A CHARACTERIZATION OF THE KERNEL $\lim_{\lambda\downarrow 0} V_{\lambda}$ FOR SUB-MARKOVIAN RESOLVENTS $(V_{\lambda})^{1}$

By J. C. TAYLOR

McGill University

Let (V_{λ}) be a sub-Markovian resolvent of kernels V_{λ} on a measurable space (E, \mathcal{E}) . Assume that $V = \lim_{\lambda \downarrow 0} V_{\lambda}$ is a proper kernel. The proper kernels V on (E, \mathcal{E}) that are of the form $V = \lim_{\lambda \downarrow 0} V_{\lambda}$, (V_{λ}) a sub-Markovian resolvent of kernels on (E, \mathcal{E}) , are proved to be precisely those proper kernels V which satisfy the complete maximum principle and for which the following condition holds: there exists an increasing sequence $(A_n) \subset \mathcal{E}$ with $\bigcup_n A_n = E$ such that (i) $V1_{A_n} < \infty$ for all n; and (ii) if $f \in \mathcal{E}^+$ and $Vf < \infty$ then $\inf_n R_{\mathcal{E}A_n} Vf < \infty$, where $R_B u = \inf_n \{v \text{ supermedian } | u \geq v \text{ on } B\}$.

Introduction. Let (V_{λ}) be a sub-Markovian resolvent of kernels V_{λ} on a measurable space (E, \mathcal{E}) . Assume that $V = \lim_{\lambda \downarrow 0} V_{\lambda}$ is a proper kernel. In this article a proof of the following result is given.

THEOREM 1. The proper kernels V on (E, \mathcal{E}) that are of the form $V = \lim_{\lambda \downarrow 0} V_{\lambda}$, (V_{λ}) a sub-Markovian resolvent of kernels on (E, \mathcal{E}) are precisely those proper kernels V which satisfy the complete maximum principle and for which the following condition holds: there exists an increasing sequence $(A_n) \subset \mathcal{E}$ with $\bigcup_n A_n = E$ such that

- (i) $V1_{A_n} < \infty$ for all n; and
- (ii) if $f \in \mathcal{E}^+$ and $Vf < \infty$ then $\inf_n R_{\mathcal{E}^A} Vf = 0$, where $R_B u = \inf \{ v \text{ supermedian } | v \ge u \text{ on } B \}$.

A proof that this condition on V implies that V has the desired form is to be found in [9]. P.-A. Meyer conjectured that this condition was not only sufficient but necessary and suggested how one might use Ray processes and potentials of class (D) to obtain a proof. The author obtained a proof by this method but later received a preprint from F. Hirsch proving a similar result by non-probabilistic methods. In this article a slight adaptation of an idea of Hirsch is used to give a quick proof of the result.

PROOF OF THEOREM 1 (necessity). In view of Proposition 1 in [1], it suffices to show that if $f \in \mathcal{E}^+$ (the nonnegative \mathcal{E} -measurable functions) is bounded and strictly positive with Vf bounded (finite will do) then there exists an increasing sequence $(A_n) \subset \mathcal{E}$ with $\bigcup_n A_n = E$ such that (i) and (ii) are satisfied for this function.

Received December 27, 1973; revised April 29, 1974.

¹ This work was materially supported by NRC Grant No. A-3108.

AMS 1970 subject classifications. Primary 60J35; Secondary 47D05.

Key words and phrases. Resolvent, sub-Markovian resolvent, maximum principle, potentials, Ray processes.

Let (λ_n) be a sequence decreasing to zero. Then, if $A_n' = \{V_{\lambda_n} f \geq n^{-1}\}$ Hirsch showed in [2] that $\inf_n R_{\mathscr{C}A_n'} Vf = 0$. This follows from the fact that on $\mathscr{C}A_n'$, $Vf = V_{\lambda_n} f + \lambda_n V V_{\lambda_n} f \leq n^{-1} + u_n$ with $u_n = Vf - V_{\lambda_n} f$.

Now $\bigcup_n A_n' = \{Vf > 0\}$. Let $N = \{Vf = 0\}$. Then, by the complete maximum principle and the fact that f is strictly positive, $V1_N = 0$. Let $A_n = A_{n'} \cup N$. Then, $\bigcup_n A_n = E$ and $V1_{A_n} = V1_{A_{n'}} \le nVV_{\lambda_n} f < \infty$. Clearly, $R_{\mathscr{C}A_n}Vf \le R_{\mathscr{C}A_n'}Vf$.

The result of Hirsch. The trick of adding the set N to the sets used by Hirsch shows that Hirsch's theorem is equivalent to the following result.

THEOREM 2 (cf. Theorem 1 of [2]). Let V be a proper kernel on (E, \mathcal{E}) that satisfies the complete maximum principle and let $a \in \mathcal{E}^+$ be finite. The following conditions are equivalent (where $M_a g = ag$):

- (i) there is a family of kernels $(V_{\lambda})_{\lambda>0}$ such that
 - (a) $0 < \lambda < \mu$ implies $V_{\lambda} = V_{\mu} + (\mu \lambda)V_{\lambda}M_{a}V_{\mu}$ and

$$V_{\lambda} M_a V_{\mu} = V_{\mu} M_a V_{\lambda}$$

- (b) $V = \lim_{\lambda \downarrow 0} V_{\lambda}$; and
- (ii) there is an increasing sequence $(A_n) \subset \mathcal{E}$ with $\bigcup_n A_n = E$ such that
 - (a) $V(a1_{A_n}) < \infty \ \forall n$; and
 - (b) if $f \in \mathcal{E}^+$ and $Vf < \infty$ then $\inf_n R_{\mathcal{E}^{A_n}} Vf = 0$.

Obviously, Hirsch's theorem is more general than Theorem 1 (let a=1) but in fact Theorem 1 and its proof imply Theorem 2.

Let $W = VM_a$ and $W_{\lambda} = V_{\lambda}M_a$. Then, if a has no zeros, Theorem 1 applied to W yields Theorem 2. Assume $F = \{a > 0\} \neq E$. Set $\bar{a}(x) = a(x)$ if $x \in F$ and = 1 if $x \notin F$. Then $a = 1_F \bar{a}$ and if $\bar{V} = VM_{\bar{a}}$ we have $W = \bar{V}M_F$ ($M_F = 1_F$) and $W_{\lambda} = \bar{V}_{\lambda}M_F$. Hence, to deduce Theorem 2 from Theorem 1 it suffices to consider the case where $a = 1_F$, $F \in E$.

OUTLINE OF PROOF OF THEOREM 2 (the case where $a=1_F$).

- (i) \Rightarrow (ii). The argument above that establishes the corresponding implication in Theorem 1 applies virtually without change. Instead of $u_n = \lambda_n V V_{\lambda_n} f$ one has $u_n = \lambda V_n M_F V_{\lambda_n} f$.
- (ii) \Rightarrow (i). If $W = VM_F$ then by Theorem 1 there is a sub-Markovian resolvent (W_{λ}) with $W = \lim_{\lambda \downarrow 0} W_{\lambda}$.

Define V_{λ} by setting $V_{\lambda}f = (I - \lambda W_{\lambda})V(f \cdot 1_{\mathscr{C}F}) + W_{\lambda}f$ for $f \in \mathscr{C}^+$ with $Vf < \infty$. Then it is easy to see that (V_{λ}) satisfies condition (i)(a) of Theorem 2 and further that $V = V_{\lambda} + \lambda W_{\lambda}V$ for all $\lambda > 0$. It remains to show $V = \lim_{\lambda \downarrow 0} V_{\lambda}$.

Assume u=Vf is bounded. If $x_0\in E$ and $\varepsilon>0$ then there is a V-supermedian function s and $t\geq 1$ with $s(x_0)<\varepsilon$ and $u\leq s+u1_{A_r}$, where $(A_n)\subset \mathscr E$ is the sequence given by condition (ii) of Theorem 2. Note that V-supermedian functions are also W-supermedian.

The estimate (*) in [1] (line 7 of page 89) can be applied with (W_{λ}^{n}) the resolvent corresponding to W^{n} (instead of V^{n} as in [1]). This gives, where K_{p} is defined so that $W(x_{0}, 1_{A_{r} \setminus K_{p}} u) \leq \varepsilon$ (as in [1]),

$$\lambda W_{\lambda}^{n}(x_{0}, u) \leq 2\lambda \varepsilon + \lambda W_{\lambda}^{n}(x_{0}, 1_{K_{p}}u)$$
$$\leq \lambda [2\varepsilon + ||u||W(x_{0}, K_{p})]$$

with p independent of n.

Let m be given. Then $\lambda W_{\lambda}(x_0, u1_{K_m}) \leq \lambda[2\varepsilon + ||u||W(x_0, K_p)]$. This follows since $\lim_{n\to\infty} \lambda W_{\lambda}^{n}(x_0, u1_{K_m}) = \lambda W_{\lambda}(x_0, u1_{K_m})$. Hence, $\lambda W_{\lambda}(x_0, u) \leq \lambda[2\varepsilon + ||u||W(x_0, K_p)]$.

Consequently, Vf bounded implies $\lim_{\lambda \to 0} V_{\lambda} f = Vf$. Hence, (i)(b) holds in Theorem 2.

REFERENCES

- [1] Hirsch, F. (1974). Conditions nécessaires et suffisantes d'existence de résolventes. To appear in Z. Wahrscheinlichkeitstheorie und Verw. Gebiete.
- [2] TAYLOR, J. C. (1973). On the existence of sub-Markovian resolvents. *Invent. Math.* 17 85-93.

DEPARTMENT OF MATHEMATICS McGill University Montreal, Canada