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A CHARACTERIZATION OF THE KERNEL lim, , V,
FOR SUB-MARKOVIAN RESOLVENTS (V,)!

By J. C. TAYLOR
McGill University

Let (V;) be a sub-Markovian resolvent of kernels ¥; on a measurable
space (E, &). Assume that ¥ = lim; o V3 is a proper kernel. The proper
kernels ¥V on (E, &) that are of the form ¥V = limy,o V3, (V) a sub-
Markovian resolvent of kernels on (E, &), are proved to be precisely those
proper kernels ¥ which satisfy the complete maximum principle and for
which the following condition holds: there exists an increasing sequence
(Ax) C & with Un Ax = E such that (i) V14, < oo for all ; and (ii) if fe
&+ and Vf < co then inf, Reoa, Vf < oo, where Rpu = inf {v supermedian |
u = von B}

Introduction. Let (V) be a sub-Markovian resolvent of kernels V', on a meas-
urable space (E, &). Assume that V = lim, ,V, is a proper kernel. In this
article a proof of the following result is given.

THEOREM 1. The proper kernels V on (E, &) that are of the form V = lim, , V,,
(V) a sub-Markovian resolvent of kernels on (E, &) are precisely those proper ker-
nels V which satisfy the complete maximum principle and for which the following
condition holds: there exists an increasing sequence (A,) C & with J,, A, = E such
that

(i) V1, < oo forall n; and
(i) if fe&* and Vf < co then inf, R, Vf =0, where Ryu = inf {v super-
median |v = u on B}.

A proof that this condition on V implies that ¥ has the desired form is to be
found in [9]. P.-A. Meyer conjectured that this condition was not only suffici-
ent but necessary and suggested how one might use Ray processes and potentials
of class (D) to obtain a proof. The author obtained a proof by this method but
later received a preprint from F. Hirsch proving a similar result by non-prob-
abilistic methods. In this article a slight adaptation of an idea of Hirsch is used
to give a quick proof of the result.

Proor oF THEOREM 1 (necessity). In view of Proposition 1 in [1], it suffices
to show that if fe &+ (the nonnegative. &-measurable functions) is bounded and
strictly positive with Vf bounded (finite will do) then there exists an increasing
sequence (4,) C & with |, 4, = E such that (i) and (ii) are satisfied for this
function.
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Let (4,) be a sequence decreasing to zero. Then, if 4," = {V, f = n~'} Hirsch
showed in [2] that inf, R_, ,Vf = 0. This follows from the fact that on &°4,/,
Vi=V f+2VV, f<snt +u, withu, =Vf—V, f

Now U, 4, = {Vf > 0}. Let N= {Vf = 0}. Then, by the complete maxi-
mum principle and the fact that f is strictly positive, V1, = 0. Let 4, =
A,UN. Then, U,4,=E and V1, =VI1,,<nVV, f< oco. Clearly,
Ro V=R, VS

The result of Hirsch. The trick of adding the set N to the sets used by Hirsch
shows that Hirsch’s theorem is equivalent to the following result.

THEOREM 2 (cf. Theorem 1 of [2]). Let V be a proper kernel on (E, &) that
satisfies the complete maximum principle and let ae &+ be finite. The following
conditions are equivalent (where M,g = ag):

(i) there is a family of kernels (V,);>, such that
(@) 0< AL pimpliesV, =V, + (pr — AV, MV, and

ViMV,=V,M,JV,

(b) V =1lim; ,V,; and

(ii) there is an increasing sequence (A,) C & with |J, A, = E such that
(a) V(al, ) < oo Vn; and
(b) if fe &+ and Vf < oo then inf, R, Vf=0.

Obviously, Hirsch’s theorem is more general than Theorem 1 (let ¢ = 1) but
in fact Theorem 1 and its proof imply Theorem 2.

Let W =VM,and W, = V; M,. Then, if a has no zeros, Theorem 1 applied
to W yields Theorem 2. Assume F = {a > 0} = E. Seta(x) = a(x) if xe F and
=1if x¢ F. Thena = 1,aandif V = VM, we have W = VM, (M, = 1,) and
W, = V, M,. Hence, to deduce Theorem 2 from Theorem 1 it suffices to con-
sider the case where a = 1,, Fe E.

OUTLINE OF PROOF OF THEOREM 2 (the case where a = 1,).

(i) = (ii). The argument above that establishes the corresponding implication
in Theorem 1 applies virtually without change. Instead of u, = 2,VV, f one
has u, = 2V, MV, f.

(i) = (i). If W = VM, then by Theorem 1 there is a sub-Markovian resolvent
(W) with W = lim,  ,W,.

Define ¥V, by setting V,f = (I — AW)V(f -1.5) + W,f for fe&* with
Vf < co. Then it is easy to see that (V) satisfies condition (i)(a) of Theorem 2
and further that V = V, 4+ AW,V forall 2 > 0. It remains toshow V = lim, , V.

Assume u = Vfis bounded. If x,e E and ¢ > 0 then there is a V-supermedian
function s and 7 = 1 with s(x,) < ¢ and u < s 4 ul, , where (4,) C & is the
sequence given by condition (ii) of Theorem 2. Note that V-supermedian func-
tions are also W-supermedian.
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The estimate (*) in [1] (line 7 of page 89) can be applied with (W,*) the re-
solvent corresponding to W™ (instead of ¥'* as in [1]). This gives, where K, is
defined so that W(x,, 1, \x,#) < ¢ (as in [1]),

AW M (xpp ) < 248 + AW (X, 1 )
= A2 A+ [[u][W(xo, K,)]
with p independent of n.

Let m be given. Then AW;(x,, uly ) < 2[2¢ + |ju||W(x,; K,)]. This follows
since  lim, o, AWM (xy, ulg ) = AW;(x, ulg, ). Hence, AWy(x, u) < A[2¢ +
]| W(x K],

Consequently, Vf bounded implies lim,_ , ¥, f = Vf. Hence, (i)(b) holds in
Theorem 2.
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