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DECOMPOSITION OF FUNCTIONS OF BOUNDED VARIATION!

By Gary L. GRUNKEMEIER
Oregon State University

Cramer’s theorem, that a normal distribution function (df) has only
normal components, is extended to a case where the components are allowed
to be from a subclass (B;) of the functions of bounded variation other than
the class of df’s. One feature of B is that it contains more of the df’s than
the classes for which previous similar extensions have been made; in par-
ticular it contains the Poisson df’s so that a first extension of Raikov’s
theorem, that a Poisson df has only Poisson components, in the same direc-
tion, is also given.

1. Introduction. Cramér’s theorem states that if F, « F, = @ and if F, and F,
are distribution functions (df’s) then they must be normal. The class of df’s is
a subclass of the class BV of functions of bounded variation on the real line, and
certain extensions of Cramér’s theorem have dealt with decompositions of ® in
which the components are allowed to be from subclasses of BV other than the
class of df’s.

Linnik and Skitovic (1958) have shown that if functions G, and G, are in BV,
Gix) = 1 — G,(—x) at all continuity points (symmetry), (<, dG,(x) = 1, and

(1.1) Var Gy(x, co) = O(exp(—x'*)),
VarG,(—co, —x) = O(exp(—x'*+?)),

as x — oo, for some a > 0, j = 1, 2, and if G, = G, is a normal df, then G, and
G, are both normal df’s [Var G(a, b) is the total variation of G(x) in (a, b)].

Chistyakov (1970) notes that Linnik and Skitovic have not actually generalized
Cramér’s theorem, even for the symmetric case, since not all df’s satisfy the
condition (1.1) which they impose on the components. He then offers such a
generalization; namely to the class of functions G in BV for which {=_ dG(x) = 1
and which admit the representation G(x) = w(x) — ¢(x), where w and ¢ are both
symmetric, ¢ satisfies (1.1), and {>_ exp(—yx) dG(x) == 0 for all real y.

Among the functions in BV, the df’s have the property of monotonicity, which
is essential for the proof of certain decomposition theorems. In the absence of
this property, a restriction such as condition (1.1) has been needed to get sig-
nificant results. Condition (1.1) on a function G implies that its Fourier-Stieltjes
(F-S) transform is an entire function of finite order p < 1/& + 1 (see Laha (1964),
Lemma 1). This excludes many important classes of df’s, in particular Poisson
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df’s, which have entire F-S transforms of infinite order. Thus no analogous
extensions have been made of Raikov’s theorem that a Poisson df has only Poisson
components.

A true generalization of Cramér’s theorem would be for a subclass of BV
which includes all df’s as a proper subclass, and would require a definition which
is mild enough to include all monotonic functions, yet strong enough to permit
the dropping of all growth conditions-such as (1.1). In this paper we introduce
a new condition, ultimately positive (u.p.), on the tail behavior of functions in
BV which is in some sense a generalization of the property of monotonicity and
which all df’s satisfy (Definition 2.2). Using this we are able to relax the condi-
tion (1.1) to a weaker one (2.1) which implies only that the F-S transform is
entire, with no order restriction. Thus we define a new subclass B, of BV
(Definition 2.3) which, by a result of Ramachandran [(1962) Corollary 2 of
Theorem 4.1], contains all df’s whose ch.f.’s are entire functions of any order.
Then we obtain the following extension of Cramér’s theorem: If G, x G, is normal
and the components are in B, then they must be normal df’s (Theorem 3.1).
We also extend a theorem of Polya to the class B, (Theorem 4.1). Finally we
offer a partial extension of Raikov’s theorem to the class B;, one which requires
an additional condition in the hypothesis (Theorem 5.1).

2. The class B,.

DEeFINITION 2.1. Let B be the class of functions G in BV on the real line for
which G(—o0) = 0, G(c0) = 1, and

(2.1) Var G(— o0, —x) + VarG(x, oo) = O(e")
holds for all real r > 0, as x — oo.

LemMa 2.1. If G is in B, then the F-S transform of G
(2.2) 9(2) = (=, €** dG(x)
exists for all complex z and defines an entire function.

Proor. Let G = P — N, where P and N are bounded, non-decreasing, right-
continuous real valued functions such that P(—oo) = N(—o0) = 0 and VarG =
Var P + Var N; then; by (2.1),

P(—x) + P(co0) — P(x) = O(e~™) and
N(—x) + N(o0) — N(x) = O(e™™)

both hold for all » > 0, as x — co. Assume N(oo) # 0, since otherwise G is
simply a df. Then P,(x) = P(x)/P(o0) and N,(x) = N(x)/N(o0) are df’s,

P(—x) + 1 — P(x) = O(e™"") . and
N(—=x) + 1 — Ny(x) = O(e™™)

for all real r > 0 as x — co, and hence their F-S transforms, p,(z) and n,(z)
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respectively, are entire functions (see Lukacs (1970) page 198). Therefore g(z) =
P(0) - py(2) — N(c0) - ny(z) is also an entire function.

LEMMA 2.2. If G is in B, then for Im(z) > 0, the F-S transform (2.2) of G can
be written

(2.3) 9(z) = —iz (=, e**G(x) dx ;
and for Im(z) < 0,
(2.4) 9(z) = iz (=, e**’[1 — G(x)]dx .

Proor. The F-S transform (2.2) converges for all complex z by Lemma 2.1.
The proof is then deduced by straightforward substitutions from the analogous
result for Laplace-Stieltjes transforms given by Widder [(1946) Theorems 3¢
and 3d].

An example of Laha [(1964) page 80] shows that condition (2.1) alone is not
sufficient to insure that if the product of two F-S transforms of functions in B
are entire then the factors themselves must be entire. This requirement for an
additional condition motivates the following definition:

DEFINITION 2.2. A real-valued function f is ultimately positive (u.p. or u.p. (x,))
if there exists an x, < oo such that

(i) f(x) = 0 for all x = x,, and

(ii) f(x;) > O for at least one finite value x;, > x,.

In the remainder of the paper we adopt the convention that whenever an upper
case letter stands for a function in BV, its lower case counterpart denotes the
F-S transform of the function; also z is reserved for the complex variable whose
real and imaginary parts are ¢ and y, respectively.

LemMaA 2.3. If G is in class B and G(—x) is u.p.(—a,), then there exists y,,
0 <y, < oo, such that y > y, implies

(i) 9(iy) > exp(—ya,), and

(ii) |9(2)| £ A,|z|9(iy) for some constant A, > 0.

Proor. Assume y > 0. Then (2.3) implies
(2.5) 9(iy) =y (4, e7¥*G(x)dx + y {3 e7°G(x) dx .
By condition (i) of the definition of u.p.(—a,), G(x) = 0 for x in (— o0, a,). By
condition (ii) of the definition of u.p. (—a,), there exists an x;, —c0 < X, < @,
and a d > 0 such that G(x,) = 6 > 0, and since G(x) is right-continuous, there
exists an ¢ > 0 such that G(x) = 4/2 for all x in (x,, x, + ¢). Assume x, + ¢ < a;;
then
(2.6)  y{m.eG(x)dx 2 y §it e G(x) dx Z (3/2) exp[—y(x, + e)|(e7 — 1)

Z (9/2) exp(—ya)(e” — 1).

Let M = max[|G(x)|: x in (a;, 0)] < oo. Then
2.7 |y §e, e7v*G(x) dx| = M exp(—yay) .
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Together (2.5), (2.6) and (2.7) yield
(2.8) 9(iy) = exp(—ya,)[(9/2)(e" — 1) — M],

which implies (i) of the lemma, since there exists a y, < oo such that y > y,
implies that the coefficient of exp(—ya,) in (2.8) is greater than one.

For the proof of (ii), take x, and M as above, and again assume y > 0. Then
(2.3) implies
(2.9) 9(2)] = Iz § 2. €7%7|G(x)) dx .
Since for x in (— o0, a,), |G(x)| = G(x), and using (2.5),
(2.10) (2. e77|G(x)| dx = (2, e7G(x) dx — (7 e7*(G(x) — |G(x)|) dx

< l9Gy)] + 2M - exp(—ya) .

y y
Using (i) of this lemma, there exists y, < oo such that for y > y,,
(2.11) §20 e77|G(x) dx = g(iy)(1 + 2M)[y, = 9(iy) - 41,

which, together with (2.9), proves (ii) of the lemma.

Lemma 2.4, If G is in class B and 1 — G(x) is u.p.(a,), then there exists y,,
—oo < y, < 0, such that y <y, implies

(i) 9(iy) > exp(ya,), and
(ii) |9(2)| £ A,|z|g(iy) for some constant A, > 0.

ProOOF. Assume y < 0. The proof is then completely analogous to the proof
of Lemma 2.3, using formula (2.4) in place of (2.3).

DEFINITION 2.3. G is in the class B, if G is in B and both G(—x)and 1 — G(x)
are u.p.

The following theorem is the key upon which the extension of Cramér’s
theorem will depend.

THEOREM 2.1. If G is in B, there exists a horizontal strip, y, > y > y,, contain-
ing the real axis, outside of which

(i) 9(iy) > exp(—|yla) and
(i) 19@2)| = Alz|9(iy),

where a and A are positive constants. '

Proor. This is a combination of the previous two lemmas. Letting 4 =
max (4,, 4,) and @ = max (|a,|, |a,|) gives the theorem.

3. Extension of Cramér’s theorem.

THEOREM 3.1. If G, and G, are in the class B, and G, x G, is a normal df, then
both G, and G, are normal df’s.
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Proor. By the convolution theorem, the product g,(¢) - g(f) = exp(—#*/2) is
the F-S transform or characteristic function (ch.f.) of the normal df. And the
identity theorem for entire functions implies that

(3.1) 0(2) - 9:(2) = exp(—22)
holds for all complex z = ¢ + iy. In particular on the imaginary axis,
3-2) 9:(1y) - 9:(y) = exp ()°[2) -

By property (i) of Theorem 2.1 applied to g, there exists a positive constant a
and an interval /, such that for y outside of I, g,(iy) > exp(—aly|), which, by
(3.2), implies that

(3.3) 9:(iy) < exp()*/2) - exp(aly])

holds for y outside the interval I,. Then by property (ii) of Theorem 2.1 applied
to g,, there exists an interval /, and a positive constant 4 such that for y outside
of I,

3.4 l9:2)] = A|2|g4(iy) -
Then for y outside of / = I, U I, (3.3) and (3.4) together imply

|9:(2)] = Alz] exp (/2 + aly]) ,

which implies that g,(z) is bounded by A - r . exp (ar + r%/2) in the circle lz| < r.
For y inside of /, g,(z) is bounded by a constant since |g,(z)| < py(iy) + ny(iy) <
C, + C,, where G, is the difference of monotone functions P, and N,. The con-
stants C, and C, are the maximum values of p,(iy) and ny(iy), respectively, for y
in the interval I. (These maximums are in fact taken at an endpoint of 7 since
p: and n, are constant multiples of ch.f.’s and are therefore convex on the imagi-
nary axis.) Thus g,(z) is of finite order p < 2, and (3.1) shows that g, has no
zeros; hence, Hadamard’s factorization theorem (see Titchmatsh (1939) page 250)
implies that

(3.5) 9x(2) = exp(by + b,z + b,2%) .

Since g,(0) = 1, b, = 0. The Hermitian property g,(f) = g,(—1) for real ¢ implies
b, is purely imaginary and b, is real. Since g,(f) must be bounded for real ¢, b,
cannot be positive. Thus (3.5) becomes g,(f) = exp (ict — dr?), where c is real
and d is nonnegative, and g, and also g, must be ch.f.’s of normal df’s.

4. Another property of class B,. Pélya (1949) showed that a necessary and
sufficient condition for a function G in BV to be constant outside of an interval
(L, R) is that g should be an entire function of exponential type, and that if
(L, R) is the smallest such interval, then

4.1 L = —limsup, . (In|g@iy)|/y), | and
4.2) R = limsup, ., (In|g(—iy)|/y) .
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Ramachandran (1964) has shown that if G is also a df with ch.f. g, then the
“lim sup” may be replaced by “lim” in both (4.1) and (4.2). The following
theorem shows that this is also permissible when G is in B, a result which will
be used to prove Theorem 5.1.

THEOREM 4.1. If G is in B, and is constant on [ —oo, L] and if L is the largest
number for which this holds, then

4.3) L = —lim, . (Ing(iy)/y) .

Similarly, if G is in B, and is constant on [R, o), and if R is the smallest number
for which this holds, then

4.4) R =lim,_, (Ing(—iy)/y) .

Proor. Note that because of (i) of Theorem 2.1, the absolute value signs on g
may be omitted. It is sufficient to prove (4.3), the proof of (4.4) being analogous.
And because of (4.1), it is sufficient to show that

4.5) L = —liminf _,, (Ing(iy)/y),
or, that given ¢ > 0, there exists y, such that y > y, implies
(4.6) 9(y) z exp[—(L + €)y] -

Let L be, as in the hypothesis, the left extremity of G, and let ¢ > 0 be given.
Since G is in B;, G(—x) is u.p. (—x,) for some x, which, by the definition of u.p.,
must satisfy L < x, = L + J for some § > 0. Take ¢, = min (e, d). Then G(—x)
is also u.p.[—(L + ¢,)], and Lemma 2.3 implies there exists a y, such that for

Y > o
9(y) > exp[—y(L + &)] = exp[—y(L + ¢)],
which implies (4.6).
5. Extension of Raikov’s theorem.

THEOREM 5.1. If G, and G, are in B, and are lattice-like with unit span and
G, x G, is a Poisson df, then both G, and G, are Poisson df’s.

Proor. Since
(5.1 9:(2) - 9x(2) = exp[A(e** — 1)]
for some 2 > 0,
9:(iy) - 94(iy) = exp[A(e™ — 1)].

By taking logarithms (principal branch), dividing by y (assumed positive), and
letting y — oo, the right side of the above equation goes to zero; thus

tim,_, 090) _ iy, 100:0) _ g
y y
say, and by Theorem 4.1 G, and G, are bounded to the left by —B and B,
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respectively. We may assume that B = 0 since, if not, multiplication of the
F-S transforms by nonessential factors will achieve this result. Thus G, and G,
have jumps only at the nonnegative integers and

0:(2) = X5, a,e™*, 0x(2) = X5, bre™®, say, where

Gy(x) = Dia, Gy(x) = X by
and g, and b, may be positive, zero, or negative. The variable w = e’ transforms
9:(2) and g,(z) into

hy(w) = Xizo @ w* and hy(W) = X0 bpw",
respectively, and from (5.1),
(5.2) hy(w) - hy(w) = exp[A(w — 1)].
For convenience we define the following notation:
Ty(x) = Var G(— o0, —x) + Var G(x, o) .

Then T, (N) = O(exp(—rN)) as N — oo for any real r > 0 by the definition of
B,, and

lay] < X%y || = Te(N — 1)
implies that

lay| = O(exp[—r(N — 1)])

as N — oo for any r > 0. Thus there exists an M < oo (assume M > 1) and a
positive integer N, such that N > N, implies

lay|"" < MY¥ . exp(r/[N —r).
Given any ¢ > 0, take r, such that

exp(ry) > (Mo . e)fe.
Then for N > max (r,, N,)

lay|"¥ < MYo.exp(l —r) < e

and thus by Hadamard’s formula the radius of convergence of A,(w) is infinite.
Thus #,(w) and (similarly for) ,(w) are entire functions and, by (5.2), have no
Zeros.

The next step shows that 4, and &, have finite orders at most one. By defini-
tion, w = exp(iz) and z =t + iy. If w = r . exp(if) is the polar representation
of w, then r = exp(—y), t = 0, and g,(iy) = h,(r), j = 1, 2. Also for nonzero
2, |z| = |In w| (principal branch). By substitution in Lemma 2.4, there exists an
ry, 1 < ry < oo, such that r > r, implies

(i) hy(r) > r~% and
(i) [h;w)| = Aj{Inwlhy(r),

j=1,2. From (5.2), ky(r) - hy(r) = exp[A(r — 1)], and, using (i) and (ii),
I(W)| < Afin w| exp[Ar — 1)] - .
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Thus h(w) is of finite order at most one, and similarly for z,(w). Therefore,
by Hadamard’s factorization theorem, &;(w) = exp(c; + d;w), that is, g,(z) =
exp(c; + d;e*), and g,0) = 1 implies ¢; = —d;; thus,

(5.3) 9,(2) = exp[d;(e** — 1)].

For z = t (real), the Hermitian property implies d; is real, and to complete the
proof we now show by contradiction that d,; cannot be negative. Suppose that
d,, say, is in fact negative. Equation (5.3) implies

h(w) = exp[d(w — 1)] = exp(—dy) 27, (d)*w*[k! .
Thus the coefficients a, of the power series definition of 4, must satisfy
(5.4) a, = exp(—d,) - (d,))*/k!,

and hence are positive for even k and negative for odd k, since d, is assumed to
be negative. Also, for k > |d,|, the coefficients (5.4) are decreasing in absolute
value as k increases. Thus each time N > |d,| is increased by one, the series

S(N) = 2=y %

changes sign. But S(N) = 1 — G(N). Thus 1 — G,(x) continues to oscillate in-
definitely about zero as x — oo and is therefore not u.p., and G, cannot be in
B,. This contradiction implies d, is nonnegative, and similarly for d,; hence G,
and G, are Poisson df’s.

Whether the additional hypothesis in this theorem, that the components must
be lattice-like with unit span, can be eliminated is undecided. In the case of
df’s, the components of a lattice-like df with unit span inherit this property;
this is no longer true in general when the components are allowed to be from
B,, as many simple examples show. However in the particular case of the Poisson
df, we have not found such an example.

Acknowledgment. The author greatly appreciates the valuable advice and
sustaining encouragement recieved from Professor Eugene Lukacs.

REFERENCES

[1] Cuistyakov, G. P. (1970). A generalization of theorems due to H. Cramér and Yu. V.
Linnik-V. P. Skitovic. Theor. Probability Appl. 15 331-336.

[2] Lana, R. G. (1964). On the decomposition of a class of functions of bounded variation.
Canadian J. Math. 16 479-484. ‘

[3] Linnik, Yu. V. and Skrrovic, V. P. (1958). A further contribution on generalizations of
Cramér’s theorem (in Russian). Vestnik Leningrad Univ. 13 39-44. Note—for corrected
version of Theorem 4 see page 101 of: " Linnik, Yu. V. (1960). Decomposition of Prob-
ability Distributions. Oliver and Boyd, London.

[4] Lukacs, E. (1970). Characteristic Functions. Griffin, London.

[5]1 PoLya, G. (1949). Remarks on characteristic functions. Proc. Berkeley Symp. Math. Statist.
Prob. ed. J. Neyman. Univ. of California, Berkeley.

[6] RAMACHANDRAN, B. (1962). Application of a theorem of Mamay’s to a denumerable a-
decomposition of the Poisson law. Publ. Inst. Statist. Univ. Paris. 13 13-19.



FUNCTIONS OF BOUNDED VARIATION 337

[71 TircHMARsH, E. C. (1939). The Theory of Functions. Oxford University Press, Oxford.
[8] WIDDER, D. V. (1946). The Laplace Transform. Princeton Univ. Press.

DEPARTMENT OF STATISTICS
OREGON STATE UNIVERSITY
CORVALLIS, OREGON



