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A NEW DECOMPOSITION OF INFINITELY
DIVISIBLE DISTRIBUTIONS

By D. N. SHANBHAG AND J. GANI
University of Sheffield

In this paper, it is shown that a random variable Z having an infinitely
divisible distribution with a finite left extremity can be decomposed in dis-
tribution as the sum of two random variables such that, given one, the
other has an infinitely divisible distribution of prescribed type. Some exten-
sions of this result when the left extremity is infinite are also given, and a
new decomposition of a normal variable is exhibited.

1. Introduction. Let Z be a random variable (rv) distributed as the sum of
two rv’s X and Y, not necessarily independent. We shall, in this paper, state
that Z is decomposable in distribution as the sum of X and Y; this terminology
generalizes the traditional one which requires that X and Y be independently
distributed nondegenerate rv’s.

In a recent paper, Gani and Shanbhag (1974) considered the decomposition
in distribution of a Poisson rv with parameter 2. It was shown that this could
always be decomposed into the sum of 2 rv’s X, Y = 0 such that, given a set of
parameters 2 > p, = p, - - - = 0, the conditional distribution P¥'*=¢ was Poisson
with parameter y,, and X had a unique distribution {a, > 0} dependent on the
p;- Ina private communication to the authors, R. Pyke gave an alternative
derivation of this result, which suggested that the problem could be viewed
somewhat differently and generalized as follows.

If a proper counting process {N(¢), t = 0} with independent increments is de-
fined, then assuming the same relations between the parameters 2, 4, as above,
an rv Z with the distribution the same as that of N(2) is decomposable as the
sum of two nonnegative integer-valued rv’s X, Y such that P¥'¥=¢ is the same
as the distribution of N(yx,) almost surely (a.s.).

In the case of a counting process with stationary independent increments this
result implies that the probability generating function (pgf) of N(1) is compound
Poisson of the type

z) = e ® 7 £ 1

where f{(z) is the pgf of a positive integer valued rv, and satisfies
Zizoa 2 9(@)])" = [¢()]

with {a;} a probability distribution. This, in turn, implies that any discrete rv
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INFINITELY DIVISIBLE DISTRIBUTIONS 339

with pgf ¢* can be decomposed in distribution as the sum of two rv’s X, Y such
that given X = i the rv Y is infinitely divisible (i.d.) with pgf ¢ a.s.

The purpose of this paper is to extend this result to any arbitrary i.d. distri-
bution with a finite left extremity. Let ¢ be the characteristic function (ch.f.)
of an i.d. distribution and F, the distribution function (df) where ch.f. is ¢%;
further, let 4 be a continuous monotonic decreasing function on the real line
taking values in the interval [0, 1], where 2 < co. Then, the rv Z having the
df F, with finite left extremity is decomposable in distribution as the sum of rv’s
X, Y such that given X = x, the conditional df of Y is F,,, a.s. We shall use
Helly’s selection theorems (Lukacs (1970) pages 44-47) to provide limiting argu-
ments to prove this result. We shall also establish that our decomposition theo-
rem remains valid for an i.d. distribution with infinite left extremity provided
it is the weak limit of a sequence of i.d. distributions with finite left extremities.
Using this, we prove the existence of the mixtures of normal distributions which
are normal. This result contrasts with that given earlier by Kelker (1971).
Before discussing our main results a lemma will be required, which is proved in
the next section.

2. A lemma for bivariate characteristic functions.
LEMMA. Let X, Y have the bivariate ch.f. ¢ given by
@1 Yty 1) = {Za €°(1,) dG(x)
where G is a df. For each x the function ¢, (t,) (—oo < t, < o) is a ch.f. and for

each t,, ¢ (t,) is a complex-valued Borel measurable function of x. Then the con-
ditional df of Y given X = x is H,(y) a.s., where H_ is the df whose ch.f. is ¢,.

Proor. Denote the joint distribution function of X and Y by G*(x, y).
Then it is well known that

(2.2) G*(x,y) = \*, H(y|2) dG(z)

where for fixed z the function H(y|z) denotes a df, and for fixed y it is a Borel
measurable function of z (cf. Burrill (1972) page 396). This implies that ¢,(z,)
the ch.f. of H(y|x) is a Borel measurable function of x for every fixed ¢, and

(2.3) Pty 1)) = (% €7 ,(1,) dG(x) .

From (2.1), using the result (6.15) of Lukacs and Laha (1964), it can be seen
after some minor manipulation that for every Borel set B,

(2.4) §5 Galls) dv = (5 Pu(ts) dv
where v is the measure induced by G. We have that
{x: ,(t;) # ¢, (t,) for some t,}
(2.5) = {x: @,(,) # ¢.(t;) for some rational 1}
= U, {x: 8.(r) # ¢.("}
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where r are rationals. From (2.4) it follows that {x: ¢,(r) # ¢,(r)} is a subset
of a v-null set and hence it follows that |J, {x: ¢,(r) # ¢,(r)} is also a subset of
a v-null set. From this, it is seen that the set of values x for which H(y | x) does
not have the ch.f. ¢ () is a subset of a v-null set. Hence we see that the con-
ditional df of Yis H, a.s.

3. The main theorem for i.d. distributions. We now proceed to prove the
main decomposition theorem for i.d. distributions. We recall that ¢ is the ch.f.
of an i.d. distribution, and F, the df whose ch.f. is ¢¢. The function x is con-
tinuous and monotonic decreasing on the real line, taking values in [0, 1] where
2 < oco. We now require the following Theorem 1 before we proceed to the
main Theorem 2.

THEOREM 1. Let the nonnegative tv Z have the df F,; then Z is decomposable in
distribution as a sum of two, nonnegative random variables X and Y such that given
X = x the conditional df of Y is F,,, a.s.

Proor. It is sufficient to prove that the result is valid for 2 = 1. The result
is trivially true for the case p(0) = 2; hence in what follows we shall restrict
ourselves to the case p(0) < 4, 1 = 1.

We shall first establish that there exists a df G such that
(3.1) $10,00 €"((1))*) dG(x) = (1) -
Let4,;(j=1,2,--,k,;r=1,2, ...) be disjoint intervals such that 4, lies
to the left of 4,, for j, < j5, Uji 4,5 = [0, o0), and

sup {u(x): xe 4,;} — inf{u(x): xe 4,;} < _i— ,
j=1L2, - ksr=1,2,....

Further, let ¢,; = inf {¢(x): xe 4,;} and p,: R — [0, 1] be such that it equals
c,;onA(j=1,.--,k). We have
(3-2) #(1) = [~

= Sto,0) €[ P(0)] "1 4G () ,
where G,, = F,_, . Proceeding inductively it can be seen that there exist df’s
G,; such that

$(1) = 4, IO dG (%) + (s, LSO [ ()] dG (%)
(3-3) = 2o La,; €[N dG, (%)
+ Vetosua,, € [HO [ S(D)]rs dGo(%)
= 250 $a,5 € 1H()]7 4G, (%) .

From this it follows that there exists a df G, of a nonnegative rv such that
3.4) B(t) = §10,00 €[ P(2) ] dG () .

It then follows that we can view F, as the df of a sum of two nonnegative rv’s
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one of which has df G,. From this, the inequality
(3-5) Fi(x) = G,(x)
is immediately obvious.

Now, according to Helly’s first theorem (cf. Lukacs (1970) page 44) there
exists a subsequence {G, } of {G,} converging weakly to a non-decreasing right
continuous function G. From (3.5) it follows that G is the df of a nonnegative
rv; we now wish to express ¢ in a form analogous to (3.4) with p and G re-
placing #, and G,. From (3.4), it is readily seen that

|8(1) = S1o,) €7 (H(1))" dG(x)]
(3.6) = [Sto,00) €[ P(N)]2r" dG, (X) — §po,) € *($(1))™ dG(x)|
= [, €SO dG,, (%) — Y10, €[ P(1)]* dG ()]
+ oo [1 = ($(0) 7120 ] 4G, (x) -
Given an ¢ > 0, we can find n,* such that for all n, = n* and x in [0, oo)
(3.7) L= oy < e

Hence using the extension of Helly’s second theorem (cf. Lukacs, page 47), we
can see that the right-hand side of (3.6) has the limit zero as n, — oco. This
implies that (3.1) is valid. Since the ch.f. ¢ given by ,

(3.8) Dt ) = 1o, €[ D(2,)]4 dG(x) ,
has the form (2.1) of the Lemma, the proof of Theorem 1 follows.
We may now extend Theorem 1 to establish our main

THEOREM 2. Let the v Z have the df F, with finite left extremity; then Z is de-
composable in distribution as a sum of two rv’s X and Y such that, given X = x, the
conditional df of Y is F,,, a.s. This is equivalent to stating that the joint ch.f. of
X, Yis
3.9) Pty 1) = (Za [ P(1) ] dG(x)
where G is a df.

Proor. We can write that
(3.10) &(t) = e (1)

where ¢ is the infinitely divisible ch.f. of a nonnegative random variable. From
(3.1) it follows that there exists a df G, such that

(3.11) [P = (20 e“[P()]" dGy(x) ,
where p* is defined as having the same properties as p. Let v: R — R be such
that

(3.12) y(X) = x + k(2 — p(x)) .
We shall now show that ¢ satisfies an equation of type (3.11) with G, replaced
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by some other df. Since the result is already known to be valid for nonnegative
rv’s, we may now assume k > O to establish the result. In that case the mapping
v is one to one from R onto itself, and both v and its inverse v~* are strictly
monotone increasing and continuous. Defining

#H(x) = p(v7(x))
we see that y* is monotone decreasing and continuous and is bounded by 0 and
A. Substituting this in (3.11), we have

(3.13) [$(O]F = E{e*(g(n)) >0} = Efe (g (1))}

In this, X, denotes an rv with df G, and X = v=}(X,). Asaresultof (3.12), we have
(3.14) (@())" = Efexp[it{X + k(2 — p(X))}(£(D)“*)

from which we obtain

(3.15) (B()* = Efe"X($(1))*®} = {2, *%(§(1))"= dG(x) ,

where G denotes the df of X. Hence by the use of our Lemma (2.1) the theorem
follows.

4. Some examples, and an extension of the theorem. We now give examples
to establish that the decomposition given in Theorem 2 is not valid in general
when the finiteness condition for the left extremity of the distribution is relaxed.

ExaMPLE 1. Let Z be a random variable having a conjugate Poisson distri-
bution with mean —1. Then its moment generating function is given by

4.1) M(t) = e7t+",
Take 2 = 1 and ;2 a monotone decreasing nonnegative continuous function such
that its value on (—oco, —1] is 4, and at zero is g, where 1 > g, > o > 0.
Suppose now that our decomposition is valid for this Z; then we have a prob-
ability distribution {a,} satisfying the identity
4.2) age rotre - emtEs ST g gt — e=lts
for all s in (— oo, c0). This implies that for all s in (— oo, o), we have

Gy(s) + Gy(s)
(4.3) = exp[(tn — 1) — s(e — 1)] — ao exp[(p11 — p0) — (11 — p0)s]

Gy(s) — Gy(s) .

= exp[(ts — 1) + s(n — 1)] — ao exp[(n — o) + (1 — £0)5]

where
(4.4) Gi(S) = D350 Qyyyy ST and Gy(s) = X2, ay8%.
We may select g, and g, such that 1 — g, < g, — p,; we should then find that
Gi(s) — Gy(9) _

4.5) lim,,, G.() TG00

b
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which is definitely not true since, for s > 0,

(4.6) |Gy(5) — Go()/[Ga(s) + Go(9)] < 1.
Hence the required decomposition will not hold for the present Z, 1 and ..

ExAMPLE 2. Let Z be an rv with moment generating function

1
4.7 Mit) = —4 |
“.7) O = 7=
Take 2 = 1 and ¢ to be a monotonic decreasing nonnegative continuous function
such that it takes the value 1 on (—oo, —1] and } at zero. Then

(4.8) M(1) = Je=(M(1)) + $(M()*
= §=, e (M(1))"* dG(x)

where G is a df whose support is a doublet. Hence it is obvious that in the
present case, for our choice, the decomposition is valid.
We shall now attempt to extend our result of Section 3 to the case where the
left extremity is infinite, but with some additional restrictions on the df of Z.
Let {¢,} be a sequence of i.d. ch.f.’s such that the corresponding df’s possess
finite left extremities, and the sequence converges to a ch.f. Define

(4.9) P(t) = lim,_o, 6,(1) -
It is well known that the ch.f. ¢ isi.d. (cf. Lukacs page 110). We shall now
show that if the ¢ of Section 3 is replaced by this new ch.f., Theorem 2 will
hold without the restriction of a finite left extremity.

From Theorem 2 it follows that there exists a sequence of df’s {G,} such that

(4.10) [$u(D] = [Za €™ [$u(1)]*® dG () -
Given an ¢ > 0, there exists n, > 0 such that
(4.11) (¢ — [a(O)]] < ¢/2

[$u(O] = [p(O) 7] < /2
for all n = n, and ¢, x satisfying —T <t < T, —oo < x < oo. Then for all
n=nyand tin[—T, T]
152 €49(0)]® dG(x) — [$(O)]]
(4.12) < |52 = {[P(OF® — [$u(0]F} G| + ([0 — [$(O)]
< 12 [[9OF® — [$.017] dG,(x) + e[2 S .
This implies that (=, e“*[¢()]*® dG,(x) has the limit [¢(¢)]* as n — oo uniformly
in every finite ¢-interval [T, T.
Given an ¢ > 0, we can find a ¢ > 0 such that for all ¢ in [ —4d, 6] we have
(4.13)  [§2. €% dG,(x) — (2, e [P(N)]"* G ()] < (2o |1 — [¢(1)]*] dG (%)
€2

IA I

for all n.
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We can find 1, > 0 such that for all n > n,and ¢ in [—J, 6] we have
[P — §2a e“[P(1)]4 dG (%) = ¢/2
and hence
(4.14) [(N] — (2. e dGy(x)| < &
We can choose 0 such that we also have
1 —[¢O)| =
for all ¢ in [—4, 6]. Hence for all n > n,and ¢ in [0, 6] we obtain that
(4.15) [1 — {=, e dG,(x)] < 2.

This implies that givenan ¢ > 0, we can find n, > 0and d > 0 such that for all
n = ny,and ¢ in [—d, 0] we have
11— g.()] = 2,
where ¢, is the ch.f. of G,.
From a lemma of Chung ((1968) page 149) it follows that
G,(207) — G,(—207—) = 67§%, g,(1) di| — 1
1 — 07§25 |1 — ga(r)] dt
1 — 4e forall n = n,.

(4.16)

v v

From Helly’s first theorem it follows that there is a subsequence {G, } of {G,}
converging weakly to a non-decreasing right continuous function G. From the
above inequality we see that G(—oo) = 0 and G(+o0) = 1. Hence from the
extension of Helly’s second theorem it follows that

(4.17) lim, ., (. e*[g()]*? dG(x) = {=., e“[¢(f)]® dG(x) .
This implies that
(4.18) [P(O) = (2 [P} dG(x) ,

which, in turn, shows that any random variable having the ch.f. ¢* can be de-
composed in distribution as a sum of two rv’s X and Y such that their joint
ch.f. is given by

(4.19) P11, 1) = (Ze €[ (1)) dG() -
Hence our extended result follows for this class of distributions.

5. Some remarks on the extended result. It is interesting to note that this
last result has the immediate consequence that if Z follows the normal distribu-

tion N(2m, As*%) then
Z=,X+Y7,

where the rv’s X and Y are such that the conditional distribution of Y given
X = x is N(u(x)m, p(x)0*) a.s. This is seen from the fact that if Z, is a Poisson
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rv with expectation n then

Zn*:()'————-——Z”_n—{—m
nt

has an i.d. distribution with finite left extremity such that the sequence of dis-
tributions tends to N(m, ¢®) as n — co. From the present decomposition of the
normal distribution it follows that there exist mixtures of normal distributions
N(x 4+ mp(x), p(x)e?) (—oo < x < oo) which are also normal. As was briefly
mentioned in the introduction, this contrasts with Kelker’s (1971) result that
no mixture of normal distributions N(0, p(x)s®) (—oo < x < oo) for the case
p¢(x) # ¢ can be i.d.

In conclusion, it should be noted that the results of the present paper remain
valid when the right extremities of the distributions are finite provided p is taken
to be increasing instead of decreasing. This implies that the above decomposi-
tion of the normal distribution is valid even when p is taken as increasing.
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