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ON BUILDING RANDOM VARIABLES
OF A GIVEN DISTRIBUTION

By GERARD LETAC
Université Paul Sabatier

Given (X:):z1, independent random variables on some measurable
space (I, &) with the same distribution m, and a positive function f of
LY(m) with || f]1 = 1, this paper studies how to build a stopping time T with
respect to the g-fields %7 generated Xi, Xz, - -+, X3, such that the distribu-
tion of Xt in (I, &) is exactly fdm.

1. Introduction. The construction of random variables with a given distri-
bution by using independent rv uniformly distributed in [0, 1], called “random
numbers” was the subject of a lecture [2] by J. Von Neumann, in 1951. This
problem is called Problem B by Von Neumann, the making of random numbers
by arithmetical, physical or other techniques is called Problem A, which shall
not concern us here. Problem B corresponds to Title 5.1 in the classified biblio-
graphy made in [1].

It can be formulated in the following way: let (X, X,, ---) be independent
rv from a probability space (Q, .57, P) valued in a measurable space (I, <),
with the same distribution m. Call &, the sub ¢-field of % generated by
X,, X,, ---, X,. Consider also another probability space (E, &, ). Problem B
is to find on Q:

(a) A stopping time T with respect to (,),5,, with P(T < o) =1,

(b) An integer n and rv N, N,, ---, N,, %, measurable and valued in
1,2, ..., T},

(c) Anrv K, %, measurable and valued in {1, 2, ...} and for each k such
that P[K = k] > 0 a measurable map g, from (I", <#®") to (E, &), such that
the distribution of g, (X, - -+, Xy ) is p.

For instance, if (I, <, m) is [0, 1] with Lebesgue measure, (E, &, u) is [0, o)
with Borel sets and p(dx) = e=*dx, Von Neumann [1] suggests, taking S, = 0,
Sppr = Inf{K" > 85 Xg 1 > Xg 0 >0+ > Xpyand X, < X}, K = inf {k > 0;
S, — Sy_yiseven}, T =8, n =1, Ny=1+ S, gi(x) =k — 1 + x.

We want to study here a rather restricted form of Problem B since we take
from now (E, &) = (I, &%), n = K =1, g, = identity and N, = T. In other
terms, given a probability distribution p on (I, £#), we want to find a stopping
time T with respect to (5 ,),s,, With P[T < oo] = 1, such that the distribution
of X, is y. It is fairly obvious that a necessary condition for the existence of
such a T is that x is absolutely continuous with respect to m.
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GENERATING RANDOM VARIABLES 299

Let us introduce some notation:
K ={fel(m), f=0 and ||f],=1}.

If fis in &£, S(f) is the set of stopping times T with respect to (.%7,),5, such
that the distribution of X, is fdm. If k is a positive integer and f is in &, S,(f)
is the set of T in S(f) such that T = 0 mod k, and {T = ¢} is measurable with
respect to the sub o-field generated by X,_,,,, X, ;.5 - - -, X, and restricted to
T >t :

In order to understand the meaning of S,(f) we give the following example of
a T in Sy(f), due to Von Neumann [1]: (I, &, m) is again [0, 1] with Lebesgue
measure and f in . is bounded by a number 5. Then:

T=inf{t > 0; ¢ isevenand bX, , < f(X,)}.

We come back to general (I, <%, m). The set S(f) can be quite big; but there
are two ways to choose interesting 7' in S(f): small E(T') or simplicity of building
T (or both...). We prove in Theorem 1 that T in S(f) implies || f]|.. < E(T)

and T in S,(f) implies k|| f||. < E(T) (||f]| is L=(m) norm, we denote || f||.. =
oo if fis not bounded). We prove in Theorem 2 that if m has no atoms, there
exists T in S(f) such that E(T) = || f||.. In Section 4, we find an algorithm to
construct a T in S,(f); if m has no atoms E(T) = 2||f||.. (this was true also in
the Von Neumann example when b = || f]|..)-

In Section 5, we find an algorithm to construct a T in S)(f), but not for all f
in . When (I, &%, m) is [0, 1] with Lebesgue measure, this algorithm is a
graphical one and could really give a practical method.

2. Inequalities.

THEOREM 1. If fisin £ and T is in S(f), denote v(B) = P(X,¢ B; T = t) and
fi = dv,Jdm. Then

(@) felle = P[T 2 1]
(i) [If1le = E(T) and, if T € Si(f), k||l = E(T).

Proor. If there exists B in <% such that m(B) > 0 and f, > P(T = ¢) on B,

then:
{sfidm = P[T =t and X,e B] > P[T = tim(B) .

But {T=1¢ and X,eB}C {T =t and X,eB}. Now T is a stopping time,
{T = t}e #,_,and

P[T=t and X,e B] = P[T = {]m(B),

using the fact that (X,);2, are independent. Hence we get (i), from which (ii) is
an obvious corollary.

REMARK 2.1. Values of f; are necessarily 0 or 1.

REMARK 2.2. It is worth mentioning here another simple inequality (that we
do not need in the sequel). Suppose for a moment that all X, have the same
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distribution m in (I, £#') but are not necessarily independent. Consider also a
random variable N, integer valued, possibly dependent on (X,)z,, but not neces-
sarily a stopping time. The distribution  of X, is again absolutely continuous
with respect to m. Then, if f = dp/dm, we have the following inequality, for
each a > 0:

1
2.1 E(N*) =
@.1) (V) 2
with the limit cases ||N||,, = ||f||l. when @ — oo and 1 + E(log N) = §,flog fdm
when @ — 0 (using E(log N) = lim,_, E(N* — 1)/a)). To prove (2.1) introduce
the set B(y) = {xe I f(x) =z y}. Hence:

#(B(y)) = S5 PIN = t; X, € B(y)] = Y=, P[X, € B(y)] + P[N > )]
We can write

@y u(B()) S - (@ + Dy m(BO)) + ayPIN > ]

Slfa+l dm

and an integration on [0, -+ co) with respect to dy of the last inequality gives (2.1).

3. A minimal stopping time. We prove in this section that if fe &, there
exists T in S(f) such that, with the notation of Theorem 1, ||f||. = P[T = 1]
and ||f||. = E(T) when m has no atoms. To do this we need the following
lemma, the proof of which is deferred to the end of the section.

LemMA. Let (Y, Z/, Q) a measured space, where Q is a positive measure without
atoms such that Q(Y) < 1. Then there exists a map o A(a) from [0, +o0) t0
2/ such that

(i) Q(A(«)) = inf (a, Q(Y))

(i) for any measurable map g from (I, %) to [0, + o) (with Borel sets), the
subset of Y x I,

User 49(x) x {x},
is 2 ® B measurable.

THEOREM 2. If f is in 2 and m has no atoms, then there exists T in S(f) such
that ||f,||. = P[T = 1] for all t and, when f is bounded, ||f||. = E(T).

Proor. For ¢t > 0, denote by =, the map from Q to I* defined by (X;, X,, - - -,
X,), %" the product o-field on I‘, and m' the measure carried from P by x,.
For ¢ = 0, I° is a set with one element, = is the unique map from Q to I°, &&°
the unique o-field on I°, m® the mass one in I°. We shall define T in a recursive
way, with {T = 0} = @. Let uskeep = 0 fixed.

Induction hypothesis. Suppose that the sets {T' = i}, are defined on Q and are
such that, if v, is the measure on I carried from 1,,_; P by X, and if f, denotes
dy,/dm, then for i =1, 2, ooyt
(3.1) fix) = inf {f(x) — T fi(x), 1 — L5 PIT = jl}

(an empty sum is zero).
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Observe that if + = 0, this hypothesis is reduced to “{T = 0} is defined.” We
choose {T' = t 4 1} in Q in such a way that the induction hypothesis is also true
when we change ¢ in ¢ 4+ 1. To do this, define g,(x) = f(x) — X%, fi(x). We
apply the lemma to g = g,, ¥ = #,[Q\U‘., (T = i)] C I'; Z/ and Q are the re-
striction of <&#* and m‘ to Y. The sets A(a) € Z/ constructed in the lemma are
now denoted A4,(«). Observe that A(a) = @ if « < 1and 4y(a) = I° if a = 1.
We can now define the event:

(T =141} = a7i{U.er 4(9:(x)) x {x}}.
In other terms:
{T = 1} = {o; f(Xy(@)) = 1}
{T = 2} {w f(X) <1 and X e A(f(X,) — fi(X))}

{T =1+ 1} ={o;0¢ Ui (T =1) and (X, ---, X,) € 4,(9,(X,11))} -
Hence, for B in <%, we have:

Ver(B) = {5 m(Afg:,(x))m(dx), and

funl) = 52 — mi(A(0,()) = inf 0,(), 1 = Etur PIT = )

and the induction hypothesis is extended.

Since {T =t} is now defined for all 7> 0, it remains to prove thai
Ny P[T =1t] =1, that ||f,,)le = P[T > ¢] for t = 0 and that ||f]|., = E(T).
Keeping g, = f — >i., fi, equality (3.1) implies:

(3.2) 9oe1 = [9. — (; 9, dm]*
(where C* = max (C, 0)) since §, g, dm =1 — ¥ t_, P[T =i].

Let A(x) be the limit of the decreasing sequence (g,(x)):,.

From monotone convergence, we deduce from (3.2) that:

0 < A(x) = [A(x) — §, Adm]* .
Hence: 2 = 0 and P[T < o] = 1, and T e S(f).
If || fi41]|le = P[T > t] is false for some ¢ = 0, then g,(x) < P[T > t] for all
x which is impossible since {;g,dm = P[T > t). Denote I, = {x; g,(x) =
P[T > t]}. If P[T > t] +# 0, then for x in I\I,_,, f(x) = g,_4(x) and g,(x) =
fi(x) — 9,.4(x) = 0= P[T > t]. Hence I, C I,_, whent > Oand P[T > t] + 0.

We get
M lle = Ziallfidlle = Do PIT > 1] = E(T) .

We proceed now to the proof of the lemma: Since Q has no atoms, for all
integer n > 0, it is easy (by induction on n) to choose a family B(k/2") with k
integer and 0 < k < Q(Y)2" such that

(i) Bk/2) e Z;
(ii) B(k/2™) c B(K'|2™) if k < k5
(iii) Q(B(k/2")) = k[2~.
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Set A(a) = Upjanca B(k/2") if a < Q(Y) and A(a) = Y if @ = Q(Y). Clearly

(3.3) A(@) = Uur<a A() -

Introduce now a sequence g, of simple functions on 7 (simple = countable
range at most), <Z-measurable, such that g,(x) is nonnegative, the sequence
(9.4(x))5-1is monotone and lim,, g,(x)=g(x). Since g, is simple, |, ;4 (9.(x)) x {x}
is & ® 7/ measurable; hence, using (3.3), this is also true for {J,.; 4(g(x)) x {x}.

REMARK. If m has atoms (but not an atom of mass 1, of course) minor modi-
fications to the statement of the lemma and proof of Theorem 2 would allow us
to show that S(f) is not empty; but the lower bound ||f||. is not necessarily
reached by E(T).

4. An element of S,(f). We begin this section by some considerations rela-
tive to the set S,(f), k = 1.

Recall that m* is the product measure on (I*, Z*). If x = (X, Xy +++, X})
belongs to /* we denote p(x) = x,. If 4isin <Z"*, the measure on I carried from
1, m* by p is absolutely continuous with respect to m. Let us denote its deriva-
tive f,, that is to say, if Be <.

$5 fadm = m*(4 0 p~(B)).

It is easily seen that to choose T in S,(f) is equivalent to define a sequence
(A, with A4, in <Z* such that:

4.1) D, mE(A) = oo
(4.2) f(x) = X fa,(x) Tz (1 — m¥(4))) m-almost surely.
If such a sequence is given, the stopping time
T = inf {kt; (X _1ye410 Xig—nyernr ** *> Xpe) € A}
is finite (condition (4.1), with Borel-Cantelli) and is in S,(f). Note that
IIi= (1 — m*(Ay)) = P(T = kr) .

Conversely, given T in S,(f), the sequence (4,);2, satisfying (4.1) and (4.2) is
easy to build. The Von Neumann example of T in S,(f) seen in the introduction
was corresponding to the constant sequence 4, = A with

A = {(x x,); bx, < f(x,)} < [0, 1]

Let us give now another example of 7, in S,(f) when (I, &&, m) is [0, 1] with
Lebesgue measure (f in & is not necessarily bounded). To do this, we define
H: ¥ — < by

Hg =¢g if g=1 almost surely,
=(g — D@ — DHrdm, otherwise.
Graphs of functions Hf = f, Hf, H*f, - . ., are easy to draw. It will be a con-

sequence of the proof of Theorem 3 below (stated for general (I, <%, m)), that
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the sequence:
Ay = {(x X,); X, < H7Hf(x,)}
defines an element T of S,(f) and that E(T) = 2||f]||.

THEOREM 3. If fis in & and m has no atoms, then there exists T in Sy(f) such
that ||full = P[T = 2t] for all t and, when f is bounded, 2||f||.. = E(T).

Proor. Define by induction on ¢ a sequence (g,);, in L'(m) as follows:
(4.3) 9 =f

9e1a(X) = (94(x) — §; g, dm)* .
We apply the lemma of Section 3 to (Y, 7/, Q) = (I, &, m). The A(a) are the
sets built in the lemma. Now we define the subsets (4,),,, of I*:
Ay = User Al9:2(%)/§1 9e-2(¥)] x {x},
with 4, = @ if g,_, = 0 a.e. Hence f, (x) = inf {1, g, ,(x)/{; 9,-, dm},
(4-4) | I — m(A) = \; 9, dm|\; g,y dm
sl —m(4,)) = §;9,,dm .

Let 2(x) be the limit of the decreasing sequence (g,(x));,. From (4.3) and mono-

tone COIIVCI'geIlCCI
0 < A(x) = [A(x) — § Adm]*,

and we get 2 = 0. Now define T’ = inf {2¢; (X;,_;, X;,) € 4,}. (4.4) implies that
P[T= 2] = §;9,.,dm —,. 0,

fa®) = Fa () i (1 — m*(4)) = gu(x) — gea(¥)
and we have f(x) = X%, fu(x) a.e. Hence T is in S,(f), and it is easy to check
that P(T = 2t) = || fat]|-

REMARK. If m has atoms, minor modifications to this proof show that S,(f)
is not empty.

5. An element of S,(f). Notations and remarks at the beginning of Section 4
about S,(f) are still in force. In order to define an element of S,(f), we have to
find a sequence (A4,);2, of £ such that

(5.1) (i) a, =TI — m(A4)),
with a, = 1, issuch that a,—0 as t— oo,

() f=Xmal, ae
Note that (5.1) implies 4, c {f = 1} and

Atc{zl-[f—(lhq-.~.+at_11At)]gl} forall +>1.
. :

To try to build an element of S,(f) we can replace these inclusions by equalities.
We shall see in Theorem 4 that this procedure really works, except for a very



304 GERARD LETAC

small class of f. We need some definitions: First we denote, if g is in &,
A(g) = {9 = 1}. Clearly m(A(g)) > 0, and m(A(g)) = lonlyifg = 1a.e. Next
define G: & — & by

Gg =g if g=1 a.e.
Gg = (9 — 1p)/(1 — m(A(9))) -
DEerFINITION. fin - will be said a resisting function if there exist a sequence
(ﬁt):’gl with g, =1, 0<8, =<1, BiBia = ﬁ§+1 and
lim,, 8, =B>0,

and a random variable N on (I, &%, m), valued in {0, 1, 2, ...}, whose distribu-
tion is given by:
m(N < 1) = Bi1a/B: >
such that f(x) = B + 29 8, (with f(x) = B when N(x) = 0).
ExAMPLE 5.0. (I, <%, m)is [0, 1] with Lebesgue measure. Consider a sequence
A >D4,>--- DA, D ... with 4, in & and m(4,) = (t + 1)~. Denote
N(x) = sup {t; x e 4,}, with N(x) = 0 if this set is empty. Then f defined by

1) =1 if Nx) =0
f(x):_;_[1+N(x)+1+%+ +m} if Nx)>0
is resisting (take 8, = (¢t + 1)/2t,t =1,2, .. .).

PROPOSITION. Gf is resisting when f is resisting. Furthermore

Lz m(A(Gf)) < oo .
Proor. The function f being defined by (f,),, and the rv N, it is easy to check
that

B
G — 2 N B
f(x) = B B, x 5

(with Gf(x) = B/B, when N(x) < 1). This shows that Gf is resisting and defined
by (B.);z: and the rv N, with B,/ = 8,,,/8, and N’ = (N — 1)*. Trivially 1 —
m(A(GYf)) = Biya/Brsr and JI7Z, (1 — m(A(GY))) = B

THEOREM 4. Let f in &, A, = A[f], o, =1, A, = A[G*"'f] and a, =
Iz (1 — m(4)) if t > 1. Thenlim,, a, = 0 and f = 31, &, 1,, a.e. if and only
if for any t = 0, G'f is not resisting.

Proor. The “if” part has been proved by the preceding proposition. We
show the “only if” part. Clearly lim,, a, = 0 implies f = 32, a,1,, a.e.

Suppose that lim,,a, = K > 0. This implies that Y2, m(4,) < co and
21, < oo ae. We can introduce the rv M by M(x) =sup{t; xe A}
M(x) = 0 if this set is empty. We have M < oo a.e. From the definition of G:

(5.2) f=al,, + o +al, +a.,Gf.
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Since 1,,(x) =0 if r > M(x), one deduces that G'f(x) <1 if +> M(x) and
Ay GUf = a,,,Gf if t = M(x). Since lim,, a, = K > 0, we get G"f < K/a, ;.
Using the fact that G'f is in &%, we write now

(5.3) 1 = (et Gfdm + §ys, G'f dm .

But Gf < f/[K (from (5.2)). Hence (G¥f):, is uniformly integrable and
{u>¢ G'fdm —,, 0. Replacing G'f by (ay,,/a,,,)G"fdm in the first integral of
(5.3) and doing t — + co we get from (5.3):

1=, %ﬂcﬂfdm.

The inequality G¥f < K/a,,, implies now that a,,,G"f = K and «,,,Gf = K

if t = M. Doing t — + oo in (5.2) we get:

K )
+ D

i+1 at+1

f:K—I— ZgllailAi and th—_‘ lAi if t>0.

From the definition of G: 1., , G'f < 1. The last equality gives:

(5:4) K S B, <
Xip1 i+1

We deduce from (5.4) that there exists 7, such that 4, ., D 4, ;, D ---. Tosee
this, we can take 7, with a, ,, < 2K. Then if r, <t < i we get K/a,,, = 4 and
aja,,, = 4; then (5.4) implies that 4,,, D 4,.

We claim now that G“f is a resisting function. Define 8, = a,,/a, ,, and
N =sup{t; xe 4, ,,}, with N = 0 if this set is empty. A simple computation
shows that G%f is the resisting function associated to (§3,),», and N.

REMARK 5.1. The class ., of functions f in .” such that G'f is resisting for
some 7 is small: f in &, implies that the distribution of the real rv f is discrete
and unbounded.

REMARK 5.2. The method of proof of Theorem 4 can be used to show that
if fis in &\, and if N is the number of visits to [1, 4 co) by the process
(G'f)izo» then {N < oo} = UL, (G, f = O}.

REMARK 5.3. Sy(f) is never empty. Even if fis in &, we could take 4, ¢
{f = 1} such that (f — 1, )(1 — m(4,))" ¢ <£,.

REMARK 5.4. One can study the class of functions f such that 32, 1,4, <
oo a.e. We shall say that f in & is absorbable if there exist a sequence (8;);z1,
withf, =1,0< B, < 1, B, By < B2, and lim,,, B, = 0, and an rv N valued in
{0, 1, 2, ...}, whose the distribution is given by m(N < t) = B,,,/B,, such that

Jx) = 250 B,
(with f(x) = 0 if N(x) = 0).

ExAMPLEs. (I, %, m) is [0, 1] with Lebesgue measure. Consider a sequence
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A DA, D+ DA, D ... withA,in & and m(A4,) = 1/(t + 1)(¢ 4 2). Denote
N =sup{t; xe A,} N = Oisempty. Thenf = 3¢ 1/t is absorbable (take 8, =
1jt,t =1,2,...). With 8, = exp —(t — 1)* with & in (0, 1), we could get a
bounded absorbable function.

One can prove that Gf is absorbable when f is absorbable. In that case
2o 1,6t < coa.e. Conversely if fis not in &, and if there exists 7, such
that A(Gtf) D A(G**'f) for t = 1, then Y12, 1,4, < oo a.e. imply that Ghf is
absorbable. The method of proof is the same as that in Theorem 4.

REMARK 5.5. We do not know whether E(T) = )}, a, is finite when f is
bounded (notations of Theorem 4, f not in ~£,). Trivially ||f||. = E(T) if and
only if m(A4, n 4, n .- n A4,) > 0 for all «.

REMARK 5.6. If f is bounded, G'f is bounded, but not uniformly with respect
to #: in the examples of Remark 5.4, take f absorbable and §, = exp —(r — 1)k
we get ||G'f]|.. = Kexp ¢* (K being a constant).

REMARK 5.7. The sets (4,),_, can be independent: if (1, <, m) is [0, 1] with
the Lebesgue measure, we take f(x) = 2x.

REMARK 5.8. If 7={0, 1} and m(0) = m(l) = %, we take f(0) =2¢ and
f(1) = 2p with p + ¢ = 1 and suppose that the binary expansion of p, p =
S1e ., e,/2%, with ¢, € {0, 1}, contains an infinite number of 0 and 1. Then

1 —

Gf(1) =2 Xiin 2—53_; and Gf(0) =2 Ztin _2%——:5L :
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