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ON THE DISTRIBUTION OF THE MAXIMUM OF THE
SEQUENCE OF SUMS OF INDEPENDENT
RANDOM VARIABLES

By T. GERGELY AND 1. I. YEZHOW
Central Research Institute for Physics and University of Kiev

Let £, &, -+ - be independent random variables. The distribution of
max (0, &, &1 + &z, -+, &1 + « -+ + £n) is investigated by means of a method
based on the construction of certain events with easily determined prob-
abilities. These yield a new formula for the distribution of the maximum
which is sometimes more useful than that given in literature.

0. Introduction. Let &, ¢,, ... be independent random variables. In this
paper the distribution of max(0, §,, &, + &, -+, & + -+ + &,) is discussed.
Distributions of this kind appear in several applications of probability theory,
e.g. in queuing theory, in reliability theory, etc.

In [1], [2], [3], [4], [6]. [7] different methods can be found for obtaining a for-
mula for the maximum’s distribution in the case where &,, &,, - - - are identically
distributed.

The method investigated here leads to a new formula, which is sometimes more
useful than that given, e.g. in [2].

In Section 1, a lemma for the maximum-distribution of the sequence consisting
of differences of arbitrary integer-valued random variables is proved by a new
method. By means of this lemma the main theorem is proved.

In Section 2, two special cases are investigated, namely, in 2.1 &, §,, ... are
independent, bounded from below, integer-valued random variables and in 2.2
they are identically distributed. In the last Section the asymptotic behavior of
the case described in Section 2.2 is discussed.

1. The main theorem. The proof of the main theorem for the distribution
of the maximum of partial sums of independent integer-valued random variables
is based on the following.

LeEMMA 1. Let {o,,n = 0} be an arbitrary sequence of integer-valued random
variables. If n > m, then forall | = 0

Plmax (o, —o,,m < k < n) =1}
= P{Gn — 0, = l} + Zz;in Z;‘o:l Z;lo [P{Gk — 0, = l’
(1) Opy1 — 0y = —i — j,max(s, — o, k + 1 <r<n) =i}
—Plo, —o,=14j, 00 —0, = —i—}
max(c, — o, k+ 1= r<n) =i}.
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Proor. Let us introduce the events

A ={max(o, — o, m <k <n) =1}, B={o,—0,=1},
Ci=lon—on=lLop—0,=l—i—jmax(o, —o,, k<r=n=I1-—j},
D, ={o,—o,=14j,0,—0,=1—imax(o, —0,, k<r<n)=1},
C=Uisn UL UL Chyis D = Uiz U Uio Dy -
It will be shown, that
(2) A=BUC)n 4 and D=BuUuC)n A

where A° is the complement of A.

Let event A take place. If 6, — o, = I then B takes place. Butif ¢, — g, <!
then that maximal index for which ¢, — ¢,, = [ will be designated by k (m < k < n).
Theno,,, — 0, =1—t(t >0)and max(o, — o, k<r<n=101—j(G=1).
Therefore the event C,; ,_, (f = j) takes place and with it C too. Thus the first
equality in (2) is proved.

Let B n A° take place. Then o, — g, = [ and there exists at least one such
index v (m < v < n), for which o, — ¢, > I

Let k be denoted as the maximum of all such indexes v and accept that
op,—0,=14+j(G=1). If 6,0y —0, =1—1i (i =0) then D, takes place.
Therefore B n A° C D.

If C n A° takes place, then there exists m < v < k < n such that ¢, — 7,, > 1,
6y, —0p=1 04y —0,=1—i—j, and max(s, — o, k<r=nm=101—j
(20,2 1).

If © is the maximum of such indexes v and 69 — 0, =1+ (@ Z k,j’ = 1)
then for some i’ > 0 ¢q,, — 0,, = — i’ and Dy, takes place. Therefore
Cn A c D.

Since D and A are disjoint it is still necessary to prove the inclusion

3) DcBuUC

in order to prove the second equality in (2).

Let D take place. If o, — ¢, = [ then B takes place. However if ¢, — 7, <,
then there exist such values k, i, j, that ¢, — 0, =1+ j, 64y — 0, =1 — i,
max (o, — o, k<r<n=1o0o,—0, <l

Let us designate p as the maximal index, for which ¢, — 0, =1 (k < p < n)
and take 0,,, — 0, =1 —j (j/ = 1).

It is evident that for some j* = 1 max{(o, — o,, 0 <r=<=n)=1—j* (j* <))
and C,,. ;_,. takes place. Herewith (3) is proved.

Events B and C are disjoint. According to (2)

P(A) = P(A 0 B) + P(A n C)
P(D) = P(A4°n B) + P(A° n C)
from where
P(A) = P(B) + P(C) — P(D)
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or
P(4) = P(B) + Zizh 55 D20 [P(Ci) — P(D, )],
which is identical with (1). The lemma is proved.

CoroLLARY 1. If {s,,n = 0} is an arbitrary sequence of integer-valued random
variables satisfying the condition

Plo,, — o= —1}=1

for all k, then
P{max (o, — 0,,m < k = n) =0}
=P{"n‘am:0}+ Zz;:n[P{gk—amzo’”k+1‘gk= -1,
4 max(o, — o,k +1<r< n) = 0}
—Po,—0,=1,0,,, —0, = —1,
max (s, — o,k +1<r< ”j = 0}],
and

Plmax (s, — 0, m < r < n) =1}
(%) = Plo, — 0, = 1}
+ 24w Plo, — 0, = l,max (¢, — 0,k < rsn=1-1}.
Let£,¢,, ... be independent integer-valued random variables.

(6) O = Pl + Eppy o L &, = k), o = plrim
(n>mz=0,k=0,+1, ce)
THEOREM. If

g, =0, ()',n:fl-i—-...—‘—fn (n=1,2,---),

and
@) Plmax (s, —0,,m < k < n) = I} = ptmn
then
(8) pm = o 4 TS a1 00> m =0)
where
) AP = X5 (o — plminplern,

Proor. Since ¢, &, -+ . are independent integer-valued random variables,
then

Plo, — 0, =q,0,,, —0, = S, Max (v, — o, k+1<r< n) = i}
=plo — 0, = }Ployy, — 0, = s}
X P{max (o, — ¢,,,, k + 1 =r<n =i},
where ¢, 5,i = 0, +1, +2, ...,
Using this and the notations (6) and (7), from (1) we obtain (8). The theorem
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is thus proved. The equation (8) enables us to find p,[™"). Let
A = (L2 0}, et = (o 1 2 0)
be vector-columns and
Atk — ||almk; [, § = 0| be a matrix.

Then in accordance with (8)

(10) ﬁ[m,n] — p[m,n] + Z,;:=m+l A[m,k—l]#[k,n] (0 é m < n)
and
(1) pmm = ptrnl = (5,112 0} = 0.

Employing these equations we have:

‘u[n—lyn] — p[n—l,n] + Aln=1,713 ,

”[n—z,n] — p[n—2,n] + A[n—2,n—2]p[n—l,'n] + (A[n—Z,n—Z]A['n—l,n—l] + A[n—z,n—l])a’
and in general

P = PP T iy AT AR L ATk plie)
or

N — kq, ks k - k.,
(12) proml = plronl 4 Zz—l 0 Zk0<k1< <kysn TTizh Atkikin Hplkinl
2. Special cases.

2.1. Let &, &, - .- be independent integer-valued random variables bounded
below, i.e. for some fixed integer ¢ = 0 and for all k =1, 2, -
(13) Plg,z —c)=1.
In this case from (9) it follows that for i = ¢ aj*! = 0, and fori < ¢
(14) dp = T (o — ool (OSise—1).

Therefore from (8) we obtain
(15) plml = pm 4 3z N ettt (1=0,1,--0)

It follows from this, that g,i™" for I > ¢ can be expressed very simply by means
of g™ (i < ¢,k > m). Therefore only the probabilities z™" (0 =1 <c¢,
n > m = 0) need to be defined. Let

pI = (0 S IS e — 1), pl = (oM, 0<I<c— 1)

be vector columns and A ["~*1 = ||a[’" *51,i =0, ...,c — 1]| be a matrix. On
the analogy of (12) we have:

(16) gl = p tmel iy Zmo<m1< <mizm Hz 14 m mjt1=1lp [min]
iS
where
1

#c[n,n] = pc[n’n] = 80 =
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Note. If ¢ = 1 (that is, all the £, do not assume to take less then —1), then

N — N — N [m .k k+1 k+1,
M=o m o FiRsl (oM — ol etk p kel
] — » - i~ jrm =1
(17) /"O[mo "= po[mo ™ + Z?ﬂmo Zmo<--~<miSn H73'=0 (po[m’ ™1l

— pyt"i it ) plninlg menl

It is noteworthy that (17) easily follows from (4).
2.2. Suppose now that &, &, ... are independent identically distributed

integer-valued random-variables, i.e. foralln = 1,2, ...

P =k =p,, P+ - +&=kK=p" (k=0,%1,...).
Then

Plmax (o, — o, m <k <n) =1} =pi*™ (=0,1,...;n>m).
If

aif! = 15 (0™ — el i 5

then, according to (8)

(18) w™ = " 4 Fi Y, affip v (lz0,nz=1);
whence passing over to generating functions we get

(19) 1(2) = 0i(2) + 2 i au(2)pa(2)

where

2in=o ™Mz = py(2) Ziw=o M2 = py(2) , D= APz = a,(2)
@H1=0,1,..5)z7] = 1),
(18) is nothing other than an infinite system of linear algebraical equations con-

necting with functions y,(z).
Let

#(2) ={m(2); 120}, p(2) = {pi(2); 1 = 0}
be vector columns and zA(z) = ||za,(z); [, i = 0|| be a linear operator in the
Banach space of bounded sequences x = {x;; / = 0};
[|1X]| = sup, |x,| , ZA(z)x =y,

Y ={z o a(2)x,, 1 2 O}, |[zA(2)|| = 2] sup, o a1(2)]-
In this notation (19) takes the form:

(20) £(2) = p(z) + 2A()p()
Let us suppose:
(21) E = {z: sup; 215 |0u(2) — o1 (2IP(E = —j} < _éi} '

Then ||zA(z)|| < 1if ze E. Therefore (20) has one unique bounded solution if
all ze E:

(22) #(2) = | — zAQ)|*p(2) (ze E).
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Here Iis the identity operator and |I — zA(z)|~* the inverse operator of I — zA(z).
If the set E includes at least one accumulation point then by means of the prin-
ciple of extension of analytic continuation, the right part (22) enables the vector
#(z) to be uniquely determined over the whole domain of analyticity. In the
domain of analyticity of the vector g(z) the open sphere |z| < 1 is always in-
cluded. It is a sufficient condition that E contain some neighborhood of 0, e.g.
the following:

(23) L PG = —jt = Diane, < oo,
In fact in this case

1
L+ Yo no_,
Note that the condition (23) is equivalent to the fact that M¢, is either final or
equal to +oo. And thus, if

Az) = || 251 |eu(2) — o1 i(@DNPo—vis i = 0|,

{z:|z|< }cE.

and
| — zA(2)| 7 = Xa=o 2" A™(2) = ||by(2); 1, i Z O[] ,

then, according to (21)
(24) w(2) = 230 biu(2)ei(2) (1z0).

The convenience of the right part of (24) is that it can be simplified by means
of assumption (13). Thus, let (13) be satisfied, that is

Z?co=—c Aok = l .

According to (18) in the definition only (z), - - -, ¢,_,(z) are needed. Introduc-
ing the matrix

A(2) = | 254 10u(2) — o1 s@o—iuis Li=0, -y — 1],

and the vector-columns g (z) = {¢,(2); 0 S I < ¢ — 1}, p(2) = {0)(2); 0 S I <
¢ — 1} we obtain

(25) #(2) = p(2) + 24(2)p(2) -
Solving the already finite system of linear algebraical equations (25) we get
(26) m(2) = 25 bi(2)eu(2) 0sl=<c—1

where the matrices
165(2); i =0, -+, c— 1| and I — zA(2)
are inverse with respect to one another.
REMARK. In the special case ¢ = 1 we have for any [ > 0

po(2)z* 4"
— 2p_4[0(2) — p:(2)]

” n n— 1
(27) ™ = o™ + p_y ZE5 (0 — pft) — §.-,
2mi 1
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where y > 0 is sufficiently small, for example it is obviously sufficient to require
that

1
1+,

3. The asymptotic behavior of y,!" as n — oco. Let &, &,, ..., be the same
sequence as in Section 2.2. Let

r <

{, = MaXygc, 0, = Max (0, &, & + &, -, &+ -+ + &)

Since

max (0,6, & + &, -+, & 4+ oo + &)
=max(0,§, 4+ max (0, &, &+ & -, 6+ -+ + 6,))
and max (0, &,, & + &, -+, & + - -+ 4 &,) has the same distribution as {,_, and

is independent of &, , has the same distribution with all n as {,*, where {{,*}
is homogeneous Markov chain which satisfies the following condition:

(28) L*=0, &Y =max(0,{,* + &) (n=0,1,...);

&, is independent of {,* and has the same distribution as in Section 2.2.
Thereby the problem is reduced to the determination of the stationary distribu-
tion of the homogeneous Markov chain {{,*}. Let

lim,_,, P{C,* = [} = lim,_, 1,/ = 1, (n=0).
According to (28) we have;
Mo = im0t 2uis—k Oi s M= %0 kP (l > O) .
Let us assume that p_,,,, = 0_45 = +++ = 0. Then
(29) M= 20 01 (I=12,...).
Let us introduce the generating function:
Do 2t = p(2) (21 =1).
According to (29),
— 1 . S'e_ .o zi—t
(30) u(z) = Ho D=0 i 2= Pi
1 — o(2)

where p(z) = Mz%. The numerator on the right side of (30) contains ¢ 4 1
unknown g, g, - -+ f,. Let us show how to obtain these values. 1 — p(2)
corresponding to Rouche’s theorem [1] has roots in the domain of |z| < 1. Each
root is regarded as the same number as is its multiplicity. In fact

1 ite
L—p(2) = — (£ — D ™)
and on the boundary |

e =1 n(z—-1>uz<T)n(z =1 =¢)]
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where ¢ is a suitable small positive number we have

|2 > | D P2 -
Let us denote the roots of the equation 1 — p(z) = 0 belonging to the circle
|z <1, by 1, @, ---,a,_,. Since y(z) is an analytic function in that circle, it
therefore follows from (30) that
(31) Po— D=0t 25=i 0 =0
Po— D=0ty 28=i Pyt =10 I=s=m<c—1).
Further #(1) = 1. Applying the I’Hospital’s rule we get:

(32) 1 = Z;’=o Ui Z§=a‘ (] - i)p—i .
ME§,

By doing so the determination of s, - - -, p, is reduced to the solution of the
system of linear algebraic equations (30)—(32). In particular, from (32) it fol-
lows that M&, < 0. In our propositions concerning the distribution &, this condi-
tion is necessary and sufficient in order that

SUPiz0 0 = 4

be a proper random quantity (see for instance [8]). Note that if there are mul-
tiple roots among the roots a;, then the system of equations (31) contains more
unknown quantities than equations. We are able to get the missing equations
by equating to zero the corresponding derivatives of the numerator in (30).

ReMARK. If ¢ = 1, then

to = (@0 + P_1) + o1 ME&, = —p_,
or

(33) o= — L M,  p(z)= Mg, L—Z .
[ z — zp(2)

By employing elementary transformations, x(z) can be reduced to the form

(34) uz) = %4(7)
where
AD) = Draaz, e = i PR (i=1).
Take a,* = a,, and if £k > 1
a*™ =0, i<k
= Nit a5 Va,_,, k<i.

Then }332, a*'z* = A*(z) and, according to (34)
(35) Py = o Dk=o @ (iz0).
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