ON BUILDING RANDOM VARIABLES OF A GIVEN DISTRIBUTION

By GÉRARD LETAC

Université Paul Sabatier

Given $(X_t)_{t\geq 1}$, independent random variables on some measurable space (I, \mathscr{B}) with the same distribution m, and a positive function f of $L^1(m)$ with $\|f\|_1 = 1$, this paper studies how to build a stopping time T with respect to the σ -fields \mathscr{F}_t generated X_1, X_2, \dots, X_t , such that the distribution of X_T in (I, \mathscr{B}) is exactly f dm.

1. Introduction. The construction of random variables with a given distribution by using independent rv uniformly distributed in [0, 1], called "random numbers" was the subject of a lecture [2] by J. Von Neumann, in 1951. This problem is called Problem B by Von Neumann, the making of random numbers by arithmetical, physical or other techniques is called Problem A, which shall not concern us here. Problem B corresponds to Title 5.1 in the classified bibliography made in [1].

It can be formulated in the following way: let (X_1, X_2, \cdots) be independent rv from a probability space (Ω, \mathcal{A}, P) valued in a measurable space (I, \mathcal{B}) , with the same distribution m. Call \mathcal{F}_t the sub σ -field of \mathcal{A} generated by X_1, X_2, \cdots, X_t . Consider also another probability space (E, \mathcal{E}, μ) . Problem B is to find on Ω :

- (a) A stopping time T with respect to $(\mathcal{F}_t)_{t\geq 1}$, with $P(T<\infty)=1$,
- (b) An integer n and rv N_1, N_2, \dots, N_n , \mathcal{F}_T measurable and valued in $\{1, 2, \dots, T\}$,
- (c) An rv K, \mathscr{F}_T measurable and valued in $\{1, 2, \dots\}$ and for each k such that P[K=k]>0 a measurable map g_k from $(I^n, \mathscr{B}^{\otimes n})$ to (E,\mathscr{E}) , such that the distribution of $g_K(X_{N_1}, \dots, X_{N_m})$ is μ .

For instance, if (I, \mathcal{B}, m) is [0, 1] with Lebesgue measure, (E, \mathcal{E}, μ) is $[0, \infty)$ with Borel sets and $\mu(dx) = e^{-x} dx$, Von Neumann [1] suggests, taking $S_0 = 0$, $S_{k+1} = \inf\{k' > S_k; X_{S_k+1} > X_{S_k+2} > \cdots > X_{k'-1} \text{ and } X_{k'-1} \le X_{k'}\}$, $K = \inf\{k > 0; S_k - S_{k-1} \text{ is even}\}$, $T = S_K$, n = 1, $N_1 = 1 + S_{K-1}$, $g_k(x) = k - 1 + x$.

We want to study here a rather restricted form of Problem B since we take from now $(E,\mathcal{E})=(I,\mathcal{B}),\ n=K=1,\ g_1=$ identity and $N_1=T.$ In other terms, given a probability distribution μ on (I,\mathcal{B}) , we want to find a stopping time T with respect to $(\mathcal{F}_t)_{t\geq 1}$, with $P[T<\infty]=1$, such that the distribution of X_T is μ . It is fairly obvious that a necessary condition for the existence of such a T is that μ is absolutely continuous with respect to m.

Received December 20, 1972; revised March 4, 1974.

AMS 1970 subject classifications. Primary 62E25, 60G40; Secondary 28A20, 28A35.

Key words and phrases. Monte-Carlo methods, stopping times.

www.jstor.org

Let us introduce some notation:

$$\mathscr{L} = \{ f \in L^1(m); f \ge 0 \text{ and } ||f||_1 = 1 \}.$$

If f is in \mathscr{L} , S(f) is the set of stopping times T with respect to $(\mathscr{F}_t)_{t\geq 1}$ such that the distribution of X_T is f dm. If k is a positive integer and f is in \mathscr{L} , $S_k(f)$ is the set of T in S(f) such that $T\equiv 0 \mod k$, and $\{T=t\}$ is measurable with respect to the sub σ -field generated by $X_{t-k+1}, X_{t-k+2}, \cdots, X_t$ and restricted to $T\geq t$.

In order to understand the meaning of $S_k(f)$ we give the following example of a T in $S_2(f)$, due to Von Neumann [1]: (I, \mathcal{B}, m) is again [0, 1] with Lebesgue measure and f in \mathcal{L} is bounded by a number b. Then:

$$T = \inf\{t > 0; t \text{ is even and } bX_{t-1} \leq f(X_t)\}$$
.

We come back to general (I, \mathcal{B}, m) . The set S(f) can be quite big; but there are two ways to choose interesting T in S(f): small E(T) or simplicity of building T (or both...). We prove in Theorem 1 that T in S(f) implies $||f||_{\infty} \leq E(T)$ and T in $S_k(f)$ implies $k||f||_{\infty} \leq E(T)$ ($||f||_{\infty}$ is $L^{\infty}(m)$ norm, we denote $||f||_{\infty} = \infty$ if f is not bounded). We prove in Theorem 2 that if m has no atoms, there exists T in S(f) such that $E(T) = ||f||_{\infty}$. In Section 4, we find an algorithm to construct a T in $S_2(f)$; if m has no atoms $E(T) = 2||f||_{\infty}$ (this was true also in the Von Neumann example when $b = ||f||_{\infty}$).

In Section 5, we find an algorithm to construct a T in $S_1(f)$, but not for all f in \mathcal{L} . When (I, \mathcal{B}, m) is [0, 1] with Lebesgue measure, this algorithm is a graphical one and could really give a practical method.

2. Inequalities.

THEOREM 1. If f is in $\mathscr L$ and T is in S(f), denote $\nu_t(B)=P(X_t\in B;\,T=t)$ and $f_t=d\nu_t/dm$. Then

- (i) $||f_t||_{\infty} \leq P[T \geq t]$
- (ii) $||f||_{\infty} \leq E(T)$ and, if $T \in S_k(f)$, $k||f||_{\infty} \leq E(T)$.

PROOF. If there exists B in \mathcal{B} such that m(B) > 0 and $f_t > P(T \ge t)$ on B, then:

$$\int_B f_t dm = P[T = t \text{ and } X_t \in B] > P[T \ge t] m(B)$$
.

But $\{T=t \text{ and } X_t \in B\} \subset \{T \ge t \text{ and } X_t \in B\}$. Now T is a stopping time, $\{T \ge t\} \in \mathscr{F}_{t-1}$ and

$$P[T \ge t \text{ and } X_t \in B] = P[T \ge t]m(B)$$
,

using the fact that $(X_t)_{t=1}^{\infty}$ are independent. Hence we get (i), from which (ii) is an obvious corollary.

Remark 2.1. Values of f_1 are necessarily 0 or 1.

Remark 2.2. It is worth mentioning here another simple inequality (that we do not need in the sequel). Suppose for a moment that all X_t have the same

distribution m in (I, \mathcal{B}) but are not necessarily independent. Consider also a random variable N, integer valued, possibly dependent on $(X_t)_{t=1}^{\infty}$, but not necessarily a stopping time. The distribution μ of X_N is again absolutely continuous with respect to m. Then, if $f = d\mu/dm$, we have the following inequality, for each $\alpha > 0$:

(2.1)
$$E(N^{\alpha}) \ge \frac{1}{1+\alpha} \int_{I} f^{\alpha+1} dm$$

with the limit cases $||N||_{\infty} \ge ||f||_{\infty}$ when $\alpha \to \infty$ and $1 + E(\log N) \ge \int_I f \log f \, dm$ when $\alpha \to 0$ (using $E(\log N) = \lim_{\alpha \to 0} E((N^{\alpha} - 1)/\alpha)$). To prove (2.1) introduce the set $B(y) = \{x \in I; f(x) \ge y\}$. Hence:

$$\mu(B(y)) = \sum_{t=1}^{\infty} P[N = t; X_t \in B(y)] = \sum_{t \le y} P[X_t \in B(y)] + P[N > y].$$

We can write

$$\alpha y^{\alpha-1}\mu(B(y)) \leq \frac{\alpha}{\alpha+1} (\alpha+1) y^{\alpha} m(B(y)) + \alpha y^{\alpha-1} P[N > y]$$

and an integration on $[0, +\infty)$ with respect to dy of the last inequality gives (2.1).

3. A minimal stopping time. We prove in this section that if $f \in \mathcal{L}$, there exists T in S(f) such that, with the notation of Theorem 1, $||f_t||_{\infty} = P[T \ge t]$ and $||f||_{\infty} = E(T)$ when m has no atoms. To do this we need the following lemma, the proof of which is deferred to the end of the section.

LEMMA. Let (Y, \mathcal{Y}, Q) a measured space, where Q is a positive measure without atoms such that $Q(Y) \leq 1$. Then there exists a map $\alpha \mapsto A(\alpha)$ from $[0, +\infty)$ to \mathcal{Y} such that

- (i) $Q(A(\alpha)) = \inf (\alpha, Q(Y))$
- (ii) for any measurable map g from (I, \mathcal{B}) to $[0, +\infty)$ (with Borel sets), the subset of $Y \times I$,

$$\bigcup_{x\in I} A(g(x)) \times \{x\},\,$$

is $\mathcal{Y} \otimes \mathcal{B}$ measurable.

THEOREM 2. If f is in \mathcal{L} and m has no atoms, then there exists T in S(f) such that $||f_t||_{\infty} = P[T \ge t]$ for all t and, when f is bounded, $||f||_{\infty} = E(T)$.

PROOF. For t>0, denote by π_t the map from Ω to I^t defined by (X_1,X_2,\cdots,X_t) , \mathscr{B}^t the product σ -field on I^t , and m^t the measure carried from P by π_t . For t=0, I° is a set with one element, π_\circ is the unique map from Ω to I° , \mathscr{B}° the unique σ -field on I° , m° the mass one in I° . We shall define T in a recursive way, with $\{T=0\}=\varnothing$. Let us keep $t\ge 0$ fixed.

Induction hypothesis. Suppose that the sets $\{T=i\}_{i=0}^t$ are defined on Ω and are such that, if ν_i is the measure on I carried from $\mathbf{1}_{\{T=i\}}P$ by X_i and if f_i denotes $d\nu_i/dm$, then for $i=1,2,\dots,t$:

(3.1)
$$f_i(x) = \inf \{ f(x) - \sum_{j=1}^{i-1} f_j(x), 1 - \sum_{j=1}^{i-1} P[T=j] \}$$
 (an empty sum is zero).

Observe that if t=0, this hypothesis is reduced to " $\{T=0\}$ is defined." We choose $\{T=t+1\}$ in Ω in such a way that the induction hypothesis is also true when we change t in t+1. To do this, define $g_t(x)=f(x)-\sum_{j=1}^t f_i(x)$. We apply the lemma to $g=g_t$, $Y=\pi_t[\Omega\backslash\bigcup_{i=0}^t (T=i)]\subset I^t$; $\mathscr D$ and Q are the restriction of $\mathscr D^t$ and M^t to Y. The sets $A(\alpha)\in\mathscr D$ constructed in the lemma are now denoted $A_t(\alpha)$. Observe that $A_0(\alpha)=\emptyset$ if $\alpha<1$ and $A_0(\alpha)=I^\circ$ if $\alpha\geq 1$. We can now define the event:

$${T = t + 1} = \pi_{t+1}^{-1} \{ \bigcup_{x \in I} A_t(g_t(x)) \times \{x\} \}.$$

In other terms:

$$\begin{split} \{T=1\} &= \{\omega; f(X_1(\omega)) \ge 1\} \\ \{T=2\} &= \{\omega; f(X_1) < 1 \text{ and } X_1 \in A_1(f(X_2) - f_1(X_2))\} \\ & \cdot \cdot \cdot \cdot \cdot \cdot \\ \{T=t+1\} &= \{\omega; \omega \notin \bigcup_{i=1}^t (T=i) \text{ and } (X_1, \dots, X_t) \in A_t(g_t(X_{t+1}))\} \,. \end{split}$$

Hence, for B in \mathcal{D} , we have:

$$\nu_{t+1}(B) = \int_B m^t(A_t(g_t(x))) m(dx) , \qquad \text{and}$$

$$f_{t+1}(x) = \frac{d\nu_{t+1}}{dm} = m^t(A_t(g_t(x))) = \inf \{g_t(x), 1 - \sum_{i=1}^t P[T=i]\}$$

and the induction hypothesis is extended.

Since $\{T=t\}$ is now defined for all t>0, it remains to prove that $\sum_{t=1}^{\infty} P[T=t]=1$, that $||f_{t+1}||_{\infty}=P[T>t]$ for $t\geq 0$ and that $||f||_{\infty}=E(T)$. Keeping $g_t=f-\sum_{t=1}^t f_t$, equality (3.1) implies:

$$(3.2) g_{t+1} = [g_t - \int_I g_t \, dm]^+$$

(where $C^+ = \max(C, 0)$) since $\int_I g_t dm = 1 - \sum_{i=1}^t P[T = i]$.

Let $\lambda(x)$ be the limit of the decreasing sequence $(g_t(x))_{t=0}^{\infty}$.

From monotone convergence, we deduce from (3.2) that:

$$0 \le \lambda(x) = [\lambda(x) - \int_I \lambda \, dm]^+.$$

Hence: $\lambda = 0$ and $P[T < \infty] = 1$, and $T \in S(f)$.

If $||f_{t+1}||_{\infty} = P[T > t]$ is false for some $t \ge 0$, then $g_t(x) < P[T > t]$ for all x which is impossible since $\int_I g_t dm = P[T > t)$. Denote $I_t = \{x; g_t(x) \ge P[T > t]\}$. If $P[T > t] \ne 0$, then for x in $I_t \setminus I_{t-1}$, $f_t(x) = g_{t-1}(x)$ and $g_t(x) = f_t(x) - g_{t-1}(x) = 0 \ge P[T > t]$. Hence $I_t \subset I_{t-1}$ when t > 0 and $P[T > t] \ne 0$. We get

$$||f||_{\infty} = \sum_{t=1}^{\infty} ||f_t||_{\infty} = \sum_{t=0}^{\infty} P[T > t] = E(T)$$
.

We proceed now to the proof of the lemma: Since Q has no atoms, for all integer n > 0, it is easy (by induction on n) to choose a family $B(k/2^n)$ with k integer and $0 \le k \le Q(Y)2^n$ such that

- (i) $B(k/2^n) \in \mathscr{Y}$;
- (ii) $B(k/2^n) \subset B(k'/2^n)$ if k < k';
- (iii) $Q(B(k/2^n)) = k/2^n$.

Set
$$A(\alpha) = \bigcup_{k/2^n < \alpha} B(k/2^n)$$
 if $\alpha < Q(Y)$ and $A(\alpha) = Y$ if $\alpha \ge Q(Y)$. Clearly (3.3)
$$A(\alpha) = \bigcup_{\alpha' < \alpha} A(\alpha').$$

Introduce now a sequence g_n of simple functions on I (simple = countable range at most), \mathscr{B} -measurable, such that $g_n(x)$ is nonnegative, the sequence $(g_n(x))_{n=1}^{\infty}$ is monotone and $\lim_n g_n(x) = g(x)$. Since g_n is simple, $\bigcup_{x \in I} A(g_n(x)) \times \{x\}$ is $\mathscr{B} \otimes \mathscr{Y}$ measurable; hence, using (3.3), this is also true for $\bigcup_{x \in I} A(g(x)) \times \{x\}$.

REMARK. If m has atoms (but not an atom of mass 1, of course) minor modifications to the statement of the lemma and proof of Theorem 2 would allow us to show that S(f) is not empty; but the lower bound $||f||_{\infty}$ is not necessarily reached by E(T).

4. An element of $S_2(f)$. We begin this section by some considerations relative to the set $S_k(f)$, $k \ge 1$.

Recall that m^k is the product measure on (I^k, \mathcal{B}^k) . If $x = (x_1, x_2, \dots, x_k)$ belongs to I^k we denote $p(x) = x_k$. If A is in \mathcal{B}^k , the measure on I carried from $\mathbf{1}_A m^k$ by p is absolutely continuous with respect to m. Let us denote its derivative f_A , that is to say, if $B \in \mathcal{B}$:

$$\int_B f_A dm = m^k(A \cap p^{-1}(B)).$$

It is easily seen that to choose T in $S_k(f)$ is equivalent to define a sequence $(A_t)_{t=1}^{\infty}$ with A_t in \mathscr{B}^k such that:

(4.2)
$$f(x) = \sum_{t=1}^{\infty} f_{A_t}(x) \prod_{i=1}^{t-1} (1 - m^k(A_i))$$
 m-almost surely.

If such a sequence is given, the stopping time

$$T = \inf \{kt; (X_{(k-1)t+1}, X_{(k-1)t+2}, \dots, X_{kt}) \in A_t\}$$

is finite (condition (4.1), with Borel-Cantelli) and is in $S_k(f)$. Note that

$$\prod_{i=1}^{t-1} (1 - m^k(A_i)) = P(T \ge kt).$$

Conversely, given T in $S_k(f)$, the sequence $(A_t)_{t=1}^{\infty}$ satisfying (4.1) and (4.2) is easy to build. The Von Neumann example of T in $S_2(f)$ seen in the introduction was corresponding to the constant sequence $A_t = A$ with

$$A = \{(x_1, x_2); bx_1 \leq f(x_2)\} \subset [0, 1]^2.$$

Let us give now another example of T_i in $S_2(f)$ when (I, \mathcal{B}, m) is [0, 1] with Lebesgue measure $(f \text{ in } \mathcal{L} \text{ is not necessarily bounded})$. To do this, we define $H: \mathcal{L} \to \mathcal{L}$ by

$$Hg = g$$
 if $g = 1$ almost surely,
= $(g-1)^+/\S_0^1(g-1)^+ dm$, otherwise.

Graphs of functions $H^0f = f$, Hf, H^2f , ..., are easy to draw. It will be a consequence of the proof of Theorem 3 below (stated for general (I, \mathcal{B}, m)), that

the sequence:

$$A_t = \{(x_1, x_2); x_1 \leq H^{t-1}f(x_2)\}$$

defines an element T of $S_2(f)$ and that $E(T) = 2||f||_{\infty}$.

THEOREM 3. If f is in \mathcal{L} and m has no atoms, then there exists T in $S_2(f)$ such that $||f_{2t}||_{\infty} = P[T \ge 2t]$ for all t and, when f is bounded, $2||f||_{\infty} = E(T)$.

PROOF. Define by induction on t a sequence $(g_t)_{t=0}^{\infty}$ in $L^1(m)$ as follows:

(4.3)
$$g_0 = f$$
$$g_{t+1}(x) = (g_t(x) - \int_I g_t dm)^+.$$

We apply the lemma of Section 3 to $(Y, \mathcal{D}, Q) = (I, \mathcal{B}, m)$. The $A(\alpha)$ are the sets built in the lemma. Now we define the subsets $(A_t)_{t\geq 1}$ of I^2 :

$$A_t = \bigcup_{x \in I} A[g_{t-1}(x)/\int_I g_{t-1}(x)] \times \{x\},$$

with $A_t = \emptyset$ if $g_{t-1} = 0$ a.e. Hence $f_{A_t}(x) = \inf\{1, g_{t-1}(x)/\sum_{i=1}^{t} g_{t-1} dm\}$,

(4.4)
$$1 - m^{2}(A_{t}) = \int_{I} g_{t} dm / \int_{I} g_{t-1} dm$$

$$\prod_{i=1}^{t-1} (1 - m^{2}(A_{i})) = \int_{I} g_{t-1} dm.$$

Let $\lambda(x)$ be the limit of the decreasing sequence $(g_t(x))_{t=0}^{\infty}$. From (4.3) and monotone convergence:

$$0 \le \lambda(x) = [\lambda(x) - \int \lambda \, dm]^+,$$

and we get $\lambda=0$. Now define $T=\inf\{2t; (X_{2t-1},X_{2t})\in A_t\}$. (4.4) implies that $P[T\geq 2t]=\int_I g_{t-1}\,dm \to_{t\infty} 0$,

$$f_{2t}(x) = f_{A_t}(x) \prod_{i=1}^{t-1} (1 - m^2(A_i)) = g_t(x) - g_{t-1}(x)$$

and we have $f(x) = \sum_{t=1}^{\infty} f_{2t}(x)$ a.e. Hence T is in $S_2(f)$, and it is easy to check that $P(T \ge 2t) = ||f_{2t}||_{\infty}$.

REMARK. If m has atoms, minor modifications to this proof show that $S_2(f)$ is not empty.

5. An element of $S_1(f)$. Notations and remarks at the beginning of Section 4 about $S_k(f)$ are still in force. In order to define an element of $S_1(f)$, we have to find a sequence $(A_t)_{t=1}^{\infty}$ of \mathscr{B} such that

(5.1) (i)
$$\alpha_t = \prod_{i=1}^{t-1} (1 - m(A_i))$$
, with $\alpha_1 = 1$, is such that $\alpha_t \to 0$ as $t \to \infty$, (ii) $f = \sum_{t=1}^{\infty} \alpha_t \mathbf{1}_{A_t}$ a.e.

Note that (5.1) implies $A_1 \subset \{f \ge 1\}$ and

$$A_t \subset \left\{ \frac{1}{\alpha_t} \left[f - (\mathbf{1}_{A_1} + \cdots + \alpha_{t-1} \mathbf{1}_{A_t}) \right] \ge 1 \right\}$$
 for all $t > 1$.

To try to build an element of $S_1(f)$ we can replace these inclusions by equalities. We shall see in Theorem 4 that this procedure really works, except for a very

small class of f. We need some definitions: First we denote, if g is in \mathcal{L} , $A(g) = \{g \ge 1\}$. Clearly m(A(g)) > 0, and m(A(g)) = 1 only if g = 1 a.e. Next define $G: \mathcal{L} \to \mathcal{L}$ by

$$Gg = g$$
 if $g = 1$ a.e.
 $Gg = (g - \mathbf{1}_{A(g)})/(1 - m(A(g)))$.

DEFINITION. f in \mathcal{L} will be said a resisting function if there exist a sequence

$$(eta_t)_{t \geq 1}^\infty$$
 with $eta_1 = 1$, $0 < eta_t \leq 1$, $eta_t eta_{t+2} \leq eta_{t+1}^2$ and $\lim_{t \to B} eta_t = B > 0$,

and a random variable N on (I, \mathcal{B}, m) , valued in $\{0, 1, 2, \dots\}$, whose distribution is given by:

$$m(N < t) = \beta_{t+1}/\beta_t$$
,

such that $f(x) = B + \sum_{t=1}^{N(x)} \beta_t$ (with f(x) = B when N(x) = 0).

EXAMPLE 5.0. (I, \mathcal{B}, m) is [0, 1] with Lebesgue measure. Consider a sequence $A_1 \supset A_2 \supset \cdots \supset A_t \supset \cdots$ with A_t in \mathcal{B} and $m(A_t) = (t+1)^{-2}$. Denote $N(x) = \sup\{t; x \in A_t\}$, with N(x) = 0 if this set is empty. Then f defined by

$$f(x) = \frac{1}{2}$$
 if $N(x) = 0$
$$f(x) = \frac{1}{2} \left[1 + N(x) + 1 + \frac{1}{2} + \dots + \frac{1}{N(x)} \right]$$
 if $N(x) > 0$

is resisting (take $\beta_t = (t+1)/2t$, $t = 1, 2, \cdots$).

PROPOSITION. Gf is resisting when f is resisting. Furthermore

$$\sum_{t=0}^{\infty} m(A(G^t f)) < \infty.$$

PROOF. The function f being defined by $(\beta_t)_{\geq t}$ and the rv N, it is easy to check that

$$Gf(x) = \frac{B}{\beta_2} + \sum_{t=2}^{N(x)} \frac{\beta_t}{\beta_2}$$

(with $Gf(x)=B/\beta_2$ when $N(x)\leq 1$). This shows that Gf is resisting and defined by $(\beta_t')_{t\geq 1}$ and the rv N, with $\beta_t'=\beta_{t+1}/\beta_2$ and $N'=(N-1)^+$. Trivially $1-m(A(G^tf))=\beta_{t+2}/\beta_{t+1}$ and $\prod_{t=0}^{\infty}(1-m(A(G^tf)))=B$.

THEOREM 4. Let f in \mathscr{L} , $A_1 = A[f]$, $\alpha_1 = 1$, $A_t = A[G^{t-1}f]$ and $\alpha_t = \prod_{t=1}^{t-1} (1 - m(A_i))$ if t > 1. Then $\lim_{t \to \infty} \alpha_t = 0$ and $f = \sum_{t=1}^{\infty} \alpha_t \mathbf{1}_{A_t}$ a.e. if and only if for any $t \ge 0$, $G^t f$ is not resisting.

PROOF. The "if" part has been proved by the preceding proposition. We show the "only if" part. Clearly $\lim_{t \to \infty} \alpha_t = 0$ implies $f = \sum_{t=1}^{\infty} \alpha_t \mathbf{1}_{A_t}$ a.e.

Suppose that $\lim_{t \to a} \alpha_t = K > 0$. This implies that $\sum_{t=1}^{\infty} m(A_t) < \infty$ and $\sum_{t=1}^{\infty} \mathbf{1}_{A_t} < \infty$ a.e. We can introduce the rv M by $M(x) = \sup\{t; x \in A_t\}$ M(x) = 0 if this set is empty. We have $M < \infty$ a.e. From the definition of G:

$$(5.2) f = \alpha_1 \mathbf{1}_{A_t} + \cdots + \alpha_t \mathbf{1}_{A_t} + \alpha_{t+1} G^t f.$$

Since $\mathbf{1}_{A_t}(x)=0$ if t>M(x), one deduces that $G^tf(x)<1$ if t>M(x) and $\alpha_{M+1}G^Mf=\alpha_{t+1}G^tf$ if $t\geq M(x)$. Since $\lim_{t\to\infty}\alpha_t=K>0$, we get $G^Mf\leq K/\alpha_{M+1}$. Using the fact that G^tf is in $\mathscr L$, we write now

$$(5.3) 1 = \int_{M \le t} G^t f \, dm + \int_{M > t} G^t f \, dm .$$

But $G^t f \leq f/K$ (from (5.2)). Hence $(G^t f)_{t=1}^{\infty}$ is uniformly integrable and $\int_{M>t} G^t f \, dm \to_{t\infty} 0$. Replacing $G^t f$ by $(\alpha_{M+1}/\alpha_{t+1})G^M f \, dm$ in the first integral of (5.3) and doing $t \to +\infty$ we get from (5.3):

$$1 = \int_I \frac{\alpha_{M+1}}{K} G^M f \, dm \, .$$

The inequality $G^M f \leq K/\alpha_{M+1}$ implies now that $\alpha_{M+1} G^M f = K$ and $\alpha_{t+1} G^t f = K$ if $t \geq M$. Doing $t \to +\infty$ in (5.2) we get:

$$f=K+\sum_{i=1}^{\infty}\alpha_i\mathbf{1}_{A_i}$$
 and $G^tf=rac{K}{lpha_{i+1}}+\sum_{i=t+1}^{\infty}rac{lpha_i}{lpha_{t+1}}\mathbf{1}_{A_i}$ if $t>0$.

From the definition of $G: \mathbf{1}_{\mathcal{C}A_{t+1}}G^tf < 1$. The last equality gives:

(5.4)
$$\frac{K}{\alpha_{t+1}} + \sum_{i=t+1}^{\infty} \frac{\alpha_i}{\alpha_{i+1}} \mathbf{1}_{A_i \cap \mathscr{C} A_{t+1}} < 1.$$

We deduce from (5.4) that there exists t_0 such that $A_{t_0+1} \supset A_{t_0+2} \supset \cdots$. To see this, we can take t_0 with $\alpha_{t_0+1} \leq 2K$. Then if $t_0 \leq t < i$ we get $K/\alpha_{t+1} \geq \frac{1}{2}$ and $\alpha_i/\alpha_{t+1} \geq \frac{1}{2}$; then (5.4) implies that $A_{t+1} \supset A_i$.

We claim now that $G^{t_0}f$ is a resisting function. Define $\beta_t = \alpha_{t_0+t}/\alpha_{t_0+1}$ and $N = \sup\{t; x \in A_{t_0+t}\}$, with N = 0 if this set is empty. A simple computation shows that $G^{t_0}f$ is the resisting function associated to $(\beta_t)_{t\geq 1}$ and N.

REMARK 5.1. The class \mathcal{L}_r of functions f in \mathcal{L} such that $G^t f$ is resisting for some t is small: f in \mathcal{L}_r implies that the distribution of the real rv f is discrete and unbounded.

REMARK 5.2. The method of proof of Theorem 4 can be used to show that if f is in $\mathscr{L}\setminus\mathscr{L}_r$, and if N is the number of visits to $[1, +\infty)$ by the process $(G^t f)_{t\geq 0}$, then $\{N < \infty\} = \bigcup_{t=0}^{\infty} \{G_t f = 0\}$.

REMARK 5.3. $S_1(f)$ is never empty. Even if f is in \mathcal{L}_r , we could take $A_1 \in \{f \ge 1\}$ such that $(f - \mathbf{1}_{A_1})(1 - m(A_1))^{-1} \notin \mathcal{L}_r$.

REMARK 5.4. One can study the class of functions f such that $\sum_{t=1}^{\infty} \mathbf{1}_{A(G^t f)} < \infty$ a.e. We shall say that f in $\mathscr L$ is absorbable if there exist a sequence $(\beta_t)_{t \ge 1}$, with $\beta_1 = 1$, $0 < \beta_t \le 1$, $\beta_t \beta_{t+2} \le \beta_{t+1}^2$ and $\lim_{t \to \infty} \beta_t = 0$, and an rv N valued in $\{0, 1, 2, \dots\}$, whose the distribution is given by $m(N < t) = \beta_{t+1}/\beta_t$, such that

$$f(x) = \sum_{t=1}^{N(x)} \beta_t$$

(with f(x) = 0 if N(x) = 0).

Examples. (I, \mathcal{D}, m) is [0, 1] with Lebesgue measure. Consider a sequence

 $A_1 \supset A_2 \supset \cdots \supset A_t \supset \cdots$ with A_t in $\mathscr B$ and $m(A_t) = 1/(t+1)(t+2)$. Denote $N = \sup\{t; \ x \in A_t\} \ N = 0$ is empty. Then $f = \sum_{t=1}^{N(x)} 1/t$ is absorbable (take $\beta_t = 1/t, \ t = 1, 2, \cdots$). With $\beta_t = \exp{-(t-1)^{\alpha}}$ with α in (0, 1), we could get a bounded absorbable function.

One can prove that Gf is absorbable when f is absorbable. In that case $\sum_{t=0}^{\infty} \mathbf{1}_{A(G^t f)} < \infty$ a.e. Conversely if f is not in \mathscr{L}_r and if there exists t_0 such that $A(G^t f) \supset A(G^{t+1} f)$ for $t \ge t_0$, then $\sum_{t=0}^{\infty} \mathbf{1}_{A(G^t f)} < \infty$ a.e. imply that $G^{t_0} f$ is absorbable. The method of proof is the same as that in Theorem 4.

REMARK 5.5. We do not know whether $E(T) = \sum_{t=1}^{\infty} \alpha_t$ is finite when f is bounded (notations of Theorem 4, f not in \mathscr{L}_r). Trivially $||f||_{\infty} = E(T)$ if and only if $m(A_1 \cap A_2 \cap \cdots \cap A_t) > 0$ for all t.

REMARK 5.6. If f is bounded, G^tf is bounded, but not uniformly with respect to t: in the examples of Remark 5.4, take f absorbable and $\beta_t = \exp{-(t-1)^{\frac{1}{2}}}$: we get $||G^tf||_{\infty} = K \exp{t^{\frac{1}{2}}}$ (K being a constant).

REMARK 5.7. The sets $(A_t)_{t=1}$ can be independent: if (I, \mathcal{B}, m) is [0, 1] with the Lebesgue measure, we take f(x) = 2x.

REMARK 5.8. If $I = \{0, 1\}$ and $m(0) = m(1) = \frac{1}{2}$, we take f(0) = 2q and f(1) = 2p with p + q = 1 and suppose that the binary expansion of p, $p = \sum_{i=1}^{\infty} \varepsilon_i / 2^i$, with $\varepsilon_i \in \{0, 1\}$, contains an infinite number of 0 and 1. Then

$$G^t f(1) = 2 \sum_{i=t+1}^{\infty} \frac{\varepsilon_i}{2^{i-t}}$$
 and $G^t f(0) = 2 \sum_{i=t+1}^{\infty} \frac{1-\varepsilon_i}{2^{i-t}}$.

REFERENCES

- [1] Sowey, E. R. (1972). A chronological and classified bibliography on random number generation and testing. *Internat. Statist. Rev.* 40 355-371.
- [2] Von Neumann, J. (1951) (1963). Various techniques used in connection with random digits, in Monte-Carlo Method. Applied Mathematics Series No. 2, National Bureau of Standards, 36-38. Also Collected Works. Pergamon Press, 5 768-770.

U.E.R. DE MATHÉMATIQUES UNIVERSITÉ PAUL SABATIER 118, ROUTE DE NARBONNE, 31077 TOULOUSE CÉDEX (FRANCE)