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SAMPLE PATH BEHAVIOR FOR BROWNIAN MOTION
IN BANACH SPACES!

By J. KUELBS
University of Wisconsin
We establish integral tests for upper and lower functions for Brownian

motion in Banach spaces of infinite-dimension as well as some related results
for Brownian motion in R<.

1. Introduction. Throughout the paper B is a real separable Banach space
with norm ||+||, and all measures on B are assumed to be defined on the Borel
subsets of B generated by the norm open sets. We denote the topological dual
of B by B*.

A measure g on B is called a mean zero Gaussian measure if every continuous
linear function f on B has a mean zero Gaussian distribution with variance
{5 [f(x)]’u(dx). The bilinear function T defined on B* by

T(f, 9) = §5f(x)9(x)p(dx) (fs 9 € B*)

is called the covariance function of p. It is well known that a mean zero Gaussian
measure on B is uniquely determined by its covariance function. This is so
because T uniquely determines z on the Borel subsets of B generated by the
weakly open sets, and since B is separable the Borel sets generated by the weakly
open sets are the same as those generated by the norm open sets.

However, a mean zero Gaussian measure ¢ on B is also determined by a unique
subspace H, of B which has a Hilbert space structure. The norm on H, will be
denoted by |||, and it is well known that the B norm ||+|| is weaker than [|«]|,
on H,. In fact, ||+|| is a measurable norm on H, in the sense of [3]. Since |||
is weaker than ||.||, it follows that B* can be linearly embedded (by the restric-
tion map) into the dual of H,,, call it H ., and identifying H u with H,* in the
usual way we have B* £ H,* C B. Then by the main result in [3] the measure
u is the extension of the canonical normal distribution on H, to B. We describe
this relationship by saying p is generated by H,. For details and additional ref-
erences see [3], [5].

Let Q denote the space of continuous functions » from [0, co) into B such that
0(0) = 0, and let .7~ be the sigma-algebra of Q generated by the functions
® — w(t). Let 2 be a mean zero Gaussian measure on B generated by H,, and
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248 J. KUELBS

suppose {g, : t = 0} is the family of Gaussian measures on B given by
(A) = 04(A) t=20
= p(Alt) t>0.
Then p,,, = p,*p, for s,t = 0, where * denotes convolution, and there is a
unique probability measure P on .7 such that, if 0 =, < t, < ... < t,, then
the B-valued random variables w(t;) — w(t;_,) (j = 1, - - -, n) are independent
and o(t;) — w(t;_,) has distribution p, i~t;-, on B. The stochastic process
{W(t): t =z 0} defined on (Q, .77, P) by W(t, ») = o(t) has stationary independent
mean zero Gaussian increments, and we call it py-Brownian motion in B. The
existence of y-Brownian motion in B is discussed in [2], and a number of its
important properties are examined in [5].
In [6] we proved the analogue of Strassen’s version of the law of the 1terated
logarithm for p-Brownian motion in B, and as a corollary we obtain

; ol _r)Y=1
(.1 d <11m SUPe-es (2t loglog )t )
where
(1.2) T = sup, .. ||x]|

In view of (1.1) and the great body of llterature regarding asymptotic propertles
of stochastic processes (see, for example, [8], [9], and [10]) it is natural to ask
about upper and lower functions for x-Brownian motion in B and to seek integral
tests regarding these functions. First, however, we need some terminology.

A nonnegative, non-decreasing, continuous function ¢(¢) defined for large
values of ¢ is called a lower function for {W(t): t = O} with respect to the norm
11 if

(1.3) P(||W(t)|| > t*¢()I" for an unbounded set of #’s) =1,
and an upper function for {W(t): t = O} with respect to the norm ||+|| if
(1.4) P(||W(1)|| > tt¢()" for only a bounded set of #’s) = 1.

We write ¢ € £ and ¢ € 7, respectively. Here, of course, I is given by (1.2).

Upper and lower functions for z-Brownian motion in B are given in Theorems
2.3 and 2.4. These results, then, motivate Theorem 3.1, Theorem 4.1, and
Corollary 4.2 which deal with upper and lower functions for standard Brownian
motion in R? (d = 2) when norms other‘than the usual Euclidean norm are used
in R As can be seen from these latter results, changing the norm greatly
changes the upper and lower functions for standard Brownian motion even in
R

Throughout the paper C stands for an unimportant positive constant which
may change from line to line.

It is a pleasure to acknowledge that the results of Section 2 were motivated
by a question of Professor G. Kallianpur.
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2. Upper and lower functions for Brownian motion in a Banach space. Let ¢
denote a mean-zero Gaussian measure on B and assume K is the unit ball of the
generating Hilbert space H,. Viewing B* C H,* = H, C B as in the introduc-
tion we define the index of y to be

(2.1) m=supf{k:3f, .., f,eB* f, ---, f, orthogonal in H,;
Ifills- =1 and |Ifil], = sup,cllxl] (1 =)=k}

LeMMA 2.1. The index of a mean zero Gaussian measure p on B exists and is
finite.

Proor. If i: H,— B is the identity map then the embedding of B* into
H,* = H, via restriction is given by the adjoint map i*. Now i is compact [2]
and hence i* is also compact. Further, since the unit ball of B* is weak star
compact and metrizable it is easy to see that U = i*{fe B*: || f||z < 1} is closed

in H,so Uis actually compact in H*=H, We also have

. supy upest 1Sl = SUPzex |Ix|
since
SUPy fyipest || 1l = SUPys1ipess SUPsex | f(X)]
= SUP, ¢ g SUPyfypest | [(X)] = SUP,ex [|X]] -
Thus n, exists and is finite since no compact subset in H, contains an infinite
sequence of orthonormal elements.

LEmMMA 2.2. If B is a Hilbert space, then the index of a mean zero Gaussian
measure p on B equals the multiplicity of the maximal eigenvalue of the covariance
operator for p.

Proor. In case B is a Hilbert space it is well known that the covariance func-
tion for x determines an operator of the form Tx = }3, 4,(x, ¢,)e, where (., ¢)
is the inner product on B, 1, > 0, >}, 4, < oo, and {e,} is an orthonormal set
in B. In fact, if M denotes the closed subspace of B generated by {e,}, then from
[4] we know that the generating Hilbert space for p is

H, = {xeM: 3}, (x, &) < oo} .

Further, the inner product for H, is given by

(%)) = 2 (% €)(y> ) eki(ky’ %) )

and hence K = {xe M: 3}, (x, ¢,)*/2, < 1}. Thus for xe K

2 2
IX]P = Ze(x &) = 2 A L’.‘.’_lﬁk_)_ < sup, 2, Y, (x,lek)
k

k
= sup, 4,

and hence
SUp, g ||x|| < (sup, 4,) = 2*
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where 2 is the largest eigenvalue of T. Now each of the eigenvectors e; cor-
responding to 2 has B norm one and hence the linear function f;(x) = (x, e;)
has B* norm one. Now f; restricted to H, can be written as

Jix) = (5 7 ) (xe H)
where y;e H,. Hence we have (x,e;) = (x,7;), for each xe H, and since
(% 7)) = 2k (x> &)1 e)/A = (x, e;) for xe H, it follows easily that y; =
2;e; = Ae;. That is, if i* is defined as in the previous lemma, then i*(f;) =
r; = A;e; = Ze; 50 || fill, = |Irill. = ||4ej]|, = A*. Thus the index of g, call it n,,
is greater than or equal to the multiplicity of 4.

By relabeling (if necessary) we can assume 4, = .- = 1, = 2 and 2; < 2
forj > r + 1. Now assume fe B*, ||f]|z. = 1, and i*(f) = r € H,* = H, where
7 is orthogonal to y; = 2e; (j=1, ---,r). Hence f(x) = (x,e) where e =
Yesrs1 (6 €)€, -+ h, h is orthogonal to M, and e has B norm one. Since & is
orthogonal to M we have i*h = 0 and hence

1l = lI7lle = lli*elly = || Zrar (6 €)i*(ex)].

= || Zkzrs (€ €)A &,
R L
27+ lk

< SUPkzrir At Dizrss (€5 €,)°
< SUPa,a At < 2E

Thus n, < r so the lemma is proved.

THEOREM 2.3. Let {W(f): 0 < t < oo} be pu-Brownian motion in a real separable
Banach space B having norm ||.||, and assume ¢(t) is a nonnegative, non-decreasing,
continuous function defined for large values of t. Let n, denote the index of y1. Then
there is an equivalent norm ||«||, on B such that sup, . ||x||; = SUp,ex ||x]| = T and
¢ is in Z/(L) with respect to ||+||, iff

(2.2) §= —-—~[¢(?]nl e #2 dt < oo (= 00).

PrOOF. Assume p is generated by H,  B. Since the index of p is n, there
exists fy, - - -, f,, € B* such that f;, . . -, f, are orthogonal when viewed as elements
of H, and satisfying

Wil =1 and  Ifill, = sup.exllx]l  (G=1,--->m).

Let n(x) = X7, e;(x)e; (xe B) and Q(x) = x — m(x) where e;(+) denotes the
linear functional f,;(+)/T" and T" is as in (1.2). Thus ||e;||z« = ['"*and ||ej||, = 1.
Let N

(2.3) 1 ||x]], = max {I[|zx]|,, [|@x]]} .
Then
(2.4) ' SUP ek ||X|s = supex ||x]| =T
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since it follows easily from (2.3) that

SUP¢x ||X||: = max {sup,x I'l|wx||, sup,cx ||Qx|1}

and since Q: K — K we have (2.4). Further, ||+||, is a norm on B which is
equivalent to the given norm ||.||.

Using the argument of ([10] page 151) it suffices to prove the theorem when
¢ satisfies
(2.5) (log log 1)t < ¢(t) < 2(log log 1)t

for all sufficiently large . Hence we make this assumption on ¢ throughout
the proof.

If (2.2) diverges then by (2.3) and (2.4) we have

P{|W(?)|l, > t*¢(t) sup,cx |||, for an unbounded set of #’s}
(2.6) = Pf||=W(1)||, > t*¢(#) for an unbounded set of #’s}
=1

by ([9] Theorem 2.2) since =W(¢) is standard n, dimensional Brownian motion
in 7B = nH,. Thus divergence in (2.2) implies ¢ € <.

If (2.2) converges then since ¢ is non-decreasing we have
2.7 P(||W(1)]], > tt¢(r)I’ for an unbounded set of #’s)

= P(sup,,<isi,,, IO, > t,}¢(#,)T' for infinitely many k)

where {7,} is any sequence increasing to infinity. For our purposes we choose
{#.} such that

1
(2.8) fon = 1, (1 + m)
where ¢, > 3 is sufficiently large so that (2.5) holds for 7 > #, and hence
limk t, = oo.

Now observe that

P(SUp,, <icipyy 1D > t2d(1)T)
=< P(SUPosisty,, [1EW (D], > 120(11))
(2.9 + P(SUpogise, ,, [IQW O > t2d(1)T)
= 2{P(||7 W ()l > tdd(t) + PIQW (1t > tté()T)}
t, \!
= 24P (J=wll, > () 6)

+ P<||QW(1)|| > (t—:i«ly ¢(t,,)r>}

since the second inequality follows in the usual manner.
Using the fact that (2.2) is finite we will show that

(2.10) o P (Il > () 601)) < o0

k+1
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and

@11 e (lew > () per) < oo
k+l
Hence by the Borel-Cantelli lemma and combining (2.9), (2.7), and (2.4) we
have ¢ € Z.
We now turn to the proof of (2.10) and (2.11). To show (2.10) we first observe
that 7 W(1) is a standard n,-dimensional Gaussian random variable with mean
zero and identity covariance matrix. Hence by standard estimates we have

2.12) P <||nW(1)||,, > <tk+1> (8, )) < C[(t,m) ¢(t,,)] exp{—ﬁ‘%tl"—)f
< Clp()P-* exp| — L) |

since #,/t,,, < 1 and t,/t,,, = (1 + 1/¢%(#,))™* > 1 — 1/¢*(t,) > % for all k suf-
ficently large. Applying (2.5) and (2.8) we find for k > 2 that

P (Wi, > (1) o)

(2.13) = O, [P exp{— 340} (——tﬁ)ds

< C il [0 exp{— ()} £ e=le s

k 1

s cip, PO expi—ygi) o

since [¢(s)]™ exp{—4¢*(s)} eventually decreases as a function of s. Therefore
(2.2) converging implies (2.10).
To verify (2.11) we first note that

(2.14) sup, o [|Qx]| = p < T

This follows since p < I is clear. Further, if p = I, then there exists a point
x,€ QK such that ||x,|| = I' (QK is compact in B) and by the Hahn-Banach
theorem a linear functional f such that ||f]|z. = 1, f(x,) = I', and f vanishes
on the subspace 7B = nH,. Thus f viewed as an element in H,, is orthogonal to
the elements f), - - -, f, defined at the beginning of the proof, ||f||z =1, and
I|f]l, = . This contradicts the fact that the index of y is n,, and hence we
must have p < T'.

Since B is a separable Banach space we have a countable sequence of {A;} in
B* such that ||A;||z = 1 and ||x|| = sup, |A;(x)| for every x € B. Further, QW(1)
is a B-valued random variable whose distribution on B is the mean zero Gaussian
measure ¢ defined by p%(A) = x(Q~*(A4)) for Borel sets 4. In fact, 4%(QB) = 1
and if ¢ < 1/2supo,? where ¢,’ = {5 A,*(x)p%dx) then
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P (llew) > (L) gcer)

k+l

(2.15) — (erB x| > (t ) ¢(t,,)1‘)

k+1

— e <erB sup, |A,(x)| > (t ) ¢(t,,)1‘>

k+1
<c exp{ —ete ¢2(z,,)1‘2}
k+1

where the last inequality follows from Theorem 1.11 of [7]. Now ¢, =
{5 AJ(x)p(dx) = ||A, o Q]| so

sup, 0,* = sup, [|A, o Q||,* < supy sz |1/ Q|l,*
(2.16) = SUPy fyipes1 SUPsex | QX))
= SUP, e SUPysipes | IQX)
= sup,cx [|Q)|* = p* < ™.

Thus with ¢ = (1 + 0)/2I"* (where 6 > 0 is such that ¢ < 1/20%) we have that

@1n)  P(lewml > (=) ar) = coxp{— £ exp {2 g0y}
tent 2 2

since t,/t,,, = (1 + 1/¢%(t,))~* > % for k sufficiently large. Arguing as above in

(2.13) we see (2.2) converging and (2.17) implies (2.11). This completes the

proof.

The next result provides an integral test for upper and lower functions for
Brownian motion in a Hilbert space H. Of course, Theorem 2.3 applies to the
Hilbert space case, but in Theorem 2.4 we work directly with the given norm
on H and do not introduce an equivalent norm. As will be seen later in this
paper, norms other than Euclidean norms yield considerably different upper and
lower functions even for Brownian motion in JR¢. In view of these results, then,
Theorem 2.3 is somewhat natural.

THEOREM 2.4, Let {W(t): 0 < t < oo} be u-Brownian motion in a real separable
Hilbert space H with norm , and suppose ¢(t) is a nonnegative, non-decreasing,
continuous function defined for large values of t. Then ¢ is in Z/(£") with respect
iff

(2.18) § L(?]ﬂl e-#07 gy < o0 (= )

where n, denotes the multiplicity of the maximal eigenvalue of the covariance operator
for v
Proor. By Lemma 2.2 the index of p is also n,. Hence if (2.18) diverges the

proof that ¢ € & follows exactly as in Theorem 2.3.
In case (2.18) converges we proceed as in (2.7) and (2.8) assuming as before.
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(2.5). Then with I' = sup, ., ||x|| we easily obtain
. \?

(219)  PUPszessyy, IWO > 639D < 2P (WD) > (=) g(e)T)
k+1

= Clp()n exp{ —1f (W7}

L 22,
where 2 equals the maximal eigenvalue of the covariance of p and the last in-
equality follows by applying [11]. Using (2.19) and arguing as in (2.13) we then
have

(220 2 PSUPy<iey,, [IWO]] > 624(1)T) < oo

since (2.18) converges and I = 1 as proved in Lemma 2.2. Hence ¢ € %/ and
the proof is complete.

3. A result for Brownian motion in ]R%. The introduction of the equivalent
norm in Theorem 2.3 seems somewhat unnatural, but here we show that norms
other than Euclidean norms yield considerably different upper and lower func-
tions even for Brownian motion in R?¢. In fact, Theorem 3.1 provides a complete
description of the upper and lower functions when j* = 4 (the definition of j*
appears below), but when j* < d it is less complete. It seems reasonable to
conjecture that j* < d and the integral in (3.3) finite implies that the function
¢ is an upper function for the norm under consideration, but this is not the case.
For example, the polygonal norms appearing in Theorem 4.1 provide examples
when it is possible to have j* < d and the integral in (3.3) finite, yet still have
the function ¢ a lower function.

Let {W(): 0 < t < oo} be Brownian motion in R* and assume ||||, denotes
the usual Euclidean norm on R?. Let ||+|| denote a second norm on R? and
define

3.1) I=8,,n {xeRe: x| =T}

where S, ; = {xe R?: ||x||, = 1}and I' = sup, 5, [|x||. Let.S; denote the col-
lection of all j dimensional spheres in S,_, for j = 0,1, ...,d — 1, and let m; g
denote the measure on any j-dimensional sphere S corresponding to surface area
on S. In case j = 0 the sphere consists of two points and we assume mass one
at each point. Let

(3.2) =14+ max{j:m;(InS)>0 forsome Se¢.&}.
Since ||+|| is a norm on R? and all norms on IR? are equivalent / is a nonempty
closed subset of S, ;. Thus m; (I n S) > 0 for some j (0 <j<d— 1) and
S e .7, and hence j* satisfies 1 < j* < d. We call j* the dimension of the norm
[1+11-

THEOREM 3.1. Let {W(t): 0 < t < oo} be standard Brownian motion in R* and

assume ||+|| is @ norm on R? with dimension j*. Let ¢(t) be a nonnegative, non-
decreasing, continuous function defined for large values of t. Then ¢ ¢ & relative
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o 111 .*
(3.3 i [¢(tt)]’ PO Gt — oo |

In the case j* = d, then ¢ is in Z/(¥) relative to ||+|| iff
(3.4) S°°————[¢(t)]d e P2 dt < oo (= o0).
t

Proor. Let I be defined as in (3.1) with I' = sup, .5, , [|x||. Using the argu-
ment of [10] page 151 it suffices to prove the theorem when ¢(¢) satisfies

(3.5) (log log 1)} < (1) < 2(log log 1)?
for all sufficiently large ¢. Hence we make this assumption on ¢ throughout
the proof.

Let j* = d and assume (3.4) converges. Since U = {xe R¢: ||x]| =T} 2
{x:||x|]|s £ 1} we have

P(|W(1)|| > tt¢()[" for an unbounded set of #’s)
(3.6) < P(|W(1)||, > t'¢(t) for an unbounded set of #’s)
=0
where the last equality follows from Theorem 2.4 or by ([9] Theorem 2.2). Thus
¢ € ZZ with respect to ||+||.
Now assume j* < dand (3.3) diverges. Let I be defined as in (3.1) and assume

SeS;._,issuch that m,_, (I n §) > 0. Let rg denote the projection onto the
subspace generated by S. Then

P(||W(1)|| > tt¢(H)I' for an unbounded set of #’s)

zs(W(1))
> P([[W(t)|| > Ag(OT and _F0-e 10 S

(3.7) for an unbounded set of t’s>

] zs(W(1)
> P(“ SW([)HZ > t!¢(t) and mel ns

for an unbounded set of t’s)

since {x& R[5 > (T and moxlmsxl e 105} 2 (v R [zl > (1)
and 7yx/||7sx|l,e I N S}

Since {rg W(f): 0 < t < oo} is j*-dimensional Brownian motion we need only
prove that (3.3) implies the last member in-(3.7) equals one. To do this we can,
without loss of generality, assume j* = d, § = §,_,, and that I has positive sur-
face measure in S, ;. Under these assumptions wg is the identity map so it
suffices to prove that

(3.8) j= PO - g — oo
t
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implies
w()
(3.9) P<||W(t)|| > tig(r) and
’ WOl

when [ has positive surface measure on S,_,.

Let t,, = 27 + 27k/[log p] (p = 3,4, - - .) where [log p] denotes the greatest
integer in log p and [log p/2] < k < [logp]. Let

e I for an unbounded set of t’s) =1

_ W(t, )
(3'10) EPJ‘ - {”W(tp,k)llz > (tp,k)*qs(tp,k) and m € I} .

We order the E, ,’s by saying

(7 k) < (ps k)
if

(@) pP<por

(b) p =pand k' < k.

We enumerate these events with respect to this ordering and denote the resulting
sequence by {E,}.

The theorem will be proved if we show that (3.8) implies that P(E, i.0.) = 1.
This can be shown in the usual manner by applying the Chung-Erdés lemma
[1] to the events {E,}. The reader may consult [9] Theorem 2.2 as a guide to
the analysis, so we omit further details here. We do, however, emphasize that
Lemma 1.5 and Lemma 1.6 of [9] must be modified slightly for the current
situation. For example, the form of Lemma 1.6 needed in this setup is that if
Uand V are Gaussian random variables in R? with mean zero, identity covariance
matrix, and such that

(3.11) E(U,V,) = pd,;,
then there is a positive constant C, independent of p, such that for alla = 0
@12 (Ul >a Ven V> a Vo er)

[1Ul2 V1l

< Cexp[—(1 — A)8IP{||U]l > a, ”(‘]’” et}.

2
The proof of (3.12) follows by the argument given for Lemma 1.6 in [9] so we
omit the details.

4. Generalized polygonal norms on R*. The results of this section provide
examples of norms other than Euclidean norms for which precise integral tests
can be obtained. Furthermore, they show that if j* < d and the integral in
(3.3) is finite, then ¢ need not be an upper function.

Recall that a closed half-space in R* is a set of the form {x¢ R*: f(x) < ¢}
where c is a real number and f is some linear functional on R

We now turn our attention to those norms ||+|| on R* such that if I is given



BROWNIAN MOTION IN BANACH SPACES 257

as in (3.1), then
4.1) U={xeR*:|lx|| =T} = Nier H;

where H, is a closed half-space of the form {x: fi(x) < ¢}, and the line {x:
fi(x) = ¢} is tangent to S, at the point i € I. Such norms will be called generalized
polygonal norms, and we will denote the class of all such norms with ¢(I) =0
(¢ is the measure corresponding to arc length on S,) by & The restriction of
our investigation to the case ¢(/) = 0 is natural since ¢(I) > 0 implies Theorem
3.1 applies with j* = 2.

The set I is a closed symmetric subset of S, and represents the points of tan-
gency of U and S;,. We will say that I consists of the points of tangency of the
norm ||+||.

On the other hand, it is not difficult to see that if / is any closed symmetric
subset of S, then we can construct a tangent line at each of the points of /and
the intersection of the related closed half-spaces containing S, will be a closed,
symmetric, absorbing, convex set, call it U,. Now if I generates a subspace
equal to R? then U, is the unit ball of the norm

(4.2) [|||; = min{2 > 0: xe AU}},

and ||+||; € & provided ¢(I) = 0. Further, ||+||, has as its points of tangency
the set /. It might be well to point out that if 7 is a subset of a one dimensional
subspace of R? (iff 7 contains exactly two points) then the right-hand side of
(4.2) defines a semi-norm but not a norm on RR%.

Suppose ||+|| € & has the closed set [ as its points of tangency and U is as in
(4.1). Then

4.3) E,=Un{x: fy(x) = ¢} (iel)
is called a face of the ball U, and its contraction to S, is the set
(4.9) E, ={xeS,: ixe E, forsome 2= 1}.

Now S, — I is the union of countably many disjoint connected open sets which,
in view of the natural mapping between S, and [0, 2z), we will call intervals.
Each of these intervals is a subset of the contraction of two faces of U, and hence
S, — I = Ui=: J, Where each interval J, is the contraction of a subset of a single
face of U. If J, is denoted by {0,, 6, + d,} where 0 < 0, < 0, + 0, < 2r then
either 0, or 6, + 0, is in I (but not both), and the sequence of pairs 6(d) =
{(0,, 0,)} is called the partition of S, induced by

THEOREM 4.1. Let be a generalized polygonal norm in & and suppose
0(0) = {(9,» 0,)} is the partition of S, induced by . If ¢ is a non-decreasing,
nonnegative, continuous function defined for large t, then ¢ € Z/(<L) with respect
to ||-|] iff '

(4.5) i ﬁ(t’_) g(N)e-#O1 dt < oo (= o)
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where

(4.6) 9(t) = Tz 3 e dy .

We write f(t) =~ h(t) if there are positive constants ¢, and ¢, such that ¢, A(f) <
f(t) £ ¢,h(¢) for all ¢ sufficiently large. A similar notation applies to sequences.
The following Corollary is now immediate from Theorem 4.1.

CoOROLLARY 4.2. Assume the setup in Theorem 4.1. Then

(a) If the points of tangency of the norm ||«|| consist of a finite set in S,, then
9(t) ~ ¢ > 0 and ¢ € Z/() with respect to ||+|| iff

(4.7) i ?(t_’) PO L & oo (= o).

(b) If 6, =~ x* for some x € (0, 1) then g(t) =~ log ¢(t) and ¢ € Z/(") with re-
spect to ||+|| iff
(4.8) = ?it’.) log ¢()e=# dt < oo (= o0) .

ProoF oF THEOREM 4.1. Using the argument of [10] page 151 it suffices to
prove the theorem when ¢(r) satisfies

(4.9) (log log #)* < ¢(1) < 2(log log #)*
for all sufficiently large . Hence we make this assumption on ¢ throughout
the proof.

First assume (4.5) converges where g(¢) is as given in (4.6). Since ¢ is non-
decreasing we have

(4.10) P(||W(1)|| > tt¢()I" for an unbounded set of ¢’s)
< P(Sup;.ciso., ||W(R)]] > t2d(t;) T for infinitely many j)

j=r=t+1
where {t;} is any increasing sequence converging to infinity. For our purpose
we choose {t;} such that

(4.11) ti = 1(1 4+ 1/¢%(t5))
where t, > 3 is sufficiently large so that (4.9) holds for 7 > 1, and hence
limj tj = oo.
Now observe that by an extension of Lévy’s inequality and the scaling property
4\
(412) PSPz, WO > 160D < 22 (IWOI] > (S2) 6T ).
g+1
and using the fact that ||+|| € & and that (4.5) converges we next prove
t:\*
(4.13) 2,2 (Il > (1) 8T < oo
J+1
Fix 2 > 0. Let 6(d) = {(0,, 0,)} denote the partition of S, induced by ||+|| and
assume {J,: k = 1} are the corresponding intervals as described following (4.4).
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For each k > 1 let E,’ denote the subset of a single face of U such that J, is the
contraction of E,’ to S,. Then, since ¢(I) = 0, we have

(4.14) P(IWI > ) = e PW(1) € E/(2))
= 2z P(W(1) € F/(2))
where for any subset 4 of R* we write A(2) to denote {J,»,r4 and F,’ is the

image of E,’ under a rotation of R® which takes J, = {0,, 6, + d,} to {0, 3,}.
Now

POV(1) € F/(2) = 5§t {uwg re™* dr df

_l_ Sgk e—(3%nsec2d 4

e—12/2 3 —22 tan2 0/2
(4.15) = & Sk deuion g
T

e-zz/z
22

—12/2
=% _(Brevrdy.
27l

~

{3k de=220%2 4 as k — oo since 9, —0

Combining (4.14) and (4.15) we see

e—z2/2 18y, o—y2/2
(4.16) P(|w(1)]| > ) = 7 ka1 §3'k e dy .
Hence from (4.16) we see

P(Iwil > (1) gyr)

J+1
il ti+1 )P
e—92 2 . £\? 1 \¢ 1
(4.17) =~ 9(¢;) since 1> <_ﬂ_> > (1 — ____> >1—
B(t;) ! it $(t;) B(t;)
—¢2(t5)/2 t.
<’ g(t) ———ds
g1y TSty — 150
—$3(t /2 Mt;y) t;
< Ct LT gy B U g
= Sti_l ¢(tj) 9( a) B o

< 1, 20) g(sye-sron ds
N

by using (4.9), (4.11), and that g(s)e=#*®* is eventually decreasing in s. There-
fore (4.5) converging and (4.17) imply (4.13) and hence ¢ ¢ %
If (4.5) diverges we define events

(4.18) Ep i = {lW(1,0)l] > (1,,0)*¢(1,,0T}
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wherer, , = 27(1 4 k/[logp])(p = 3,4, ---)and[logp/2] < k < [logp]. Order-
ing the E, ,’s as in the proof of Theorem 3 we obtain a sequence of events {E,}
to which we apply the Chung-Erdés lemma [1] obtaining

(4.19) P(E, i.0.) = 1.

The proof of (4.19) uses the estimates of (4.17) and follows the pattern of The-
orem 2.2 in [9]. However, here one needs the estimates obtained in Lemmas
1.5 and 1.6 of [9] as they apply to the polygonal norm ||«||.

Now Lemma 1.5 can be established for the norm ||.|| by exactly the same
argument used in [9], but Lemma 1.6 requires a slightly different argument and
it is this we turn to now. After this fact is established, however, the proof is
exactly as before so we omit the additional details. Hence (4.5) diverging im-
plies ¢ € £~ and the proof is complete.

The analogue of Lemma 1.6 of [9] is:

LEMMA 4.3. Let ||+|| be a generalized polygonal norm in & and T be asin (1.2).
If Uand V are Gaussian random variables in R? with mean zero, identity covariance
matrix, and such that

E(U,V;) = pi,, (hj=12),
then there is a positive constant c, independent of p, such that for all a > 0
_(1 — pZ)aZ
(420 P(UI| > @ |1V]] > @) < cexp{ =L p(U)| > a).
Proor. First of all (4.20) is obvious if (I — p*a® is small so assume the
contrary. Next observe that
(4.21) PUII > a, ||[V]| > a) = 2P(a < ||U]| < [IV]]) -

Now

J =P < ||| < |I¥)
=5 85 exp{- 2(1 iy l* = 2000, 0) + [of'} do

1 — p? e<iuiiol

where |4?| = u,* + u,? and (u, v) = w,v, + u,v,. Hence
2 2

J = Tﬁ; Saélluu eXp{_%lugl}

X ex =t s 4 }dsdtdu

||u||§||(s+spu§,t+puz)ll P {2(1 )( +0

where s = v, — pu,, t = v, — pu,
C

=
=1_,

7 Va<iu eXp{—3[u["}

1

eXp{———-—(s* + £ }dsdtdu
% ((s,t):||(s,t§ll§(1—|p|)llull) p{ 2(1 —-p’)( )
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= C acan oxp{—3{u[*}
exp{—3(o,’ + ")} do, do, du
{(@1,09): I1(wq,09) 11> A—loD l1ull/1—p2)}}
2 2
< Ceaexp(—4u) exp |~ G Il L a
by arguments used in (4.17) since (1 — p?)a® large
implies (1 — |o|)||#|| > (1 — |p|)a is also large
< _Lﬁ)f”_} :
s Corp{— g} IV > @

REMARK 4.4. It is obvious, of course, that if the partition 6(6) = {(0,, 9,)} of
S, induced by a norm in 7 satisfies other regular rates of decay such as
0, = 1/k* or 0, = 1/k? (p > 1) etc., then other nice functions g(¢) arise in de-
scribing the upper and lower functions relative to ||+||. We can also pursue the
concept of generalized polygonal norms in R? and obtain results similar to those
in Theorem 4.1 under some additional conditions on the faces generated by the
polygonal norm.
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