The Annals of Probability
1975, Vol. 3, No. 2, 262-280

ON THE EXISTENCE AND PATH PROPERTIES OF
STOCHASTIC INTEGRALS!

By OrLAv KALLENBERG
Universities of Goteborg and North Carolina

We study stochastic integrals of the form Y(¢) = S(‘, VdX,t =0, where
X is a process with stationary independent increments while ¥ is an adapted
previsible process, thus continuing the work of Itd and Millar. In the case
of vanishing Brownian component, we obtain conditions for existence
which are considerably weaker than the classical requirement that V2 be
a.s. integrable. We also examine the asymptotic behavior of Y(z) for large
and small ¢, and we consider the variation with respect to suitable func-
tions f. The latter leads us to investigate nonlinear integrals of the form

§ AV aXx).

The whole work is based on extensions of two general martingale-
type inequalities, due to Esseen and von Bahr and to Dubins and Savage
respectively, and on a super-martingale which was discovered and explored
in a special case by Dubins and Freedman.

1. Introduction. The history of stochastic integrals goes back to the early
work of Paley, Wiener, and It (see McKean (1969)), who defined the integral
{1 VdX in the case when X is a Brownian motion while V is an adapted [17]
random process with paths a.s. in L,[0, 1], i.e. such that

(1.1) V= (VD) dt < oo as.

Later on, Doob, Courrége, Doléans-Dade and Meyer (1970), and Millar (1968),
(1972) extended the definition to quasi-martingales X and previsible [20] pro-
cesses V satisfying

(1.2) (3 1V2dd = {5 (V)P dA() < oo a.s.,

where A is the natural increasing process associated with X. Millar (1972) also
studied the path behavior of the process {{ V'dX, t = 0, in the special case when
V is a.s. bounded while X has stationary independent increments (in which case
(1.1) and (1.2) become equivalent), and he showed in particular how several
properties known for X itself carry over to { VdX.

The investigation of the case when X has stationary independent increments
is carried further in the present paper. In Section 3 we give conditions for the
existence of § ¥ dX, which in particular cases are shown to be the best possible
and which, in case of vanishing Brownian component, are substantially weaker
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than (1.1). In particular, it follows from our results that, if X has index 8 < p
in the sense of Blumenthal and Getoor (1961), then { ¥ dX can be defined as a
random process in D[0, 1] for any process ¥ whose paths lie a.s. in L,[0, 1].
Section 4 is devoted to a study of the asymptotic behavior of {{ V'dX, both as
t— 0 and as t — oo (without any further restrictions on V), and of the con-
tinuity for fixed X of the mapping ¥ — §{ VdX. In the concluding Section 5,
we give some variational results which lead us to introduce nonlinear stochastic
integrals of the form { f(V dX). The whole work is based on extensions of two
general inequalities, due to Esseen and von Bahr (1965) and to Dubins and
Savage (1965) respectively, and on a super-martingale which was discovered and
explored in a special case by Dubins and Freedman (1965). These extensions
are given in Section 2.

The following function classes will be used throughout the paper:

F ={f:R—R,; f#£0, f even and continuous with f(0) = 0,
f1 on Ry},

F,={feF:f concaveon R,},

F,={f e F:[f absolutely continuous, f’ concave on R,
with f'(04) = 0},

Fa={feF {7 () du < oo}

We define inverses of such functions f by f~*(x) = sup{y = 0: f(y) < x}, x = 0.

2. Some results on martingale-type sequences. In this section, let % C
&7, C ... be g-algebras in the sample space, let the sequence {§,} of random
variables be adapted [17] to {%,}, and put X, =&, + .- 4+ §,, ne Z,. Our
first lemma extends a result by Esseen and von Bahr (1965) (cf. [2]).

LeEmMA 2.1. Suppose that either fe 5, or that fe &, and E[§,,,|X,] =0
a.s., ne N. Then
(2.1) Ef(X,) < Ef(§) + 2 25 Ef(€)) » neN.
Note that the factor 2 in (2.1) may be replaced by 1 for fe &, and by 2*-?

for f(x) = |x|]?, pe(1,2] (cf. [2]). Similar improvements are possible in all
subsequent formulae based on (2.1).

Proor. The case e &, being trivial, we need only consider the case when
fe F,and E[¢,,,|X,] = Oa.s.,ne N. If we can prove the elementary inequality

(2.2) fla + x) < f@) + xf"(a) + 2f() , a,xeR,
then (2.1) will follow as in [2]. For a, x = 0, we get by concavity
fla + x) — flay — xf'(a) = Vi [f(a + u) — f/(a)] du
= G/ — fO)du = f() »
and (2.2) follows. Next define, for fixed a > 0,
F(x) = f@) — xf'(a) + f(x) — fla — %) , x20.
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Then F'(x) = — f"(a) 4+ f'(x) + f'(a — x) is concave while F'(0+) = F'(a—) = 0,
s0 F = 0 on (0, a), and hence F is nondecreasing on [0, a]. But f(0) = 0, so
we get F/ = 0 on [0, ], proving (2.2) for x € [—a, 0]. Finally note that f’ must
be nondecreasing on R, since otherwise f(x) < 0 for large x. Hence for x > a

Fi(x) + f'(x) = = f'(@) + 2f'(x) + f'(a — %)
=1f') = @]+ [f'(0) — f((x —a)] =z 0.
Since F(a) 4 f(a) = 0, we get F + f > 0 on [a, co), proving (2.2) for x < —a.
This completes the proof of (2.2) for @ > 0. Its truth for a < 0 follows by
symmetry. []

Our next lemma extends a result by Dubins and Freedman (1965). Here and
below, 8 is to be interpreted as 0.

LEMMA 2.2. Let g € .7, and suppose that either fe &, or that f ¢ 7, and {X,}
is local martingale [17]. Define

(2'3) Yn = Z?:l E[f(s;) I '%—1] B ne Z+ s
= _f(_x) © du
(2.4) o(x,y) ooy T ° i R XeR,y=z0,

where ¢ = 2. Then Q(x + X,,y + Y,), ne Z,, is a super-martingale for each
xeRandy > 0, and also for x =y = 0.

Proor. Let xe R and y € (0, o], let £ be a random variable such that E£€ = 0
in the case fe &, and put Ef(§) = a. If y 4 a = o, then O(x + &,y +a)=0,
and it follows trivially that EQ(x + &, y + a) < Q(x, y). But this inequality is
also true for y 4+ a < oo, since by Lemma 2.1

E , < f(x) 2a
Crrsr+as 9y +a)  9(y +a)

du
+2 ma’__
Sy+ g(u)

SO) L A 5 fiyre A0 a
S 90T Y 0w 2 i)
= 0(x,y) .

If x =0, it follows by monotone convergence that we may even take y = 0
here. Induction completes the proof. []

CoROLLARY 2.1. Let f, g, {X,} and {Y,} be such as in Lemma 2.2. Then {X,}
is a.s. convergent on {Y,, < co}, while on {Y, = oo}, X,/fg(Y,) — O a.s.

This extends a result in Neveu (1972) page 150, (as was pointed out by the
referee). An interesting choice of fand g might be f(x) = |x|?, p € (0, 2], and
9(y) = y(logy)*, ¢ > 1.

PrOOF. On{Y,, < oo} it follows from Lemma 2.2 that {f(x + X,)} converges

a.s., so the same thing must be true for {X,} since x is arbitrary. On {Y,, = oo},
it follows from the same lemma that f(X,)/g(Y,) — some p < oo a.s. For large
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ne N we now define 7, > 0 by {7 (9(x))~'du = 3~". Putting g,(u) = (3)"9(4),
uelt,_, t,), neN, and h(y) = sup {g,(¥): u < y}, it is seen that even h € &7, so
we get f(X,)/h(Y,) — some p' < oo a.s., asabove for g. But since 4(y)/g(y) — 0
as y — oo, this implies p = O a.s. Finally use the fact that f(2x)/f(x) < 4, x > 0,
to complete the proof. []

LemMMA 2.3. Letf, g, {X,} and {Y,} be such as in Lemma 2.2. Then

P{su S S 2. du €e>0,y=0,
P Ty 2 S g ’=
and in particular

2
2.5 P XN —aY,]z2bt s — =, , b , 1.
@5 Plup [ —aVl 2o} S o @b>0,p>

This is essentially an extension of a result by Dubins and Savage (1965) (see
also [6], [17], [20]), who consider the special case f(x) = g(x) = x*. The proof
is similar to that of (29) in [6], once Lemma 2.2 is established. Contrary to the
Dubins-Savage inequality, (2.5) has no content for small ab?-*. However, it
may be shown that, if f(x) = |x|? in (2.3), pe (1, 2], then

P{sup, (X, — aY,) = b} < [1 + c,a/?~Vb]~?*1, a,b>0.
(Here and below, ¢, denotes some positive constant depending on p only.) This

follows as in [7], [17] from the following result of some independent interest,
(cf. Doob (1973) for the case p = 2). We omit the elementary but tedious proof.

LEMMA 2.4. Let & be an integrable random variable and define for p € (1, 2]

9,(x) = (1 = )77, x<0,
=1 . X g 0.
Then
Eg,(2) = 9,(E€ + ¢, E[c]) .

3. Existence of stochastic integrals. For the remainder of the paper, let X
be a random process in D[0, co) with stationary independent increments and
X(0) = 0, and define the Lévy measure 4 and the parameters ¢ and 7,, ¢ > 0
(even ¢ = 0 or o if possible), by the formula

3.1 log Ee™*® = iuy, — 3u*e® + § <. (€™ — 1 — iux)A(dx)
+ Vse (€ — 1)A(dx) .
To any fe &, we associate the function £, defined by
(32 f@) = (T f@DAd) + OfOw2 i f1(0) =0,
= 7o fun)A(dx) + Il O if o=0,

and the functions ﬁ, defined in the same way w.r.t. the restrictions of 2 to
[—e, €], e > 0. Let us further suppose that .27, ¢+ > 0, is an increasing family of
c-algebras in the sample space such that, for fixed t > 0, X{(¢) is .%,-measurable
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while the process X(t 4 5s) — X(¢), s = 0, is independent of .%7,. By V with or
without subscript we denote a random process on R, which is adapted to {97}
and previsible [20]. We shall say that V is simple if it is a step process with all
discontinuities belonging to some nonrandom finite set. For brevity, we shall
use the short-hand notation indicated by (1.1) and (1.2), and we shall often write
X{t} = X(t) — X(t—) for the jump size of X at ¢.

Following It6 (see [16]) and Millar (1972), we shall define the integral | V' dX
by a limiting procedure, starting from simple V' (for which { V' dX is defined in
the obvious way as a finite sum). For this purpose we need two lemmas, the
first of which extends a result in McKean (1969) page 23.

LemMma 3.1. Let fe # with limsup,_, f(2x)/f(x) < oo, and suppose that
{eofoV < oo a.s. Then there exist some simple adapted processes V,, V,, -- -
such that

(3.3) {efo(V,—V)—0 as.,
(3.4) (ifoV,—ifoV as., teR,.

If ESYfoV < oo, the V, may even be chosen so as to satisfy (3.3) and (3.4)
in L,.

Proor. By an obvious truncation argument, we may restrict our attention to
processes ¥ with bounded support, say in [0,1]. Let us first assume that f is
strictly increasing on R, with

2 _ o
3.5) SUp,, ol c<L 0.

Then

(3.6) Jx 4+ y) = ¢f() + <) x,yeR,

since for x, ye R,

fx+9) SfQxVY) = of(xVy) = f(X) V] = elf () + )]
Let us further suppose that V' is nonrandom and nonnegative, put V() = 0
for t < 0, and define V, () = V(t — x). By mean continuity ([11] page 199),
§|foV,—foV]|—>0asx—0,soweget

z

3.7 lim sup, _, §

% {Efo V,dx — fo V,

< limsuphﬁo—lli— \Bdx{|foV,—foV]=0,
and in particular,
(3.8) U, = [ (% {foV, dx) —V

in Lebesgue measure. Furthermore, (3.7) implies uniform integrability near
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h =0 of {f o U,} (cf. [15] page 162), and hence by (3.6) of {f o (U, — V)}, so
(3.8) yields

(3.9) lim,_gsup,., [§¢fo U, — §ifo V| =0, lim, ,§fo (U, —V)=0.
For general nonrandom ¥, we may approximate V* = Vv O0and V- = —V A 0
in the same way by processes U,* and U,~ and put U, = U,* — U,~. By (3.6),
{f o U,} is still uniformly integrable so (3.9) remains true. We next define

U(t) = Ui(jlk),  te(jlk, (j+ 1)/kl.jeZ, keN,
and conclude from uniform continuity that
(3.10) im, ., SUP,s [§6f o Uy — §5f 0 Uy = 0,
limk_meo(Uhk— h)=0, h>0.
By (3.6), (3.9), and (3.10),
lim,,_, lim sup,_,, sup,so|§¢fo Uy, — (5 fo V| =0,
lim,_, lim sup, ., §{ fo (U, — V) =0,
and hence, returning to random ¥ and letting n € N be arbitrary, we may choose
h and k such that V, = U,, satisfies
P{sup,so [§ifo Ve — §if o V] > 27" <277,
P{fo(Va—=V)>27 =2,

Thus (3.3) and (3.4) follow by the Borel-Cantelli lemma, while the last asser-
tion-follows by dominated convergence, since by (3.6), provided kk € N,

/o U = 1 Ssf o GG S S 5517 o U (IR + = U (1R0)

= i D5 S e VUK + f o V()] dx

= - LMo V(jkydx=cifoV

To get rid of the assumptions on f, let a > 0 be such that f(a) > 0 and let f
be the minimal even function > f which is concave on [0, a]. Then f is easily
seen to be continuous at 0, and in particular f*(b) > 0 for some b e (0, @). Next
define g(x) = f(x) 4+ (1 — e*=) v 0, and note that g belongs to &~ and satisfies
(3.5), and that g is strictly increasing on R,. Since clearly {1fo V < oo a.s.
implies {§g o ¥ < oo a.s. and similarly for the corresponding expectations, the
conclusions of the lemma hold with ¢ in place of f. This proves the asser-
tions involving (3.3), while those involving (3.4) carry over to f by uniform
integrability. []

LemMMa 3.2, Let fe & be strictly positive outside O and satisfy
lim sup, _, f(2x)/f(x) < co. Then {if o V, —, 0 implies

(3.11) 6fe (Ve —V,)—5»0, m,n— oo .
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Proor. If f satisfies (3.5), then (3.11) follows by (3.6). For general f, let f
be such as in the preceding proof. Since f is > fand satisfies (3.5), it is enough
to prove that {jfo ¥V, —,0 implies {j f o ¥, —50, and here it clearly suffices
to consider nonrandom ¥,. But in that case, the assertion follows easily by
continuity and uniform integrability. []

We may now state the main result of this section.

THEOREM 3.1. If {{fio V < oo a.s., t > 0, where f(x) = x> A |x|, then there
exists some a.s. unique process \{ VdX, t = 0, in D[0, co) such that

(3.12) sup,<, |§s Vo, dX — {3 VdX| -, 0, t>0,
for any sequence {V,} of simple processes satisfying \t fio (V, — V) —,0, 1> 0,
(the existence of which is ensured by Lemma 3.1). If ¢ = 0and {{§ o V < oo a.s.,

t > 0, g(x) = |x| A 1, then the above conclusion remains true with f replaced by g,
and furthermore, the Lebesgue-Stieltjes integral exists and equals § V dX a.s.

The last assertion extends with essentially the same proof a result by Doléans—
Dade and Meyer (1970), and by Millar (1972). As will be seen from the proof,
this is the only part of the theorem that requires previsibility. For any fixed X
with ¢ = 0, Theorem 3.1 yields a larger class of integrable processes than the
one defined by (1.1) (cf. [20]). In fact, since fj(u) = o(u?) as u — oo, it is easy
to construct numerical functions v such that §} 7, o v < co while {}v* = oco.
Similarly, the condition {}|V| < oo a.s., t > 0, is too restrictive in the case
when X has bounded variation and 7, = 0, since then §(u) = o(u). If X is stable
of index p, it follows from the theorem that { V' dX exists for any ¥ whose paths
lie a.s. in L,, and the same processes } are seen to be integrable whenever X is
such that {1, |x|?A4(dx) < coand ¢ = 0 (if p < 2)oro =7, =0 (if p < 1). We
finally point out the interesting fact that, for subordinators, the function § above
may be replaced by the exponent

—log Ee=**® = uy, + (& (1 — e~*%)A(dx) , u=0,
occurring in the canonical representation of X (cf. (3.1)).

Proor. We may clearly assume that ¥ and all the ¥, have support in [0, 1].
By a simple truncation argument [19], [20], we may further assume that 2 has
bounded support. In the proof of the first assertion, we may also take ¢ = 0
by [16], and since u/f(u) is bounded as ¥ — co, we may finally assume that
EX(t) = 0. For convenience, let us replace the function fabove by the equivalent
function f(x) = x*/(1 + |x|), which- clearly belongs to &, and is such that
f(W ) is concave on R,. If V is a simple process of the form

V=2baale, 0o O=t<t, < - <t, =1,
we get by Theorem 4.1 of Millar (1971), for any je {1, - .-, k},
(3.13) f E{f(al X(1) — X(t)D [, )
= 2 2 (s — 1) V2 fla, X)A(dx)
=220t —t)f(@) =2 fo V,
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so by (2.5) with p = 2, we obtain for any finite subset T C R,,

2
ab ’

(3.14) Plsup,., |f(1 VAX)|t 2 2a §3fo ¥ + b} < a,b>0),
which extends to T = R, by monotone convergence and right continility. Re-
turning to the case of general V" and approximating {V,}, conclude from Lemma
3.2 that (G fo (V,, — V,) —» 0 as m, n— oo. Foranye > 0, we may therefore
choose some n, € Nsuch that P{{} fo (V,, — V,) > ¢%/32} < ¢/2 whenever m, n > n,.
By (3.14), we get for such m and n

P{sup, |f(§§ (Vi — Va) dX)| = ¢}

< P{oup, [f(5 (Vo = V) AXP 2 22 i fe (V= V) + 2} +

[

~§e,
2

proving that
(3.15) sup, |§¢V,,dX — {4V, dX| —,0 as m,n-— oo .

By restricting m and n to some suitable subsequence N’ C N, it is even possible
to obtain a.s. convergence in (3.15), and so there must exist some process Y in
D[0, o) satisfying

(3.16) sup, |§; V, dX — Y(1)] > 0 a.s., meN' .

The proof of (3.12) is now completed by combining (3.15) and (3.16). To see
that any two approximating sequences {V,} and {V,’} lead to the same limit, it
suffices to consider the mixed sequence V,, V/, V,, V,/, .... The proof of the
second assertion is similar, except that Millar’s Lemma 4.2 (1971) replaces his
Theorem 4.1. []

The following simple property of § V' dX will be needed here and in Section 5.
LEMMA 3.3. With probability one,
(3.17) t_VdX = V(t)X{t}, t=0.

Proor. By the uniform convergence in Theorem 3.1, { V'dX has a.s. no
jumps outside those of X. For fixed ¢ > 0, write X as a sum of independent
processes X, and X/, where X, corresponds to the last term in (3.1). Then
clearly § VdX = { VdX, + § VdX_ a.s. (cf. Proposition 2.1 in [20]), and here
the last term may be interpreted as a Lebesgue-Stieltjes integral, so with proba-
bility 1 we get for all # = 0 with |X{t}| > ¢

t_VdX = ({_VdX, = V(t)X{t} = V(1)X{1}.
Since ¢ is arbitrary, this completes the proof. 0

For fixed nonrandom V, the existence or nonexistence of { V'dX as a random
process in D[0, co) satisfying (3.17) is an interesting sample path property of
X. We shall consider a simple case when it is possible to obtain necessary and
sufficient conditions for existence in this sense.
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THEOREM 3.2. Let v: [0, 1] — R, be absolutely continuous on (0, 1] withv’ < 0
and v(1) < 1, and suppose that either ¢ = 0 and

’ ’

3.18 —1 < timinf,_, 20 < timsup,_, 0 < 4,
( ) < t—0 oW S 1m sup;_,, o) 7
or that 6 = yy = 0 and

o t'(¢) . w'(1)
3.19 — lim inf, <1 o— < —1.
( ) oo < o _1msuptov(t) <
Then § v dX exists as a random process in D[0, 1] satisfying (3.17) iff
(3.20) (L v7Y(|x]™HA(dx) < oo,

and in that case it also exists in the sense of Theorem 3.1.

Thus, in this particular case, the sufficient conditions for existence given in
Theorem 3.1 are also necessary. For Brownian motion, a proof of the corre-
sponding statement may be found in [16]. Applying Theorem 3.2 to the product
vw where v(f) = w(f) = ¢}, we obtain a counterexample to the claim made by
Millar (1972) on the top of page 312.

ProOF. Suppose that ¢ = 0 and that (3.18) and (3.20) hold. If f(x) = x* A |x],
we get

§.fi0v = §Lix*(dx) §imrgeimy 0* 4 1L [X[2(dx) g0 0,
and from (3.18) it is easily seen that
{10 = O(u[v@)]?) , (¢ v = O(uv(n)) , u—0,
so by (3.20),
§3.fi0v = O(f v7(|x]7)A(dx)) < o0,

proving the existence of { v dX in the sense of Theorem 3.1. A similar argument
proves the existence under (3.19) when ¢ = 7, = 0. Conversely, when (3.20)
is false, it follows by the argument of Fristedt (1971) page 180 (see also Theorem
2.3 in [12]) that with probability 1, v(¢)|X{t}| = 1 for infinitely many ¢¢ (0, 1],
and so § v dX cannot exist. []

4. Asymptotic properties. We first extend Lemma 2.2 to stochastic integrals:

LeEMMA 4.1. Let ge &, and suppose that either ¢ = 0 and fe F, or that
EX(t) = 0 and fe & ,. Define Q by (2.4) with ¢ = 4. Then

(4.1) O(x+ \§VdX,y + i fo V), =0,
is a super-martingale for every x € R and y > 0, and also for x = y = 0.

Proor. Let EX(¢) = 0 and fe .&,. Since f(x?) is clearly concave on R,, the
assertion follows for simple ¥ by proceeding as in (3.13) and applying Lemma
2.2. In the general case, choose simple V;, V,, --- such that (3.4) (with f in
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place of f) and (3.12) hold a.s., and note that
(4.2) EQ(x + \¢V,dX,y + §ifo V,) < Q(x, ), xeR,y,t>0,neN.
Since f and g are continuous and g(y) > 0, we further have

O(x + \§V,dX,y + §¢fo V)
SQ(+ U VdX,y + i foV) as, n—ooo,

so by Fatou’s lemma, (4.2) remains true with ¥ in place of V,. By monotone
convergence, we may even take x = y = 0. The proof for ¢ = 0 and fe &,
is similar. [J

We may now extend Corollary 2.1 as follows:

THEOREM 4.1. Let ge . &, and suppose that either ¢ = 0 and fe ., or that
fe &, Then

(4.3) {f9(5fe VI §VdX >0 as.

as t— 0, and this is also true with f replaced by f,, ¢ > 0. If we further assume
that EX(t) = Oin casefe . ,, thenast — oo, {} V dX convergesa.s. on {{ fo V <
oo} while (4.3) holds on {\7 f, V = oo}.

Proor. The assertions for ¢ — oo follow as in the proof of Corollary 2.1 by
applying the a.s. continuity theorem for super-martingales ([15] page 526). The
same theorem applies for  — 0 provided EX(¢) = 0 when fe .5, so it remains
to consider the case when fe &, and X is arbitrarily centered. Let X’ be the
process obtained from X by deleting all jumps of sizes outside [ —a, b] for fixed
a, b > 0, and put ¢ = EX’(1). Suppose that the corresponding truncation of 4
changes f'to f* < f. Applying (4.3) to the process X'(f) — ct, t = 0, yields a.s.

4.4) lim sup,_, {f~*9(§¢ fo M)} Se VdAX — ¢ (V|
< lim, , {f~9(§¢f/ o )} VdX —c§i V]| =0,

since the limiting behavior of X as t — 0 is independent of the large jumps. If
A # 0, it is possible to choose a and b in two different ways leading to different
values of ¢. Applying (4.4) to the corresponding processes, it follows that

(4.5) {f9(§efe VIV —-0 as.,

and (4.3) follows by combination with (4.4). We finally have to prove (4.5) in
the case 2 = 0. Since clearly g(x)/x — oo as x — 0 and f(x) < x*""(0)/2, it is
enough to assume that g(x) = x and f(x) = x*"’(0)/2. But in that case, (4.5) is
a consequence of Schwarz’s inequality. []

For ¥V =1, Theorem 4.1 contains Millar’s Theorem 4.3 (1971), which in
turn improves some classical results of Blumenthal and Getoor (1961). It is
interesting to observe that, for stable X and V' = 1, (4.3) is close to the results
by Khinchine (1938). For arbitrary ¥ and X, our result for r — 0 extends Millar’s
Theorem 3.1 (1972). Note that the strongest possible conclusions from (4.3)
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are obtained by choosing g(x) close to x|log x|. If we content ourselves with
convergence in probability, it is sometimes possible to get rid of this logarithm
(cf. [19], [20]):

THEOREM 4.2. Suppose that either y, =0 =0 and fe &, or that ¢ =0,
{11 |x|4(dx) = oo and fe & ,, and let us further assume that

(i) either limsup,_, |V(1)] < oo a.s. or xf'(x)/f(x) 1 on R,, and
(ii) either lim inf,_, |V(¢)] > 0 a.s. or xf’(x)/f(x) | on R,.

Then
(4.6)  lim,  sup,,, P{f(sup,s, |§s VdX|) = dc, §ifio V<¢c} =0, ¢d6>0,
and if X and V are independent, then even

(4.7) {8 foo VIt sup,e, |33 VdX| -0 as t—0,e>0.

We need the following extension of Millar’s Property 2.3 (1972), which may
either be proved directly from Lemma 4.1 or by a limiting argument from
Lemma 2.3.

LeMMA 4.2. Let X, f, and g be such as in Lemma 4.1. Then

. J(§§ VdX) i w du 0
4.8) P{suptm_—_g(y_l_séfoy)gc}gcsy g(u)’ c>0,y=0,

and in particular,

4.9)  P{sup[|f(§s VdX)["» —a{ifo V] = 4

. —
(p — Dabr
a,b>0,p>1.

Proor oF THEOREM 4.2. Take fe &, and let us first assume that

2

(4.10) § xA(dx) = —{°, xA(dx) = oo .

It is then possible to choose truncations 4,, 4,, - - - of 2 such that § x?2,(dx) — 0
and such that the corresponding processes X;, X;, - - - obtained from X by deleting
large jumps have all mean 0. (If 2 has point masses, a randomization may be
needed to construct these X,,.) Denote the corresponding functions fby f,, f;, - - -.
Let 6 > 0 be arbitrary. If

0 < liminf,_, |V(¢)| < limsup,_, [V(f)| < oo a.s.,
we may choose m, M, and ¢, > 0 such that
(4.11) PA=Pm< |V <=Mt <t}=1—0.
Furthermore, since f'and the £, are nondecreasing on R,, we have
(4.12) fu(w)/f(w) -0 as n— oo,

uniformly in [m, M], so for ne N large enough,
(4.13) SUpygy S fuc VIifo V < 0 on 4.
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Finally, choose 1, € (0, #,] such that
(4.14) PX, (1) = X(1), t <t} =1—36.

Applying (4.8) with y = 0 and g = 1/1;, ;5,;, (which is clearly a permissible
choice although g ¢ &), and using (4.11), (4.13), and (4.14), we obtain for
t<t,
P{f(sup,<. |{§ V dX]) = dc, Séf° V < ¢}
< P{f(sup,<, |§s VdX,|) = dc, §i f, o V < 0%} + 20

< P{sup,<, (13 VdX,)]g($4 fu o V) = dc} + 26 < 4§’C
C

+ 20 =60,

uniformly in ¢ > 0, proving (4.6) for e = co. An obvious truncation argument
yields the same result for arbitrary ¢ > 0.

If xf"(x)/f(x) is nondecreasing in x > 0, it is easily verified that f(ux)/f(uy) is
nonincreasing in # > 0 for fixed x and y with 0 < x < y. Assuming for sim-
plicity of writing that 2,(dx) = A(dx)1_, ;;, we have

flw) o S | § fen)dy)
) = §¢fupady) 7 fun)Ady)
=t {ir SR Ly 1 g (e SR g
8 {55 SRS ) + g i LRI aan

and here the right-hand side is nonincreasing in # > O and tends toOas a, b — 0
for any fixed # > 0. Therefore, the uniformity in (4.12) extends to any interval
[m, o0), m > 0, and we may take M = co in the above argument. The sym-
metric argument applies to the case of nonincreasing xf’(x)/f(x). If exactly
one of the integrals in (4.10) is finite, suppose that X, X’, and X" are independent
and distributed as X, and apply (4.6) to the processes X + (X’ — X”’). Since
(3.6) holds with ¢ = 2, it follows that (4.6) is also true for X. This completes
the proof of (4.6) for fe .&,. The proof for fe & is similar but much simpler,
since no centering is needed in that case. Finally, when X and V are independent,
(4.7) follows from (4.6) by Fubini’s theorem and dominated convergence. []

A

When discussing the asymptotic behavior of X, or more generally of § V' dX,
it is often useful to consider integrals of the form { V, dX for variable V,. This
leads us to investigate the continuity of the mapping V' — { V dX for fixed X.
By linearity, we may confine ourselves to continuity at 0.

THEOREM 4.3. Suppose that either 6 = 0 and fe &, or that EX = 0 and
fe F,. Then

(i) §&foV,—pO0impliessup, |{;V,dX| —,0;
(ii) if fe F,orif fe F, with {; x7*f(x) dx < oo and lim inf, ., xf'(x)/f(x) >
1, then E {3 fo V, — 0 implies Ef(sup, |{} V, dX|) — 0;
(iii) if g, and h,, ne N, are strictly increasing functions on R, onto itself such
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that 33, h,™(9)/9,74(%) < 00, 0 < y < x, then
(4.15)  limsup,_. g, o f(sup, |§§ V, dX|) < limsup, ., h,({¢ fo V,) a.s.

Note in particular that (4.15) holds with g,(x) = 4,(x) = x'*. A related result
for Brownian motion may be found in [16] page 25. It should be observed that
(i) does not hold in general with the convergence in probability replaced by a.s.
convergence. For Brownian motion, a counterexample is easily constructed
from the law of the iterated logarithm, and by using arguments from [14], it
is even possible to obtain counterexamples with ¢ = 0.

Proor. To prove (i), proceed as in the proof of Theorem 3.1, using (4.9) in
place of (2.5). As for (ii), let fe &, and conclude from Lemma 2.1 and the
argument in (3.13) that for simple V

(4.16) Ef(§¢ VdX) < 4E\g fo V.

For general V with E § f o V' < oo, choose simple V,, V,, ... such that f sat-
isfies (3.4) in L, and (3.12) holds a.s., and conclude from Fatou’s lemma that
(4.16) is generally true. Our next step is to show that | 'dX is a martingale.
Again this is clear for simple V. Inthe general case, choose approximating simple
Vi, V3, -+ - as above. Then Ef({y V, dX) is bounded by (4.16), and assuming f
to satisfy the assumptions under (ii) we have f(x) = x'+¢ for some ¢ > 0 and
large x, so §{§° V, dX is uniformly integrable and we may proceed to the limit in
the martingale defining relations. Let us now define the function

W) = I g LO L xeR,

which is finite and continuous whenever {} x~%(x) dx < co. By the arguments
in Meyer (1972) pages 28-29, we get

Ef(sup, |V ¥ dX|) < 4Ef(} sup, |§; V dX|) < 4Eh({7 VdX),

so by (4.16) it remains to prove that Ef(§ V, dX) — 0 implies Eh(§ V, dX) — 0.

But this follows by continuity and uniform integrability, since A(x) = 0(f(x))

as x — oo. In fact, choosing y > 0 such that xf"(x)/f(x) = ¢ > 1, x = y, and
integrating by parts, we get for large x

d di

hx) = fx) + x 55 L2 o(f(x)  x 1y S0

u u

< 00/ + e §5 SO < o(7(x) + ch

This completes the proof of (ii) for fe .&,. The case fe .7 is similar but
simpler. .
To prove (iii), write

&, = f(sup,|§s V, dX|), T =\ fo Vs neN,
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and note that

P{lim sup, ., 9,(§,) > lim sup, ... £,(7,)}
< Do Pllimsupg,(&,) > x >y > b(y), k = m},

where the sum extends over all rational x and y with 0 < y < x and all me N.
Since the sum is countable, it suffices to prove that each term equals 0, so let
us consider fixed x, y, and m. Writing 4 = {&(5,) < y, k = m} and applying
(4.9) with p = 2, we get for n = m

P(A 0 {g.u(§a) > x}) = P(4 0 {€] = (9.7())})
= P8 2 30,7 + 7a/h T (0] = 16R,74(9)/9,71(x) 5

so by the Borel-Cantelli lemma,

P(A n {limsup,_.. g.(§,) > x}) £ P(4n{g,(,) > x i.0}) =0,
and the proof is complete. []

By the method for proving (ii), we may also obtain the following result of
some independent interest, (cf. Property 2.4 of Millar (1972)):

CoRrOLLARY 4.1. Let p e (0. 2], and suppose that ¢ =y, = O when p > 1 and
6 =7,=0whenp < 1. Then

Esup, |§; VdX]” < ¢, {2 [X|PAd)E {7 |V]? .

The modifications required in the cases p =2, 0 #+ 0, and p = 1, 7, 0 are
obvious.

5. Variation and nonlinear integrals. For neN, let II, ={0 =1, <

ty < -+ <ty =1} be a finite partition of [0, 1], and define for any
S+ [0, 1] — R the measure

I, [ = 252 0(f(te) = fltn,;0)) »

where §, 4 = d(x)A = 1,(x). We assume that max; (t,; — ¢, ;_,) — 0 as n — co.
We further define, for any X and V, the point processes on R\{0}

(V' X)e = Zocos: 0(V(5)X{s}) » t=20,

and we put in particular (V- X), = V. X. We shall write —, for weak conver-
gence of finite measures on R, i.e. p, —, ¢ means that p, f — uf for any bounded
continuous function f: R — R,. Here uf = { f(x)u(dx), and we further define
fu as the measure with (f)(dx) = f(x)p(dx). For brevity, we also put x*u(dx) =
¢¥dx), k = 1,2. If the y, and p are random, then y, —,,» ¢ (1, —,, p in prob-
ability) means that p, f —, uf with uf < oo a.s. for any bounded continuous f.

The following theorem extends results by Wong and Zakai (1965), and by
Millar (1972), (see also [9], [18]). The idea to state variational results as limit
theorems for random measures comes from [12].
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THeOREM 5.1. If {J V? < oo a.s., then
(5.1) L, § VdX) —,, 0%, 3 V2 + (V- X)?,
while if ¢ = 0, {1, |x]A(dx) < oo and (}|V| < oo a.s.,
(3:2) (L, § V dXY] =, 70l §a [V] + (V- X)] s
If either fe . ando =y, = Oorfe F ,and o = 0, and if moreover \§ fio V < oo
a.s., then
(5.3) AL, § VdX) —, (V- X)
holds a.s. or in probability respectively.
Proor. By Lemma 3.3, we have in the space of measures on R\{0}
(5.4 I, § VdX —, 301 0(§i_VdX) = V. X a.s.

(cf. [12]), where —, stands for vague convergence. To prove (5.3) for fe .7,
and ¢ = 0, it therefore suffices to show that

(5.5) L, § VdX)f —, (V- X)f.
We need the fact that f* is concave on R,. To see this, we have to verify that
(f')’/f is nonincreasing, i.e. that & = 2ff"” — (')’ < 0. But f(x) < xf'(x) —
x*(f"(x)/2) since f” is concave, and so

h(x) = 2xf(0f"(x) — 2(f7(%)* = (S'(¥)* = =(f"(x) = f(x)* = 0
as desired. As in [12], it now follows by Minkowski’s inequality that, for any
Xj Y J €N,
(3-6) (XSGt = (TSN = (TS =23

and applying this to the decomposition X = X, + X’ in the proof of Lemma
3.3, we get

(5.7) {AL, § VdX)fP — {(IL, § VdX.)f}}| < {(L, § VdX)f} .
Now clearly
(5.8) dL, § vdx)f— (V.- X)) as.,

and it will be shown below that

(5.9) L, § Vdx)f—,0 as n— oo and then ¢ — 0.

Combining (5.6)—(5.8), it is seen that (V- X,")f is fundamental in probability as
¢ — 0, which proves that (V. X)f < oo a.s. Using this fact, (5.5) follows by
another application of (5.6)—(5.8).

To prove (5.9), note first that V is a.s. integrable on [0, 1]since f; o V'is, and
hence that the process {§ V, t € [0, 1], is a.s. continuous and of bounded varia-
tion. Since f’(0) = 0, it follows that (II, § V)f — 0 a.s., so by (5.6) it suffices
to prove (5.9) with X, replaced by the martingale Y,(f) = X,(f) — tEX,(f). By
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an obvious stopping time argument, (cf. Lemma 1.1 of Fisk (1966)), we may
further assume that E {} f; o ¥ < oo. Using (4.16), we then get

sup, E(I, § VdY)f S 4E{ifio V—0, c—0,

and (5.9) follows. For fe .#; and ¢ = 7, = 0, it may be shown as above that
(V- X)f < o a.s., and then the a.s. convergence in (5.3) follows by concavity
(cf. [20], [12]).

To prove (5.1), it suffices by the above argument to consider the case when
A[—¢, €] = 0 for some fixed ¢ > 0, and since { V' dX has then only finitely many
jumps, we may even assume that 2 = 0. Asbefore, we may further take EX = 0,
so after a normalization it only remains to prove that, when X is a standard
Brownian motion,

(5.10) (0, § VdX)yR —, {} V2.

(This was proved by Wong and Zakai (1965) under the assumption E {§ V'* < oo,
but we prefer to start afresh.) Again we may assume that E {} V* < co, and

by Lemma 3.1, we may then choose simple processes V;, V,, - .. such that as
k — oo
(5.11) sup, E1IL, § (V, — V)dXYR=E\;(V, — V) —>0

and {j V,> — i V* a.s. But by the classical result for Brownian motion,
(5-12) (IL,§ Vi dX) —p, G V2 —p G V?

as n — oo and then k — oo. Using Minkowski’s inequality, we obtain (5.10)
from (5.11) and (5.12). To prove (5.2), we may use a similar argument with
(5.10) replaced by the well-known relation

(AL § VY = 2, 1Sk, VI—= G IV] as.,

(which may e.g. be proved from Lemma 3.1). Our proof is now complete. []

Further assumptions must be added in order to obtain a.s. convergence in
(5.1) and in (5.3) for fe .5 ,. Let us say that {II,} is nested if it proceeds by
successive refinements, and that (X, V) is symmetric, if for every fixed ¢t = 0,
(X, V) has the same distributions as (Y, V) where

Y(s) = X(s) , s<t,
= 2X(1) — X(9), s=t.
Note that the last notion reduces to symmetry of X(1) when X and V are inde-

pendent. We shall prove the following extension of results by Lévy, Cogburn
and Tucker (1961), Millar (1971), and myself (1974).

THEOREM 5.2. If in Theorem 5.1 we add the assumptions that {I1,} is nested and
that either (X, V) is symmetric or X and V are independent, then (5.1) and (5.3)
hold even in the sense of a.s. convergence.
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Proor. For independent X and ¥, we may use Fubini’s theorem to reduce
the proof to the case of nonrandom V. But then § V' dX has independent and
infinitely divisible increments, and our assertions are contained in Theorems
4.1 and 4.2 of [12]. (Note that the assumptions of f in [12], Theorem 4.2, are
fulfilled since for fe .7, ft and f(+*) are both concave.) Next suppose that
(X, V) is symmetric, and assume without loss that 2 has bounded support and
that E {§ > < oo (or E {} fo V' < oo respectively). Proceeding as in [3] and
[19], it is seen that {(I1, § V' dX)’R} (or {(I, § V' dX)f})is an L,-bounded reversed
super-martingale and therefore converges a.s. This proves in particular that
(5.5) and (5.10) remain true in the sense of a.s. convergence, and so the preced-
ing proof yields the present stronger conclusions. []

It is suggestive to write § f(V dX) for the f-variation of § V' dX, whenever it
exists in the sense of Theorem 5.1. More generally, we define for any X and
Vand for fe &

(5.13)  §f(vdX) = (V- X).f+ o%f"(0) §; V*? if f(0)=0,
= (V-X).f + [l fO+) §51V]  if a=0.
(Note the formal similarity with (3.2).) As a simple example, it may be seen
from (5.13) that, for any p > 0,
fs|Vax|r = (§|Vrldx|>  a.s.,

where the integral on the right is the Lebesgue-Stieltjes integral of |V|* w.r.t.
{¢|dX|?, t = 0. Since the latter process has stationary independent increments,
the above theory applies to this case.

Many previous results of this paper may be extended to integrals of the form
{ f(VdX). For brevity, we restrict our attention to the following partial ex-
tension of Theorems 3.1 and 4.1.

THEOREM 5.3. If fe & andeither ['(0) =0 ora = 0, and if §t (1 Af); 0 V < oo

a.s.,t > 0,then \{ f(V dX) < co a.s.,t > 0. If moreover he & and g ¢ &, then
~
(5.14) (hg(\s (B o f) o VU §Ef(VdX) -0  a.s.
N N
as t — 0, and this is also true with (ho f) replaced by (hof), ¢ >0. Ast—
a
oo, $¢f(VdX) converges a.s. on {7 (hof)oV < oo}, while (5.14) holds on
N

(5 (iof)o V= co}.

Proor. We first extend Lemma 4.1 by showing that the process

(5.15) O(x + §§f(VdX),y + Sé(ﬁ'f)o vy, t=>0,

with Q defined by (2.4) with % in place of f and with ¢ = 1, is a super-martin-
gale for every xe R and y > 0, and also for x = y = 0. For simple V, this
follows from Lemma 2.2 and the easily verified fact that

Eh(§ (v dX)) < E S (ko) oV, 120,
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(cf. (3.13)). For general V satisfying (¢ (i/z-:f) oV < o a.s., t > 0, consider
fixed t > 0 and ne N, write D, = {s: |X{s}| > n~'}, and choose # > 0 so large
that the process V,' = u A V satisfies

(5.16) PUSs(hof) o Vol — S (hof) o V] > n} < 270,
(5.17)  PV./(s) = V(s), se D,} = P{V(s)| < u, seD,} = 1 — 2,

being possible by monotone convergence. According to Lemma 3.1 and Theorem'
3.1, we may next choose some simple process ¥, such that

I~ S~
(5.18) P{iSi(hof)oV, —Si(hof)o V)| >n} <277,
(5.19) P{sup,s, |§; Vo dX — §3 7,/ dX] > -} < 20

(Note that the assumption lim sup,_,., f(2x)/f(x) < oo in Lemma 3.1 is not needed
when V is bounded, since in that case the construction in the proof leads to
uniformly bounded processes V,.) Combining (5.16)—(5.19), we get
N i
PSi(hof) o Va— §i(hof)o V| >2n7} < 2704,
P{[Vu(s) — V(s)| < 2nY, se D,} = 1 — 2%+,

and so, by the Borel-Cantelli lemma,

(5.20) (hof)o Ve Ss(hot)oV,
(5.21) V,(s)X{s} — V(s)X{s} , se[0, 1,

a.s. as n — oco. By Fatou’s lemma, it follows from (5.21) that a.s.
(V- X) f = Zocsze (V()X{s}) = liminf,_ o, Focoze f(Vu(8)X{s))
= liminf, ., (V, - X),f»
and by combination with (5.20),
(5.22) (s f(VdX) < liminf, . {{f(V,dX) a.s.

Using Fatou’s lemma once more, we get from (5.20) and (5.22) for y > 0

N
EQ(x + 5 f(VdX),y + §i(hof)o V) —~
< Eliminf,_ Q(x 4+ $§f(V,dX),y + {i(hof)o V,)
N
< liminf, , EQ(x + §{f(V,dX),y 4+ Si(hof)oV,) < O(x,)),
where the last inequality follows from the fact that (5.15) is a super-martingale

for simple V. This extends the super-martingale property to arbitrary V. The
last two assertions may now be proved as were Corollary 2.1 and Theorem 4.1.

In particular, it follows that {ff(VdX) < oo a.s. when Sf,(ﬁ?) oV < oo
a.s., or even provided {} (;?j/‘)e o V < oo a.s. for some ¢ > 0, since X has at
most finitely many jumps in [0, ¢] of modulus > e. Choosing A(x) = |x| A 1
yields the first assertion and hence completes the proof. []
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We may even go a step further and consider more complex integrals such as
§{ UAV dX), § f(V;dX) etc. Though the formulae now become more compli-
cated, the methods remain essentially the same.
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