martingale difference sequences.
We also mention the recent work of Jain and Pruitt [15] and comments by
Breiman [3] on the asymptotic behavior of M,.

Gordin [11] has shown how a stationary mixing sequence {X,} can be written
as the sum of a martingale difference sequence and a “negligible” sequence. By
proving a suitable form of Gordin’s representation, we have been able to establish
integral tests for certain stationary mixing sequences {X,}. This technique is most
suited to functionals of a “Doeblin process” (studied in Doob [7] Chapter 5).

Before describing the organization.of this paper one more remark is in order.
The V, = Y1, E[X?| X,, - - -, X,_,] are of course random quantities when {X,}
is a generalized martingale difference sequence. In the independent case the
V,’s are simply constants. If {X,} is a stationary martingale difference sequence
with finite second moment, then one should expect to be able to replace ¥, by
nE[X?] in various results. One can, indeed, do this so far as the law of the
iterated logarithm is concerned; see, for example, Stout [23] and Basu [1]. For
this problem we formulate an almost sure invariance principle in Section 4, but
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we have to make an additional assumption (4.2). The justification of this
assumption is indicated by a counter-example in Section 7, which may be of
independent interest. It is known that if {X,} is a sequence of independent
identically distributed random variables with mean 0, variance 1, then S,/n’ — 0
a.s. for each 6 > 4, while our example shows that for a stationary and ergodic
sequence {X,} no such improvement of the strong law of large numbers is possi-
ble even for uniformly bounded X,.

We give preliminary lemmas in Section 2. An almost sure invariance principle
for generalized martingale difference sequences, which represents a refinement
of Strassen’s, is given in Section 3. Its analogue for the stationary case,
replacing random normalizers by constants, is given in Section 4. Analogues of
Feller’s results are discussed in Section 5, those of Chung’s results in Section 6.
The counter-example mentioned above and its relevance, so far as condition
(4.2) is concerned, are explained in Section 7. Applications to mixing sequences
are discussed in Section 8.

2. Preliminaries. Certain notation and conventions are adopted throughout
the paper. The symbol o(X;, - - -, X,) will always stand for the o-field generated
by random variables X, - - -, X,.

The conditional expectation E[X| <] will be said to be well defined if the
measure u(A4) = §, |X|dP, Ae &, is o-finite.

In some circumstances, in order to discuss properties of given random varia-
bles, we may need a probability space “richer” than the underlying one. In
such cases a phrase such as “if necessary, redefining the X,’s on a new probability
space” will imply that the joint distributions of the X,’s are kept the same.

In statements like S, = o(n) a.s., n — oo, it is to be understood that n-1S, —
0a.s.

We will only be concerned with large values of ¢+ whenever log ¢ and log log ¢
(written henceforth as log, ) are involved. Hence, to avoid cumbersome ex-
pressions, we adopt the convention that

logt=1 for 0<t<e and
log,t=1 for 0<t<er.
The use of abbreviations “a.s.” for “almost surely” and “i.0.” for “infinitely
often” is standard and will be made.

The relation a, ~ b, means a,b,”* —, 1 as n — co.
The following lemmas will be used in subsequent sections.

Lemma 2.1 (Kronecker). Let x, be real for n > 1 and 0 < b, /" co. Then
21 (x,/b)) converges implies that (3,7, x;)/b, — 0 as n — co.

DEerFINITION 2.1. Let & be a Brownian motion on [0, co)and 0 < a' < b < co.
Then we define R (a, b) = max,, ,<; |£(#) — (V)|

LEMMA 2.2. The distribution of R(a, b) is the same as that of R.(0, 1)(b — a)t.
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Moreover, there exists ¢ > 0 such that for all 2 > 0,
PIR(0, 1) > 2] £ = exp(—#2) .

Lemma 2.2 is given in [10].
The following lemma is an obvious analogue of Lemma 2.14 in Jain and Taylor
[16]. Since the proof is also analogous, it is omitted. First we need

DEFINITION 2.2. Let 4 > 0. Then @, is the class of nonnegative, non-decreas-
ing functions defined on [4, co] which increase to co with their arguments.

LemMA 2.3. Let g be an eventually non-increasing function from [0, co) to [0, co)
and h be a measurable function from [A, co) to [0, co), for some fixed A > 0. For
0 D,, define

Flp) = 12 9(p(0)h(r) at
which may be either finite or infinite. Assume that

(a,) forevery ¢ € @, and for every B such that B> A > 0, {Z g(¢(t))h(r) dt < oo.

(ay) There exist ¢,, ¢y, two members of © ., such that ¢, < ¢,, F(p,) < oo, while
F(¢,) = oo and

lim,_., 9(¢.(B)) §% A(2) dt = oo .

Define ¢$ = min [max (¢, ¢,), ¢,]. Then for p € ®,,

(b)) F(p) < oo implies that $ < ¢ near oo and F(¢) < oo.
Conversely,

(b;) F(p) = oo implies that F(¢) = oo.

RemMARK. Note that ¢ is trapped between ¢, and ¢,. In proving upper and
lower class results this lemma allows us to consider only those ¢ ¢ ®, which
satisfy ¢, < ¢ < o,.

3. An almost sure invariance principle. Throughout this section {X,} will
denote a sequence of random variables defined on a probability space (Q, &, P)
suchthat E[X,?| £, _,] is well defined and E[X, | <£,_,] = O a.s. for n = 1, where
we write &, for ¢(X,, - - -, X,), &£, = trivial o-field {Q, ¢}. Let

S, = D X, S, =0
V.= 2t E[Xflz_l] s Vo=0.
To avoid trivialities we assume V, = EX;* > 0.

The following theorem is analogous to an almost sure invariance principle due
to Strassen [26]. It allows us to obtain sharper results than those of Strassen.

THEOREM 3.1. For a fixeda = 0 let
ful(t) = t(logy 1), . t>0.
Suppose the following conditions hold a.s.:

3.1 V,— oo as n— oo,
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and for all 6 > 0

(3.2) lim, ., (fu(Va))™" Dot E{X[X} = 0f (V)] L5} = 0
(3.3) ; 2 (fulV) RE{| XX, = 0f (V)] | Lma} < o0
(34 2im1 (fa(V) EIXAX? < 0f (Vi) | Lima} < 00

Let S be the random function defined on [0, co), obtained by setting S(t) = S, for
te[V,s Vui1). Then, redefining {S(f), t = 0}, if necessary, on a new probability
space, there exists a Brownian motion & such that

(3.5) IS(t) — &(t)] = o(t(log, 1)*-*7%) a.s.,
ast— oo.

Before proving this theorem, it will be convenient to formulate a lemma.
Let f be a positive function defined on [0, co) such that f(r) " oo as t " co.
Following Strassen [26] let

(3.6) Xn =X, if X2 fV.)
= sgn anf(V,,,,)(Ian) if X.*> f(Vn)

for n = 1, where p,(x) = 2rt — r/x for r = 0 and x > rt. Note that p,(x) < x.
Let

3.7 Y, =X, — E[X,| <] -
The above truncation guarantees that ¢(Y;, ---, Y,) = &°,. Moreover,
(3.8) 1% S2(f(V,))F and  |Y,| S AV,

so that E[ X, | &, _,]and E[Y,* | &, _,] are well defined for eachj > land n > 1
since V,, is £, , measurable for n > 1. From (3.7), it is clear that

(3.9) E[Y,| £, ,]=0 as.

We apply Theorem 4.3 of Strassen [26] to the sequence {Y,, i = 1}, (redefined
on a richer probability space if necessary) so that there is a Brownian motion
{£(?), t = 0} together with a sequence of nonnegative random variables {7, i > 1}
such that

(3.10) e, Y, =80, T,) as. for n>1.

Let 7/, be the o-field generated by §(f)for 0 < ¢+ < 31>, T, and Y,, - -+, Y,. Let
, be (Q, ¢), the trivial g-field. Then for each n = 1, T, is %/, measurable,
E[T,|%,_,] is well defined and for n = 1,
(3.11) E[T,|Z,_,] = E[T,| <]

= E[Y,!|%,.] = E[Y,}| £,] as.
If j > 1, then
(3.12) E[T,|Z,.\] < ¢;E[Y,Y|Z,,] a.s.,
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where the constants ¢; depend only on j. Let

(3.13) U, =2, T, for n>1,
and
(3‘14) Wn = Z?:l E[Yizlz—l]

= Z?:l E[Ti | %—1] .

LEMMA 3.1. For a fixeda = 0, let f, = f be as in Theorem 3.1. If (3.1)—(3.4)
hold, then we have

(3.15) (W — Vil = o(f(V2))
(3-16) |28 Y — D X = o((fAV.)h)
(3.17) |Un = Val = o(f(V2)

and

(3.18) Ve = Vsl = 0(f(V2))

a.s. asn — oo.
PRrOOF. According to relation (147) of Strassen [26], for i > 2,

(G.19)  |E[Y?| L] — E[XP| L0 < GE[XX? > f(V)| L] as.

This together with the assumption (3.2) gives (3.15). Again from relations (152)

and (154) of Strassen [26] we get

(3.20) P[X,+ X, i.0.] =0

and
D5 Y, — T X <2 D E[IXIHXE > (V)| L] as.

Condition (3.3) and Kronecker’s lemma show that the right side of the preceding
inequality is o ((f(V,))}). Thus
(3.21) Dt Y, — S Xl = o(f(V)) as.
Now (3.16) follows from (3.20), (3.21) and the fact that f(V,) / oo a.s.

In order to prove (3.17) and (3.18), observe that the definition of Y; and (3. 12)
yield

E[T?| 7] < o, E[Y}}| £1] < 16¢,E[X | <&, _)]

= 16c{E[XA(X? < f(V))| L] + E[XAX2 > f(V))| L]}
= 16c,{E[X (X2 < f(V)| L]
=+ 8(VOENXIX? > f(V:)|<ZL])

by noting that V; is ;_, measurable, and |X;| < min [|X,|, 2( f(V))t]. This to-
gether with conditions (3.3) and (3.4) gives

(3‘22) Zf=1f_2(m)E[Ti2|%—1] < oo a.s.
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Now from a standard result in martingale theory ([7] page 320), it follows that
(3.23) 2T, — E[T,|Z,,]}/f(V,) converges a.s.
as n — oo.

Combining (3.11) and (3.23) yields the a.s. convergence of Y2 {T;, —
E[T,| <, _ .1} /f(V,), which via the Kronecker lemma (Lemma 2.1) gives

U, — W,| = o(f(V,)) as.
This together with (3.15) yields the desired relation (3.17). To prove (3.18) note
that for 6 > 0
Vi = Vi = E[X2| 2, 1] = E[XIX, > of(V.) | L]
(3.24) + E[XM(X, < of (V)| L]
= o(f(V) + of(V.)

by (3.2). Since 6 > 0 is arbitrary, we have (3.18) by observing that this implies

Vanr/V,— 1a.s., as n — oo, and the lemma is proved.

Proor oF THEOREM 3.1. Since a = 0 is fixed throughout, we drop the sub-
scripts from f,. For 0 < ¢ < 1, define

(3.25) p; = ebiloe i
and
(3.26) n; =inf{n: V, = p;}, j=2.

Given ¢ > 0, for all j sufficiently large (depending on w € Q and ¢), we have

Suppj§t§Pj+1 IS(t) - 'S(t)l
(3.27) = SUPy,,; _1stsv,; ., [S(2) — &(0)|
= SUP, ;—15nsn g |12 X — 2 Y
+ Re( V‘nj—l - ef(an+1)’ V'nj.H + sf(an.H)) a.s.
where R is as in Definition 2.1. The last inequality follows from (3.17) and the
facts that S(t) = S, on [V,, V,,,) fort = 0, 32, Y, = £U,). Using (3.16), it
follows that for all j sufficiently large (depending on w),

Suppjétépj.H |S(t) - E(t)l
(3-28) < o((f(Va; )
b R(Vays = f(Va) s Vi + (V) 2.

Elementary computations, using the definitions of f, p;, n;, and (3.18), show that
the interval involved in R, in (3.28) is contained in the interval [p;_,, p;,.] a.s.
for all sufficiently large j. Using this information in (3.28) we get

(3:29)  SUPy gigp;y, [S() — €] < 0((S(P3)) + Relpioss piva)  B-s-
for all j sufficiently large.
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From Lemma 2.2 it follows that for any r > 0

. Yot
PIRAPscss Piv) > 17341081 p)*~"] = P| R0, 1) > 1 {PAIBPITUH

Pi+a — Pi-1
For all j sufficiently large and 9 sufficiently small we have (p;,, — p,_,)p;,™* <
46 log,™* p;, hence for such 6 and j we have

P[R(pi-1> Pjrs) > 1pit(log, p;)t=7
7
= P[Rf(o’ > sy {logz]’f}*:l
c

<___°
2{log, p,}t
by picking d so that y?/86 > 2. Thus for every y > 0

251 PIR(pjo1s pjss) > 7p;4(10g, p) =] < oo .
Hence, by the Borel-Cantelli lemma, almost surely,

(3:30) Re(pi-1> pjra) = rpjt(log, p;)i=—

eventually. The assertion of the theorem now follows from (3.29) and (3.30)
since y > 0 can be chosen as small as we please.

It is worthwhile to note the following theorem which is a corollary of Theorem
3.1. It is simpler to state and almost as useful as Theorem 3.1. However, con-
ditions (3.2)—(3.4) are generally weaker than the condition (3.31) below.

l i\2a
exp{—2log, p;} < cﬁ%zj)— ,

THEOREM 3.2. For a fixed @ = 0, let f, be as in Theorem 3.1. Assume (3.1) and

log, V,)* 14
3.31 a (_’5_245:{)(21[,\” E ]‘g_} as.
( ) D v, k K > fog V(log, V)@ p—1f < ©0
Let S be the random function defined on [0, o), obtained by setting S(t) = S, for
te[V,, Vayi). Then, redefining {S(t), t = O}, if necessary, on a new probability
space, there exists a Brownian motion & such that (3.5) holds.

Proor. Note that (3.31) implies
(3:32) 2= ([uVa) TE{XX, > 0f (V)| L} < o0

a.s. for all § > 0. This implies (3.2) by Kronecker’s lemma and it is obvious

that it also implies (3.3). Now we will deduce (3.4) as a consequence of (3.31).
For convenience we write

V,
V) = k .
280 log V,(log, V;)*=+v

Now
E{XM[X! < of (V]| L)
= E{XM[X! < 9,V Loa} + E(XM9.(Vi) < X2 < 0f o Vll <2}
S GVOEXM XS < 9,(V)] Loma} + fu(VDE(XIX?E > 9,(Vi)]|Los) -
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Multiplying by (f.(V,))~* and summing on k, we see that the expression in (3.4)
is dominated by

V, = Viey ) I
Viiiog Vg, vy + 0 B eV RGNS > 0.V Lo}

The first term here is clearly a.s. convergent. Hence (3.31) implies (3.4).

2

4. An almost sure invariance principle when the summands are stationary.
Throughout this section {X,} will denote a stationary ergodic sequence of mar-
tingale differences (E[X, | <, ;] = 0 a.s. for each n = 2). It will be assumed
that EX;? = 1. As before V, will denote } 7, E[X?| < ,]and S, = X1, X,.
We write &£, = {¢, Q} and &, = o(X}, --+, X,), n = 1.

THEOREM 4.1. For a fixed a = 0, let

4.1) fu(t) = t(log, )~ for t >0.
Assume that
(4.2) |V, — n| = o(fu(n)) a.s.,

@.3)  lim, . (fu(n) Sies EGIIXE 2 (0] L5} =0 ass.

forall 6 > 0, and

(4.4 E{X*(log, X;*)*} < oo .

Let S be the random function defined by S, = 0 and S(t) = S, for te[n,n 4 1),

n = 0. Then upon redefining {S,, t = 0} on a new probability space, if necessary,
there exists a Brownian motion & such that

(4.5) IS(f) — £(f)| = o(ti(log, H)*~=7) a.s.,
a.s. ast— oo.

REMARK. It is important to point out the difference between Theorems 3.1
and 4.1. In Theorem 3.1 the interpolation of S, is done at random times V,,
whereas in Theorem 4.1 it is done at n. The additional condition (4.2) appears
to be rather indispensable as we explain later in Section 7. Without such an
additional restriction it seems that all one can get is random normalizers as in
the nonstationary case, that is

IS, — &(Va)l = o(Vii(log, V,)**")  a.s.
as n — oo, instead of the preferable
|S, — &(n)| = o(ni(log, n)*~*7%) a.s.

For the special case of independent, identically distributed X,’s, we have
V, = n. Hence (4.2) is automatically satisfied. It is also easy to check that
(4.4) implies (4.3). We thus get
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THEOREM 4.2. Let {X,, i = 1} be a sequence of independent, identically distri-
buted random variables with EX, = 0, EX? =1. Let S, =X, + --- + X,. As-
sume that for a fixed a« = 0,
(4.6) E{X12(10g2 X7’} < oo
Let S be the random function defined by S, = 0 and S(t) = S, for te[n,n + 1),
n = 0. Then upon redefining {S(t), t = O} on a new probability space, if necessary,
there exists a Brownian motion & such that
(4.7) () — £(1)] = o(}(log, )*~"%)
a.s. ast— oo.

For a = 0, this was proved by Strassen [25] and for « = 2 by Breiman [3].

We also note that in general both conditions (4.3) and (4.4) are implied by
the condition (4.3’) below. Hence we get

THEOREM 4.3. Let {X,, i = 1} be a stationary ergodic martingale difference se-
quence. For a = 0, let

fot) = t(log, )=, t>0
and suppose the following conditions are satisfied.
(42) [V — 1| = o(fu(n))
and
4.3) E{X,*(log X,*)(log, X;*)*} < oo .

Then the conclusion of Theorem 4.1 holds.

The proof of Theorem 4.1 follows essentially along the lines of the proof of
Theorem 3.1, and we only give the necessary modifications.

Using f(n) in place of f(¥,) in the truncation (3.6), let X, be redefined. The
following is an analogue of Lemma 3.1.

LemMmA 4.1. Let Y, = X, — E[X,| <£,_,], where &, _, is 6(Xyy -+ -5 X,_)), T}

i=1beasin(3.10)and U, = Y7, T,. Then (4.2), (4.3) and (4.4) together imply
that a.s.

(48) |Un - nI = o(fa(n))
and
(4.9) | X0 Xs — 2 Y = o((fu(n))b) -

ProoF. Since aisfixed, we write f = f,. We will first show that (4.4) implies
that a.s.

(4.10) Do () RE{ XX, = of(k)]| L} < o0
and

(4.11) 2o (fI)EXAX < 0f(K)]| L} < o0
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for all 6 > 0. In fact, (4.4) implies more, i.e.

(4.12) 251 (fIR)E( XX} = of(k)]} < oo
and
(4.13) 2= (f(R)PEX X} < 0f(K)]} < oo

for all 6 > 0. We will derive (4.12); (4.13) follows by a similar argument.
Writing [x] for the greatest integer < x, we see that the expression in (4.12)
is dominated by

(4.14) 2= (JUO)) ™t Dtarant Siisixg<ivn 1 Xa] 4P
Changing the order of summation, we can dominate this expression by
2o Susig<inn [ Xl dP 249 (flk)7H,

where ¢(j) = 26-*(log, j)*, which is roughly twice the inverse function of
(9f(k))t evaluated at j. Hence we get a bound

const. 37, Jjdog, j)* S(:i§|X1[<j+1) | X,| aP ,
which, in turn, is dominated by
const. 315 § sz <ien X108, X)* dP < oo .

Now, (4.3), (4.10) and (4.11) play the same role here as (3.2), (3.3) and (3.4) in
the proof of Lemma 3.1. The fact that ¥, — oo a.s. follows from (4.2). Hence
we conclude along the lines of the proof of Lemma 3.1 that

|20 X — D Yil = o((f(n)?)
|Up — Val = 0(f(n)) .

Combining the assumption (4.2) with this last conclusion, we get

|Un — 1| = o(f(n))

and

and the lemma is established.
Proor oF THEOREM 4.1. Note that

Supp,-stsp,-ﬂ lS(t) - E(t)l

(4’15) é Sup?j—lsnépj.H |S'n - Z"i’;l Yzl
+ Supﬂjstépj+‘1,pj—1§n§pj+1+1 IE(Un) - S(t)l ’
where, as before, for 0 < 0 < 1 we define
p; = ediloE®

Using (4.8) in the above, we get for ¢ > 0 and all j sufficiently large -
Supﬂjétspj.H IS(t) - E(t)l

= SUP,;—15nsp 441 IS, — 2t Yi| + Re(p; — ef(Pia)s Piwn + f(Pis)) -
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The remainder of the proof is identical to the corresponding portion of the proof
of Theorem 3.1 and hence is omitted.

5. Integral test for upper functions for martingales. In this section {X,} will
denote a sequence of random variables with E[X,?| <7, ;] well defined and
E[X,|<,,] =0 as. for n > 1, where &£, =a(X,, -+, X,), <&, ={Q, ¢}.
Again, as in Section 3,

S, = Z?:lXia So=0
Vn = ZLl E[Xizlzq] s Vo= 0,
and we assume V; = EX? > 0.

The almost sure invariance principle of Section 3 will now be used to prove
an integral test for upper functions of S,.

THEOREM 5.1. Suppose V, — oo a.s. and
(.1 X V.(log, V)
X E[XU(X,? > V,(log V,) (108, V,)™)| Z, 1] < oo ass.
Let ¢ > 0 be a non-decreasing function. Then

(5.2) P[S, > Vie(V,) i.0]=0 or 1,
according as
(5.3) Ip) = gr@exp(—¢2(t)/2) dt< oo or =oo.

ReMARK. This should be compared with Corollary 4.5 of Strassen [26].
Proor oF THEOREM 5.1. We first establish the result for functions ¢ such that
(5-4) (log, 1)t = (1) = 2(log, 1)t

for all ¢ sufficiently large. We will then remove this restriction.
If I(¢) < oo, then by Kolmogorov’s test for Brownian motion ([14] page 163),
we have for any 8 > 0,

(5.5) P[&(t) > t¥(p(t) — Ble(t)) i.0.as t— 0] =0,
since ¢(f) — Be(t) /" and I(¢ — B/¢) < oo. The conditions of Theorem 3.2 are
satisfied by taking « = 2. Using (3.5) in conjunction with (5.4) and (5.5) we
obtain

P[S(f) > ttp(t) it0.as t—o0]=0.
This clearly implies that

P[S, > V,tp(V,) i.0.] =0,

as desired. On the other hand, if /() = oo, then I(¢ + B/¢) = oo, for every
B > 0. Further, ¢(f) + B/¢(¢) is increasing for sufficiently large ¢, and similar

analysis shows
P[S(f) > ttp(t) i.0.as t > 0] =1,
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which in turn implies that
P[S, > V,to(V,) i0.]=1.

It remains to show that (5.4) may be assumed without loss of generality. Let
¢.(7) = (log, 1)} and ¢,(f) = 2¢,(?), for t > 0. Let ¢ " be an arbitrary nonnega-
tive function and

¢(#) = min [max (¢, ¢,), ¢;] -

The conditions of Lemma 2.3 are satisfied and by that lemma, I(¢) < oo implies
I(¢) < oo and ¢ < ¢ near co. Since ¢ satisfies (5.4), we conclude that P[S, >
V,t¢(V,)i.0.] = 0. Since ¢ < ¢ near oo, ¢ also satisfies this relation.

On the other hand suppose I(¢) = co. Then by Lemma 2.3, I(¢) = co, and
it follows that P[S, > V,t¢(V,) i.0.] = 1. Hence there exists a sequence n, | co,
depending on w e Q, such that S, > Vi ¢(V,,), for every positive integer k.
Since I(p,) < oo, we have P[S, > V,tp,(V,)i.0.] = 0. Hence

(5‘6) ¢( Vnk) < §D2( Vnk) a.s.

for all sufficiently large k. Thus, from the definition of ¢, the inequality (5.6)
implies that o(V,,) < ¢(V,,,) a.s., for all sufficiently large k, and hence almost
surely S, > Vi o(V,,) eventually also. This completes the proof.

When {X,} is a sequence of independent random variables, V, = »r, EX?,
are constants. Condition (5.1), in this special case, becomes

e Va(log, VLYE[XM(X,! > V,(log V,)(log, V,)™)] < oo .
It is interesting to compare this condition with that of Feller ([8] page 399):
2w Va7l (log, VLY E[X,I(X,? > V,(l0g, V,)™)] < oo

COROLLARY 5.1. Let {X,} be a sequence of independent random variables with
EX,=0,and V, = 3,7, EX?be suchthat V, /" co. Suppose there exist constants
0 > 0 and B > O such that for every n = 1

7 xi(log x)*+? dP[|X,| < x] < BEX,!.

Then the conclusion of Theorem 5.1 holds.

This result was obtained by Feller ([8] page 401) by applying his condition
mentioned above.

Let {X,} be a martingale difference sequence which is stationary and ergodic
with EX;? = 1. We formulate a result similar to Theorem 5.1.

THEOREM 5.2. Suppose the conditions (4.2)—(4.4) of Theorem 4.1 hold with
a=2,ie.

(5.7) | Xt E[X?|£50] — n| = o(n/(log, n)")  a.s.

(5.8)  lim,_. (k’_g;”_)f o, E(XA[X,2 > dk(log, k)] | Lo} = 0 aus.
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forall 0 > 0, and

(5.9) E{X/(log, X;?)’} < oo .
Then for any 0 < ¢ /
(5.10) P[S, > ntp(n) i.0.] =0 or 1

according as

(5.11) I(¢) = grﬂ(ti)e-wv?dt <o or =oo.

The proof of Theorem 5.2 is identical to that of Theorem 5.1, except that
(4.5) of Theorem 4.1 takes the place of (3.5) of Theorem 3.1. In the independent,
identically distributed case, Theorem 4.2 leads to

COROLLARY 5.2. Let {X,} be a sequence of independent identically distributed
random variables with EX, = 0, EX? = 1 and

(5.12) E{X}(log, X;*)’} < oo .
Then the conclusion of Theorem 5.2 holds.

REMARK 1. A weaker result than Corollary 5.2 was obtained by Feller in [8].
In [9], Feller uses a clever truncation argument to improve the above result by
requiring only that E[X;?log, X;*] < oo instead of (5.12). M. Wichura points
out, however, that Feller’s proof is valid only for symmetric X, (as was observed
by H. Robbins and D. Siegmund).

REMARK 2. One can replace the conditions (5.8) and (5.9) in Theorem 5.2 by
the single condition

(5.9 E{X*(log X;*)(log, X;?)*} < oo .
One can refer to Theorem 4.3 with @ = 2 for the proof.

6. Integral test for lower functions of absolute maxima of martingales. We
continue to use the notation of the first paragraph of Section 5. We will be
concerned here with the growth of small values of

M, = max, g, |S .

Our aim here is to give an integral test for an increasing function ¢ under
suitable conditions on {X,} such that

P[M, < V2 {o(V.)}™ i0]=0 or 1,

according as the integral of a certain function of ¢ converges or diverges.

The case where {X,} is a sequence of independent random variables was con-
sidered by Chung [5]. His method was to obtain sufficiently good probability
estimates for the appropriate tail of M, and then use these to establish an integral
test, a method reminiscent of Feller’s [8]. A simpler proof for the case of
Brownian motion was recently given by Jain and Taylor [16].
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Our approach here is to use the almost sure invariance principle of Section 3
to obtain such results. Indeed, Strassen’s almost sure invariance principle already
gives results stronger than Chung’s and any improvement of the invariance
principle will naturally lead to stronger results.

THEOREM 6.1. Assume that V, — co a.s. and

61)  zi CBYS pac: > v og V) og V) £ < oo as.

n

Let 0 < ¢ /. Then
(6.2) PIM, < V.Y{o(V,)}* i.o.]=1 or 0
according as

(6.3) K(p) = 55 £ expl —8¢2(u)/ ") du

=0 or < .

Before proving this theorem, we state the corresponding theorem for Brownian
motion ([16] page 547).

THEOREM 6.2. Let & be a standard Brownian motion process,

M(r) = max,g,, |§(u)| for t =0,
and 0 < ¢ /. Then

PIM(1) < tHp(t)}™ i.0.as t—o0]=1 or 0
according as I,(¢) = oo or < oo.

ProOF oF THEOREM 6.1. As in the proof of Theorem 5.1, we first consider
¢ /" such that

(6.4) (1) = (log, )t < o(t) < @(1) = 2(log, 1)

for ¢ > 0. Note that /;(¢,) = oo while /,(p,) < co. Let S be the interpolated
process as in Theorem 3.1 and let M'(f) = sup,g, <, |S()| for t > 0. In view of
condition (6.1), Theorem 3.2 is applicable so that with « = 4 we get

(6.5) |§(r) — S(2)| = o(t¥(log, 7)) a.s.
as t — oco. But this implies

(6.6) [M(t) — M'(t)| = o(r}(log, 1)) a.s.
as t — oo.

Let I,(¢) < co. Then it follows that I,(¢p — B/¢) < co for each 8 > 0. By
Theorem 6.2,

P[M(1) < th(p(?) — Ble(f))™ i.0.as t— 0] =0.
This then implies that
6.7) P[M(tr) — Bt¥{p(1)])* < tHo(t)}* i.0.as t— c0] =0
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for every § > 0. Combining (6.6) and (6.7) we get for every § > 0
P[M'(f) < t}(p(f))™ i.o.as t— 0] =0.
Recalling that sup,c, <, |S(#)| = M, we obtain from the above assertion that
P[M, < V,i(g(V,)™ i.0.]=0.

The argument when I,(¢) = oo is similar; one needs (3.18) at the last step.

It remains to show that (6.4) may be assumed without loss of generality.
However, this argument is very similar to the one just given in the proof of
Theorem 5.1 and is omitted.

The special case when {X,} is a sequence of independent random variables is
again of special importance because it provides a useful comparison. We will
show that Theorem 6.1 when specialized to this case implies the following im-
provement of the result of Chung [5].

COROLLARY 6.1. Let {X,} be a sequence of independent random variables with
EX, =0, E|X,* < oo foreachn = 1. Assume V, = Y,», EX,* approaches co with
n. Let0 < ¢ /. Suppose

(6-8) E|X,PIEX,} = O(V,}/(log V,)")
as n— oco. Then
(6.9) PIM, < V,{o(V,)}* i0]=1 or 0O

according as I,(¢) = oo or < oo.
Proor. It suffices to show that (6.8) implies the version of (6.1) for the case
of independence. Clearly,
E[X,M(X,} > V,(log V,)"(log, V,)™™)]
(6.10) < V.7¥(log V,)}(log, V,)°E| X, [
= O((log V,)"¥(log, V,YEX,?) ,
where the last relation follows from (6.8). Using (6.10), it is seen that

S Qf’gVA E[X,I(X,2 > V,(log V,)"(log, V,)™]
EX,?
V,(log V,):
v, —V,

n—1 <OO.

Va(log V)i

< constant 37,

= constant 7,

This completes the proof.

Pakshirajan [18] has improved Chung’s result by replacing (6.8) with a con-
dition on truncated moments. Although Theorem 6.1, when specialized to the
case of independence, does not contain Pakshirajan’s result, the latter can be
derived by the method of this paper. We omit the details, except to observe that
independence can be used to get better truncation.
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The version of Theorem 6.1 for the stationary case can also be formulated in
the same manner as Theorem 5.2.

THEOREM 6.3. Let {X,} be a stationary ergodic martingale difference sequence
with EX* = 1. Suppose the conditions of Theorem 4.1 or Theorem 4.3 are satisfied
with @« = 4. Then for every 0 < ¢ /

(6.11) P[M, < n¥{op(n)}* i.0.]=1 or 0
according as I,(¢) = oo or < oo.

The proof of Theorem 6.3 is identical with that of Theorem 6.1 except that
(4.5) replaces (3.5). We omit the proof.

ReMARK. It should be pointed out that in the case of independent, identically
distributed X;’s, the conditions reduce to E{X*(log, X;*)'} < oo.

REMARK. Breiman [3] proves the following result: Let {X;, i > 1} be inde-
pendent, identically distributed random variables with EX; = 0, EX;? = 1, and
E{X?(log, X?)’} < co. Then

(6.12) lim inf,

n—ro0

M'IL
(n(log, m)™)}
Since this is true for Brownian motion by Theorem 6.2, the result follows from
Theorem 4.2 by taking a = 2. Jain and Pruitt [15] have shown that EX, = 0,
EX? =1 alone imply that the liminf in (6.12) is a constant. The question
whether, in this latter case, the constant is 78! is still open.*

_ T
_85.

7. A counterexample. The purpose of the counterexample given in this sec-
tion is to explain the role played by the condition (4.2) in replacing the random
normalizers by constant ones in the case of stationary martingale difference
sequences.

We first remark that if {X,} is a stationary ergodic martingale difference se-
quence with EX;* < oo then {T,} may be chosen to be a stationary ergodic se-
quence (see [1] for example). If in addition {X,} is an independent sequence,
then {7,} may be chosen to be independent as well. In Theorem 4.1 the as-
sumption (4.2) is made to conclude (4.8). In the independent case (4.8) is
easily available if, for example, EX,* < oo, because one can use the classical
Marcinkiewicz strong law of large numbers. Thus

(7.0) |55, T, — n| = o(nt*%) a.s.

for each @ > 0. One may ask then whether finiteness of higher moments in the
case of a stationary ergodic sequence yields a relation similar to (7.0) which
would dislodge the unpleasant assumption (4.2).

The following example shows, however, that even if the random variables are
assumed to be uniformly bounded, a relation such as (7.0) does not necessarily

* Added in proof: Jain and Pruitt have shown that the constant is indeed »8:.
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hold for the partial sums of a stationary sequence. We should add, however,
that the special stationary sequence {7}, i = 1} of imbedding times may possess
some special properties which could permit such a conclusion. Thus the
counterexample only indicates that if the method is to succeed, just the sta-
tionarity of the sequence {7} is not enough.

ExampPLE. Let 4 = {0, aa,, aa,, - -}, where « >0, 0 < a;, < a;,;, < 1 for
eachi > 1. Define
7.1 n) = ,—i._— ,
D 1) = g v 1 2y
where ¢ is chosen such that

Zaafuln) = 1.

Then we can construct (see [6] page 60) a Markov chain {Z,, n = 0} with state
space A with stationary transition probabilities for which

(7.2) P[Z”=O, Zn—l¢0’ ...,ZI¢O|ZO=0]=f00(n),

for each n = 1. The chain will be aperiodic and positive recurrent since
1= nfu(n) < co. Hence there exists a unique stationary probability distri-
bution 7 on 4. Let Z, have distribution 7. We thus have a stationary ergodic
Markov chain. Clearly 0 < EZ, < a. For notational convenience we choose
a so that EZ, = 1. Since {Z,, n = 0} is stationary ergodic, by the pointwise
ergodic theorem

(7.3) |22, Z, —n| =o(n) a.s.
However, we will show that for every ¢ > 0
(7.4) P[|X1,Z; — n| = o(n**)] = 0.

(From the proof it will become clear that (7.4) holds even when n/(log, n)* is
substituted for n'~¢.) Let

(7.5) 7,=0, t,=inf{j >r7,,: Z; =0}.

Note that {r; — r;_;,/ = 2} is a sequence of independent identically distributed
random variables and that for j = 2,

E(t; —t;0) = E[r,|Z, = 0] = Yoy nfy(n) < oo .
Hence, with probability 1,

(7.6) T,/n— E(ty — 7)) < 0.

Fix ¢ > 0 and let '

(7.7) U, ={X11Z; — n}/n'—.

Suppose that U, — 0 with positive probability. Since, by (7.6) 7, — o a.s.,
(7.8) P[U, —0]>0,

or equivalently,
(1.9) P[%iz, (Z: — Djn~ — 0] > 0.
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Let
Y=Y, a(Z;—1) . for i=1.

Then (Y}, are independent identically distributed and (7.9) becomes
P2 Yy/n~—0]>0.

By the Kolmogorov 0 — 1 law,
P[Xr, Y, /i 0] =1.

By the converse to the Marcinkiewicz strong law ([24])

(7.10) E|Y "' < oo .

We show that this leads to a contradiction. Let 8 = P[Z;, = 0] > 0. Then 1 =
EZ < (1 — B)a. Choose a, so that 1 — 8 < a; < 1. Thus

(7.11) 1=EZ < aa.

We have

(7.12) E|Y,|ve-o = E|Z§g;__rl+l (Z; — 1a-»

and = E|Z§2=_,11+1 (Z; — 1) — 1j7e==,
(7.13) DiEan(Z; = 1) = (tp — v — I)(aqya — 1),

since, forr, + 1 < j< 7, — 1, Z; = a,a. Now

E(zy, — 7))V = 25 0/ (n) = o0
and combining (7.11), (7.12), (7.13) with this, it follows that
E|Y,|V2-9 = oo,
contradicting (7.10). Hence (7.4) holds.

8. ¢-mixing stationary sequences. By using a representation due to Gordin
[11] we extend our results to certain ¢-mixing sequences.

Let {§,, —oo < n < oo} be a stationary sequence, &, taking values in a meas-
urable space (S, &%), on some probability space (Q, &, P). Let .Z} = o{¢,,
JEngklfor —co K j £k < oo, Z* =0, n 2k}, A" = 0{§,,n = k}.
Let ¢, = ¢, = --- | 0 be a sequence of nonnegative real numbers. The sequence
{é,, —co < n < oo} is said to be ¢-mixing if for each k, —oo < k < o0, and
eachn>1, Aje 7%, \,e #2, we have

(8'1) |P(Al n Az) - P(Al)P(Az)l = ¢nP(A1) .

We assume that Q consists of all doubly infinite sequences of real numbers,
so that if weQ then w = (- 0_,, 0, @, ---), where w, are real numbers.
The random variables &, are defined by &,(w) = w,, for every integer n and
oeQ, letting &F = of§,, —co < n < oo}

Let T denote the backward shift, that is,

(To); = 0,4y, —oLiK oo,
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T is a measure preserving transformation on (Q, &, P). Note that, for every
pair of integers j and &,
T-HA3) = Atk

For every random variable X on (Q, &7, P), with values in any measurable space,
we define as usual the transformation U given by:
UX(0) = X(Tw) .
Clearly, X and UX have the same distribution because of stationarity. Also, for
every real-valued random variable X,
UE[X| #3,] = E[U"X| _#7%"] a.s.
Using the ideas of Gordin [11] and Scott [20] we obtain the following theorem.

THEOREM 8.1. Let {§,, —co < n < oo} be a stationary (S, Z&)-valued sequence
as above. Let g be a real-valued measurable function on (S, &%) and let X, = g(£,).
Assume that the stationary sequence {X,, —oo < n < oo} is ¢-mixing (and hence
ergodic) with EX,=0and E|X|*** < co, for some d € [0, c0). Suppose >,2_; ¢,}< co.
Then

(a) there exist random variables Y, and Z, such that Y, is _°, measurable,
EY,=0=EZ, E|Y|**’ < o0, E|Z**? < oo and

(8.2) X,=Y,—UZ + Z,.

(b) The sequence (U*Y,, _#*,) is a stationary ergodic martingale difference se-
quence. Furthermore, for some a = 0

(8.3) E[(X70 UXY] ~ an .

In proving this result we need the following lemma due to Ibragimov [13].
(See also [2] page 170.)

Lemma 8.1. Let {X,, —co < n < oo} be a stationary ¢-mixing sequence. Let
R, be measurable with respect to _#- and R, be measurable with respect to _#.%,,,
for some fixed k and n > 1. Suppose E[|R,|"] and E[|R,]'] are finite for r, s > 1
and 1/r + 1/s = 1. Then

(8.4) |E[R\R;] — E[R\E[R,]| < 2¢,""E*"{|R,|"}EV*{|Ry|'} .

Proor oF THEOREM 8.1. We will prove it for 0 < d < 2; the proof clearly
works also for any 6 > 2. It will be'shown later that —

i |V E[X | A7l < oo
where ||f||, denotes {E[|f|?]}*/*. Assuming this now, we define
(8-5) Yy = 2% UMELX, | #] — E[X,| #2207}
and
(8.6) Zy = Yivo UFE[ X, | Ak .
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Now Y, is .7, measurable and (8.2) is satisfied. Note that U*Y, = Y, is _Z*,
measurable for k£ > 1.

Let ¥ be the operator on L?(Q, 6(X})), 2 < p < 4, defined by (for f a Borel
measurable function on the real line)

(8.7) V(X)) = X VE[{f(Xo) — Ef(Xo)} | A7
= X UE[fIX0) | ALY, say.
We will first check that ¥ is a bounded linear operator from L*Q, o(X,)) into
LYQ, 2°,) and from LYQ, o(X,)) into LYQ, _#Z°.). It will then follow by the
Marcinkiewicz interpolation theorem ([21] Appendix B, page 272) that V takes
L*+(Q, (X)) into L*+(Q, _Z°,) for 0 < ¢ < 2.
For ¢ = 2, using Lemma 8.1, we see that
E({UE(fiX,) | AL )) = EE{f(X0) | AL
= E(fIXNE[AX) | A-21F)
< 208 EHE fIX) | A E{ XN -

Therefore
(8.8) EXEf(Xy) | ALY < 2040l A
and hence ) i

4 IU*E(A(Xo) | A2 < 203l AX 5
an

L= IVE[AX) | #2257l = 2 Zim dIAX N, -

For = 0 a similar argument with r = s = 2 in Lemma 8.1 shows that

Do IV E(fIX) | A < 2 Bia 9D A -

Since Y ¢,} < co by assumption, we have shown that V is a bounded linear oper-
ator from L*Q, o(X,)) into L¥Q, _Z°,) and from L%, ¢(X;)) into LYQ, _2Z°,).
Also, taking f to be the identity function and recalling that EX; = 0 and
EX; < oo, it follows that Y, and Z; are well defined as L, limits (indeed also as
L, limits and almost sure limits). Moreover, since V takes L**(Q, ¢(X;)) into
L+(Q, #22.), E|X,[**’ < oo implies that ||V(X,)|313 = E|Z,|*** < co. By sta-
tionarity, E|UZ,|**’ < co and hence E|Y|**® < co. Thus the proof of assertion
(a) is complete.

Let Y, = U*Y,. Now (Y,, #Z*, k = 0) is clearly a stationary ergodic se-
quence. An easy computation shows that E[Y,|_#Z*-'] = 0 a.s. Assertion (b)
of the theorem now follows from the convergence of } 7., ¢, and is given in
[13] (see also [2] page 172).

ReEMARK. The case when 6 = 0 was considered by Gordin [11] (see also Scott
[20] for more details). One could also use a version of the Marc1nk1ew1cz inter-
polation theorem to conclude that

E[ X (log X,P)(log, Xp')*] < oo = E[Z(log, Z,)*] < oo,

etc., and get a refinement of Theorem 8.1.
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RemARk. Walter Philipp has pointed out that one could avoid the use of the
interpolation theorem by observing that for ¢ = 0

E{|E[f(X,)| A2} = E{AX)E[f(X) | AZZNE[A(X) | #2221
é 2¢k(1+6)/(2+5)E(1+6)/(2+6){|E[f'(X0) I %—k]lﬂ-ﬁ}
X EC 7| X))
by applying Lemma 8.1 with r = (2 4 9)/(1 + 9), s = 2 + d. Hence one gets

IELAXo) | A lars < 2065422 f( X s -

Thus Y], ¢,4+9/@+9 < oo suffices in our Theorem 8.1 in place of )}, ¢, < oo.
However, this approach does not seem to lead to the refinement indicated in the
remark above without first obtaining a corresponding refinement of Lemma 8.1.

We now consider the derivation of Feller and Chung type results for the
functionals of a Markov process satisfying a condition of Doeblin (condition D,,
Doob [7] page 192 and page 221).

We will briefly discuss this condition and give a lemma which will connect
it to ¢-mixing sequences.

Let (S, £2) be an abstract state space, where <7 is a o-field of subsets of S.
Under the Doeblin condition, the Markov transition function has a unique sta-
tionary probability distribution =. Moreover, the n-step transition function
P*(x, B), satisfies for some y > 0and 0 < p < 1,

(8.9) |P*(x, B) — n(B)| = 0",

uniformly in x e S and Be &7 ([7] Chapter 5, Section 5). With this in mind,
we define a Doeblin process to be a Markov process {,, —oo < i < co} such
that (8.9) holds, and each &, is distributed according to =.

For our purposes, it is important to show that Doeblin processes are ¢-mixing.

This will be done rather easily with the help of the following lemma ([7] Lemma
7.2, page 224).

LeEmMA 8.2. Let {€,, —oo < n < oo} be a Doeblin process. Then there exist
7> 0and 0 < p < 1 such that for k = 0 and every _#3;, measurable random vari-
able R satisfying |R| < M a.s., where M is a positive constant, the following holds:

(8.10) |E[R|&] — ER| < 2rMp* .
CoRrOLLARY 8.1. If {£,, —oo < n < oo} is a Doeblin process, then it is ¢-mix-
ing with '
b, = cp",
for somec>0,0< p < 1.
Proor. Note that E[R|§,] = E[R|_#".] a.s. by the Markov property. Spe-

cializing R to indicators and using stationarity of {£,, —oo < n < oo}, the defining
mixing relation (8.1) is seen to hold with ¢, decreasing exponentially as

$n = 270" .
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Let f be a real valued measurable function defined on (S, ). Let {§,,
—oo < j < oo} be a Doeblin process. We take Q as a producs space as before.
For the remainder of this section let _Z*, = o{¢,, n < k}, AF =06, ] <
n < k}, and _#,> = o{§,, n = k}. Also, we will write

X; = f(€3) —0 < j< 0.
Observe that {X;, —oo < j < oo} is a stationary ¢-mixing sequence with ¢, =
cp™. Suppose Ef(§,)) = 0 and E|f(&,)|*** < oo for some § = 0. Then Theorem
8.1 applies, with the resulting decomposition

(8.11) X, =Y, —-UZ + 2,, X, =Y,—U+Z 4+ UZ,
where Y; = U'Y,, for i = 0. Consider the stationary ergodic martingale differ-
ence sequence {Y,, i = 0}.

LeEMMA 8.3. Suppose E|Y,[*** < oo for some & > 0. Then
(8.12) |2 E[Y? | Yy, ooy Vi) — an| = o(n7),
for some ¢ > 0, where a« = EY 2.

ProoF. We may assume 0 < 0 < 1. Let R, = Y2 — E[Y?|Y,, ..., Y,_|]for
i =2, and R, =0 a.s. Then {R;,i > 1} is a martingale difference sequence.
Since E(Y*)'** < oo, by a result of Loéve ([17] (iii), page 288)
(8.13) >r, R, =o(n') a.s.
for some ¢ > 0. From the defining (8.5) it follows that

Yy = 2o {E[X | A20.] — E[X, | 2221}
and applying Markov property, we get
Y, =hép &)

for some Borel measurable function # on R®. This naturally leads to the repre-
sentation

Y, = UkYo = h(ék—v Sk) ’ k=1,
and from Corollary 8.1, it is clear that {Y,2, k = 0} is ¢-mixing with ¢, = cp*-1,
Let

7, = (Y — I(|Y? — af < i'*7),

fori = 1. Thenclearly {5} is also ¢-mixing with ¢, = co*~*. Since E|Y,|*** < oo,
it can be checked (exactly as in the proof of the Marcinkiewicz strong law of
large numbers (see [24])) that

(8.14) 2z Py, # Y —a] < o0,
(8.15) n-its S Ep,— 0,
and

(8.16) 25 Var (/i) < oo
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By an analogue of Kolmogorov’s convergence theorem for independent random
variables for a mixing sequence, due to Cohn ([4] Theorem 2.1), the above
relation (8.16) implies that

1wy (9 — Epy)[ivate
converges a.s. By the Kronecker lemma

—1/(1+8) §n
n i=1

(7 — En)—> 0 a.s.
Thus by (8.14) and (8.15)
8.17) (X2, Y2 — na) = o(n**?)  a.s.

Combining (8.13) and (8.17) the required relation (8.12) follows and the proof
of the lemma is completed.

Lemma 8.3 provides the important condition (4.2) so that the results concern-
ing stationary sequences in Section 5 and 6 can now be applied to (recall that

X, = f(§))
(8.18) S, =Nt X, = B Y, — U'Z, + UZ,,
where n > 1.
LeEmMA 8.4. Suppose E|X|**? < oo, for some 0 = 0. Then
lim,_ (U*Z, — UZ)[nV*+® =0, a.s.
Proor. Fix e > 0.
(8.19) P[\U"Z, — Z,| > 2en"?+0] < P[|UZ)| > enV/*+D] 4 P[|Z,| > en'/*+?]
= 2P[|Z,y| > en*+¥],

where the last equality follows from stationarity. By Theorem 8.1, E|Z,|** < co.
Hence
L= PLIZg] > en/®*P] < o0
and by (8.19) and the Borel-Cantelli Lemma the assertion of the lemma follows.
REMARK. Note that § = 0 is admissible in the lemma.

THEOREM 8.2. Let {£,, —co < n < oo} be a Doeblin process, X, = f(£,),

n

—oo < n < oo, where f is a real, measurable function on (S, Z). Let EX, = 0,
E|X)|"** < oo, for some 6 > 0. LetS, = Y, X, and M, = max,,_, |S,|. Suppose
a in Lemma 8.3 (recall that a = EY?) is positive.

(i) Then for every real function ¢, 0 < ¢ /,
(8.20) P[S, > (an)t¢(an) i.0.]=1 or 0O

according as I(¢) = oo or < oo.
(if) Further, for every real function 0 < ¢ /,

(8.21) P[M, < (an)}{p(an)}™* i.0.]=1 or 0

according as I,(¢) = oo or < oo.
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Here I(¢) and I,(¢) are given by (5.3) and (6.3), respectively.

Proor. (i) Consider the decomposition (8.18). By Theorem 8.1, E|Y,[*+? < oo.
We use Theorem 5.2 via Theorem 4.3. The condition (5.9’) is clearly satisfied for
the stationary ergodic martingale difference sequence {Y,, i>0} since E|Y,[**? < co
for some 6 > 0. By Lemma 8.3 the condition (5.7) is fulfilled. Using Lemma
8.4, we apply Theorem 5.2 to S, in (8.18) and the first assertion follows.

(ii) This follows from Theorem 6.3 in the same manner as above.

REMARKs. It is known that stationary ergodic martingale difference sequences
with finite second moments obey both the law of the iterated logarithm ([23];
see [1] for a proof using embedding in Brownian motion) and the functional
central limit theorem ([2] pages 206-208). The results of Section 8 suggest that
these results should hold for stationary ¢-mixing sequences with 31=_ ¢,¢ < co.
This has been shown by Scott [20] and Heyde and Scott [12] using the Gordin
decomposition.

Using the above remark we now state the law of the iterated logarithm for
functionals of a Doeblin process. This was first proved by Pakshirajan and
Sreehari [19] under (2 4 d)th moment condition for some 6 > 0.

THEOREM 8.3. Let {§,, —o0 < n < oo} be a Doeblin process, X, = f(£,),
—oo < n < oo, where f is a real, measurable function on (S, ). Let E[X,] = 0
and E[X] = 1. Let S, = 32, X,. If @« > 0in (8.3) then

S,

limsup, ——* =1 a.s.
(2an log, n)}

liminf, S — _1 as.
(2an log, n)!

The functional central limit theorem also holds under the assumptions of
Theorem 8.3.

Finally we would like to observe that the tool which Gordin [11] has presented
has a serious drawback. In the Gordin representation it is not clear that the
martingale difference {Y,} inherits the mixing property of the original sequence
{X.}. In the case of a Doeblin process the Markov property helped in preserving
mixing for {Y,}. Our results of Sections 5 and 6 for the stationary case would
apply via Theorem 4.3 whenever mixing for {Y,} is preserved in the Gordin
representation of {X,}. .

If we only require random normalizers then we do, as a consequence of
Theorem 8.1 and Lemma 8.4, obtain integral tests for stationary ¢-mixing se-
quences without having to assume the Markov structure.

THEOREM 8.4. Let {X,, —oo < n < oo} be a stationary (-mixing sequence with
EX, =0, EX} =1 and E|X,|*** < oo for some 6 > 0. Referring to (8.2), let
Vi = 2k E[Y, 2| AZSY], where Y, = U*Y,. Suppose Y5, ¢} < oo, and a =
EY?> 0. Let S, = Y7, X, and M, = max,_,, |S;|.
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(a) Then for every real function ¢, 0 < ¢ /7,
8.22 P[S, > V,te(V,) i.0.] =0 or 1
4

according as I(¢) < oo or = oo.
(b) Further, for every real function ¢, 0 < ¢ /,

(8.23) PIM, < V.{o(V, )} i0]=0 or 1
according as I,(¢) < oo or = oo.
Here I(¢) and I () are as given in (5.3) and (6.3) respectively.

PrROOF. (a) V,/n — a a.s. follows from the pointwise ergodic theorem. Thus
by Lemma 8.4

lim, . (U"*Z, — UZ,)|V, /5 =0 a.s.

It is easy to show that (5.1) holds for the stationary ergodic martingale difference
sequence {Y,, i = 0}. Thus (8.22) follows by Theorem 5.1.
(b) This follows from Theorem 6.1 in the same manner as above.
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