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TRANSLATED RENEWAL PROCESSES AND THE EXISTENCE
OF A LIMITING DISTRIBUTION FOR THE QUEUE
LENGTH OF THE GI/G/s QUEUE

By DoucLAs R. MILLER! AND F. DENNIS SENTILLES?
University of Missouri

Some ideas from the theory of weak convergence of probability meas-
ures on function spaces are modified and extended to show that the queue-
length of the GI/G/s system converges in distribution as time passes, for
the case of atomless interarrival and service distributions. The key to this
result is the concept of the uniform g-additivity of certain sets of renewal
measures on a space endowed with incompatible topology and o-field.

1. Introduction and summary. The main result of this paper is that the queue-
length of a general multi-server queue (GI/G/s) converges in distribution as time
passes. We restrict ourselves to atomless interarrival and service times, but no
additional assumptions. This limit is known to exist whenever there exists an
embedded persistent aperiodic renewal process, see [29]; our object is to go be-
yond the regenerative case. Other quantities such as actual waiting time are
known to possess limiting distributions; see [6] page 63, [15], [17], and [18].

Our method of attack is to consider the queue-length as a function of the
input of the system, where the input is initiated at times receding to —oco. Let
. be the measure of an input process commencing at time —¢ and let #, map
the input during [ —¢, 0] into the queue length at time 0. We first show, with-
out great difficulty, that ¢, and k, have limits as ¢ approaches infinity. We then
prove a “continuity theorem” similar to Billingsley’s (1968) Theorem 5.5, which
shows that the induced measures (distribution of queue-length) converge, i.e.,
poh, ' — ph as t — oo. Weak convergence is widely used in queueing theory
(see Iglehart (1973)) but usually to derive central-limit-type results arising from
scale changes. (See [14] and [31] for some different applications.) In our case
we use a location change.

A problem in applying the usual theory of weak convergence is that & is far
from continuous in the usual product topology. (Note that this context is dif-
ferent than [14] and [31] where queue-length is almost surely continuous.)
Metric topologies fine enough to make & continuous (even almost surely) are
nonseparable. Insuch a topology the measures in which we are interested have
empty support, consequently it is impossible (if we assume the continuum
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hypothesis) to extend these measures to the Borel sets induced by this topology.
See the discussion in Dudley (1967) and appendix III of Billingsley (1968). Pyke
(1969) reviews some of the theories of weak convergence on nonseparable spaces,
including [7], [24], and [32]. These do not seem to apply directly to our problem
because in these theories the limit measure is supposed to be Borel, which is not
the case for us. However, the idea of incompatible topology and o-field is
fruitful and we use it. Roughly speaking, we derive a continuity theorem, but
use the usual product topology to define measurable sets and another finer to-
pology to define continuity. We exploit special properties of the input of the
queue and also the functions which map input into queue-length. It is con-
ceivable that the results here could be obtained as a consequence of a general
theory of convergence of probability measures on topological spaces with in-
compatible topologies and o-fields, but this general theory does not appear to
exist. Perhaps this paper can help serve as a motivation for the development
of such a theory. '

The paper is structured as follows: Section 2 presents renewal processes and
the processes which we call “input processes;” a function space approach is used.
Section 3 investigates the functions which map input processes into queue-length.
Section 4 presents a “uniformity” theorem which corresponds to uniform ¢-addi-
tivity of certain families of renewal measures on a non-separable space with
incompatible topology and o-field. Section 5 gives a “continuity” theorem (in
the spirit of Theorem 5.5 of Billingsley (1968)). In Section 6 all the preceding
culminates in a limit theorem for the GI/G/s queue. In Section 7 we try to
relate our work to the ideas of general topological measure theory.

2. Renewal processes and input processes. Renewal processes arise frequently;
see Feller (1966) and Smith (1958). The classical approach is to consider various
related processes such as the renewal counting process or backwards recurrence
time process as a family of random variables on some probability space. Actually
renewal processes are a special case of point processes on the line. See Daley
and Vere-Jones (1973) for a survey of this area. A useful approach for studying
point processes is to congider them as probability measures on certain function
spaces. Whitt (1973) and others take this approach. We shall use it for renewal
processes.

Let v be an atomless Borel measure on the positive real numbers, R,, with
finite first moment, m,; v will be the interarrival measure of the renewal process.
Let R, = be a countable product of copies of R, indexed by {0, +1, +2, ---}.
Give R, the usual topology and R, = the product topology. The measurable
sets of R = will be the product ¢-field, which because R, is separable, coincides
with the Borel o-field (for the product topology) of R,~. Let »* be the product
measure on R, *: v* = [[2_. v;, Where v, = v.

For the product R> of real lines over {0, +1, +2, ...}, let z,: R — R
be the projection map onto the ith coordinate. Now define the partial sum
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space S* C R*: S° = {xeR>: m(x) < mj(x), for i <j; m_i(x) <0 = my(x);
lim, _, 7, (x) = —oo; and lim,_ . 7,(x) = +oc0}. We shall put 2 topologies
on S=:
(i) a relativization of the product topology on R= (denoted Z-topology), and
(ii) a shift topology (denoted S”-topology).

The “F-topology is metrizable, a metric being
= Yo it __|Xn = Yl
pg(x’ .y) Zn:—w 2 1 + 'x,, — y,,l
where x, = #,(x) and y, = 7,(y) for x,y e §=; this is the obvious generaliza-
tion of a metric which appears in [3], [14], and [30], and is the usual product
metric.

Now let us consider the shift (or &) topology: For x,y e R= say x ~ y if
and only if there exist / and J such that x, = y,., + ¢ for all n. (If more than
one such 4 exists, take the § with the smallest magnitude.) This is an equiva-
lence relation on R=. If x ot y define p_(x,y) = 1. If x ~ y define p_(x, y) =
|6]/(1 + 18]). The function p_, is a pseudo-metric on R>, each equivalence class
is p_-open and closed and R~ with the induced p . -topology is non-separable
since there are uncountably many equivalence classes. The restriction of p_,
to §> is easily seen to be a metric. The definition of points in §= yields the im-
plication that: if p_(x, y) < min (—x_,, x,)/(1 4+ min (—x_,, x,)) and if x, > 0,
then x, = y, + 6 with [6| = (1 — p_(x, y))/o.(x, y). From this it follows that
there are essentially only two kinds of sequences in S* p_-convergent to x,
namely, {x 4 d,}. This conclusion also holds if x, = 0, but is verified separately.

We shall call the induced p_.-topology on S=, the S -topology (or shift to-
pology); (S, &) is also non-separable since again there are uncountably many
non-equivalent points in $*. The product topology &” and the shift topology
& are not in general comparable, but, given a point x ¢ §* with x, > 0 the
above implication shows that &7 is finer than &7 at x. The metrizability of
(8=, &) is not used in this paper. The metric is introduced because it provides
a convenient way of visualizing what the space looks like.

The F-topology will be used to generate measurable sets and the S“-topology
to define continuity. Let ¢(”) be the Borel field generated by . Let ()
be its universal completion. In this paper, “measurability” will refer to the
universal completions of the appropriate topological o-fields, e.g., sets 6(F)
will be called Z*-measurable. In this connection, the following easily-proved
lemma is useful, [19] page 23.

LemMMA 2.1. Let X and Y be sets with o-fields &7 and <% and universal com-
pletions o7 and B, , respectively. If f: (X, %) — (Y, Z) is measurable, then
f: (X, &) — (Y, GP) is also measurable.

We shall now induce a renewal measure g, on S«, the space of renewal se-
quences. Let g,: R, — §* be such that g,(x) = s where s_, = >} _,_;, x5
s, =0,and s, = 37, x;,n > 0(7;(5) = s5;,and 7,;(x) = x;). Inrenewal-theoretic
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terms we are mapping the interarrival times into a renewal sequence with the
Oth renewal occurring at epoch 0. The function g,: (R,®, ¢(&°)) — (8%, ¢(F))
is measurable and therefore induces a measure z, = v°g,”* on (S, 6(Z°)). This
is the measure of a renewal process with a renewal at epoch 0.

Let us return to the S”-topology: since S has the cardinality of the con-
tinuum it follows from the continuum hypothesis that any subset of S has
cardinal of measure zero, hence that any Borel measure on S« has non-empty
S -separable support; see [28] or [3] page 235. It can be shown that p, gives
measure 0 to any .>“-neighborhood of diameter less than 1. Thus from the above
comments, y, cannot be extended to the Borel o-field generated by &

We shall not restrict ourselves completely to the function-space view of re-
newal processes discussed above. It will occasionally be easier to think of sub-
sets of § in terms of the traditional processes, such as renewal counting process
{N(f), —o0 < t < oo} or backwards recurrence-time process {B(f), —co < t <
oo}, (see Feller (1966) or Smith (1958)). Forexample,{xeS=:t —d < 7,(x) < ¢
for some i} = {B(r) < d}. Whitt (1973) discusses this idea of equivalent repre-
sentations for point processes.

Now consider the shift-transformations, T,: §* — S=. Define the following
functions: f, : $° — R=, where 7,(f,(5)) = 7,(s) — t; 9, : f,(S*) — R, where g,(y) =
min {n: #,(y) = 0}; and &, : R* — R>, where 7,(h,(r)) = 7, ,(r). Define T,(x) =
h, o f(x), for x € $* such that g, o f,(x) = n. Verbally, T, shifts the partial sum
sequence a distance ¢ to the left, so the renewal which occurred at 0 now occurs
at —¢. From the above constructive definition of T, it is clearly (¢(5”), o(&))-
measurable. Lemma 2.1 implies that it is also measurable with respect to the
universal completions. We define y, = #,T,~", the renewal measure of a pro-
cess with a renewal at epoch —¢. Define S, C S« as the subset for which
7y(s) = Oand S, C Sas the subset for which z,(s) = —¢fromsomei = 1,2, ...
Then p(S,°) = 1 and g,(S,~) = 1.

We now define a measure x on § which will correspond to a stationary re-
newal process (in the sense that the backwards recurrence time process is strictly
stationary). Let 7_,,: S — R* be the projection onto the —1st and Oth coor-
dinates of a partial sum sequence; n_, ((s) = (s_;, 5,). We call s, the forward
recurrence time from epoch 0 and —s_, the backward recurrence time from
epoch 0. Let F(x) = v([0, x]) be the interarrival cdf. Recall tkat m, is the ex-
pected interarrival time. Define v,, forward recurrence measure on [0, o), by
v4([0, 1]) = m,~* {¢ (1 — F(s)) ds and define v,, backwards recurrence measure
on [0, co) similarly. Define the joint measure v, , on 7_, () by

1 o
B ll(— 00, =€) % (b, @)) = —— {5 (1 — F(5)) ds .
1
Put the product measure v, , x v on 7_, (($*) x R, where R, is a countable
product of copies of R, this time indexed by {+1, +2, ---}. Consider the
function g: 7_, ((S*) x R, — S such that g(s_,, s/, r) = s where z_,(s) = s’,,
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To(8) = 8, m(5) = 8 + X r, w(r) for n > 0, and 7, (s) = s_, — X2, 7i(r) for
n < —1. We define p = (v, ; x v°)g~.

Essentially the same construction is presented in [20] and [21] where it is veri-
fied that ¢ indeed corresponds to a renewal process with an associated stationary
backwards recurrence time process {B(f), —co < t < oo}. In that case one is
dealing with regenerative processes but the same results apply here. See Beutler
and Leneman (1966) for a discussion of several equivalent ways to define sta-
tionarity of a point process.

LEMMA 2.2. Ast—> oo, p, —, p in the F-topology, if v is a non-lattice meas-
ure. (—, denotes weak convergence.)

Proor. It is well known that the finite dimensional distributions of a renewal
process converge. It follows from [20] that y is the limit. The lemma then
follows from the fact that, for the Z-topology on R=, finite dimensional sets
are a convergence-determining class ([3], page 19).

Now we turn to “input processes”: these are renewal processes which have a
random quantity attached to each renewal point. For example, for a queueing
process we will have the arrival sequence plus a service time associated with
each arrival. For a shot-noise process (Takacs (1956)), the input is a series of
“shots” of random magnitude arriving at random times. The space of sample
paths will be (S=, R,~). As before we will put two topologies on this space:
the product (&) topology on (S, R,~) will be the product of the product to-
pologies on each component; the shift (<) topology on (S=, R,~) will be the
product of the shift topology on S and the discrete topology on R,~. We use
the same & and .Z° notation for this space; it will be clear from the context
whether we are considering §* or (S, R,~). As before we let 7 generate the
measurable sets ¢(°) and use S to define continuity. Let A be an atomless
Borel measure on R, (the service time measure), then define p,” on (S, R,*)
by p, x 4> where 2* = ] _., 4,, 4, = 4; similarly define »’. (We are assuming
i.i.d. service times.)

Before we proceed we present some notation:

(i) in the future we will drop the prime () notation of these measures and
refer to y, and p,’ both as p,; it will be clear from the context which space we
are working with;

(ii) define x,’: (S, R,*) — R as the projection onto the ith coordinate of
R,>; as before =, is the projection onto the ith coordinate of S*;

(iii) for x € (§=, R,®), y = x + 0 is defined as 7,(y) = 7,(x) + dand z,/(y) =
m/(x) for all i; except that the coordinates of y may be re-indexed to satisfy
T_y(y) < 0 = 7(p)-

LEMMA 2.3. The statement of Lemma 2.2 is also true for p,' and p'.

Proof. Use Lemma 2.2, the independence of service times and Billingsley’s
(1968) Theorem 3.2 for product measures.
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LeEmMA 2.4, Let A C (S, R,*) be a F-Borel set, then A= € 6(F). (A= is
the S7-closure of A.)

PrOOF. ForoeR,let A+d ={x+0:xec A}, then A~ = N7, Ujsica-1 (4+9).
Let ¢ be a measure on ((S*, R,*), 0(<”)). Let X = (§~, R,~) x [0, 1] and =
the projection of X onto ($~, R,~). Let f: X — X be defined by f(x, y, z) =
(x+ z,y,2). Let 4, = f(A x [0, n~']). Since f~! is continuous, A4, is a Borel
set in X and {J,;<,-1 (4 + 9) = 7(4,). Since X is homeomorphic to a complete
separable metric space (in the product topology), = is continuous and 4, is Borel,
it follows from Theorem 2.2.13 of Federer (1969) that ¢ extends to n(A4,) =
U sisa-1 (4 + ). Consequently ¢ also extends to 4=~

LEMMA 2.5. Let A be a SP-measurable subset of (S*, R,*) and R, = {x e
(8=, R.®): —t < my(x) = 0 for some i} then

pA) = — 55 (A | R)(1 = F) ds .

1

Proor. The proof in [21] for regenerative processes holds in this setting.

LEMMA 2.6. Let A be a SP-measurable subset of (S, R,>) and suppose y,(A) = 0
for almost all (Lebesgue) t, then p(A) = 0.

Proor. The hypothesis implies that z,(4| R,) = O for almost all (Lebesgue)
t for which the conditional measure is defined, i.e., ¢ such that F(¢) < 1. Lemma
2.5 then proves the lemma.

3. Queue-length as a function of input. Consider the general multi-server
(GI/G/s) queueing system. Starting at epoch 0, customers arrive at random
times, requiring random amounts of service. The interarrival times are i.i.d.
with finite expected value. The service times are i.i.d. Interarrival and service
times are independent of one another. In short, the input to the system is an
“input process” with no renewal before epoch 0 and the first renewal at epoch
0 (or equivalently, an input process on (—oo, co) with renewals in (— oo, 0)
ignored). There are s servers who dispense service on a first-come-first-served
basis (one server per customer). If all servers are busy a customer waits. The
total number of customers in the system at any time (waiting and being served)
in the queue-length. See Prabhu (1965) or DeSmit (1971). See Feller, (1966)
page xv, for discussion on the term “epoch.”

We are interested in the stochastic behavior of queue-length after much time
passes. It will be convenient to approach this by letting the starting epoch
recede further into the past; for example, the queue-length at epoch ¢ of a
system which began accepting customers at epoch 0 has the same distribution as
the queue-length at epoch 0 of a system which began at epoch —¢. Thus we
shall be interested in the queue-length at epoch 0, but we shall start the system
at epochs which recede into the distant past.

Consider a point x in the input space (S=, R,*); the ith customer arrives at
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s; = m,(x), (m; is the projection defined in Section 2). We shall say that the ith
customer is excluded from the queueing process if he is sent away without being
allowed to enter the system (or equivalently, that he is serviced instantaneously);
in either interpretation he does not affect the queue-length. The ith customer
is admitted to the system if he is allowed to wait and obtain service.

Now consider the family of functions Q,: (S*, R,*) x R — R, s = 0; where
Q. (x,t) =0, for t < —s; and for t = —s, Q,(x, t) equals the queue-length at
epoch ¢ which results from input x when customers arriving during (— oo, —3s)
are excluded and customers arriving during [ —s, co) are admitted, i.e. the system
starts at epoch —s. (This verbal definition of Q, will suffice for our presentation.
See [31] for a rigorous mathematical approach to defining queue-length, which
includes treatment of measurability questions.) We have a family of stochastic
processes {Q,(+, 1), —co < t < oo}, s = 0, on the space ($=,R ,~) for each meas-
ure #, on this space.

In the interest of brevity we shall state Lemmas 3.1 through 3.4 without proof.
The proofs are straightforward but tedious and similar results already appear in
[13], [14], and [31]. Proofs of 3.5 and 3.6 are sketched.

LemMA 3.1. For fixed x and t, Q,(x, t) is monotonically non-decreasing in s.

This lemma guarantees the existence (possibly infinite) of a limiting function
Q(x, 1) = lim,_,, Q,(x, t). The stochastic process induced by Q and y is stationary
because p is the measure of a stationary input process. (In general if {X(¢),
—oo < t < oo} isastationary stochastic process and f'is o({X(f), — oo < t < oo})-
measurable then {f(X(s + +)), —oco < § > oo} is also a stationary process. See
[14], page 105, for the discrete time case.) This process can be interpreted as a
stationary queueing process which admits all customers. Its 1-dimensional dis-
tribution is pQ(., 0)=".

In this paper our methods of proof only consider queue-length at epoch 0.
Therefore, we introduce the following notation: define 4,: (S, R,*) — R by
h(x) = Q,(x,0) and %: (S*, R,*) — R by k(x) = Q(x, 0). Also define D, ,(x) to
equal the departure epoch of the ith customer in the Q,-process for input x; if
m(x) = s, < —s then D, (x) = s;,. Define the following subsets of (S=, R*,):
Ay = {x: my(x) = 0}; 4, = {x: m,(x) = —¢tfor some i}; Dy, , = {x: D, (x) = 0}
D,, = U_wD,,; and D, = {x: lim,_, D, ,(x) = 0}.

i=—o00

LeMMA 3.2. The SP-discontinuities of h, are contained in A, U A, U D, ,.

LemMA 3.3. If the interarrival and service measures (v and 2) are atomless then

(i) p(A4) = 0 for s + 0,

(i) p(4,) =0 for s + ¢,
(iii) (D, ;) = O for all s,
(iv) p(Dy,;) = O for all s, and
(V) p(D,,) = O for all s.

LemMA 3.4. If the interarrival and service measures (v and A) are atomless then
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h, is FP-continuous a.s. (u,) for s + 0, t. Furthermore, under these conditions h, is
also & -continuous a.s. (p,) for s + 0, t.

LemMma 3.5. If h is S -discontinuous at x then there exists a T such that for
t = T there exists a net {x,}, x, > x, such that h, is &-discontinuous at x,.

PRrOOF. §> is locally arcwise connected in the .>“-topology. Suppose % has
an “-discontinuity at x and N(x) is the S-closure of an .%“-connected -
neighborhood of x, then there exists a y € N(x) such that A(x) + A(y). Suppose
h(x) < oo and A(y) < oo then since the 4,’s are integer-valued there existsa T, ,
such that A,(x) = h(x) and A,(y) = k(y)fort = T, ,. Let A, = {ze N(x): hy(z) =
h(x)}, B, = {z € N(x) : h,(z) # h(x)}. Since N(x)is connected, 4, n B,~” + @,
and x, e 4,77 n B,~7 is a point of discontinuity of #,. Thus any neighborhood
of x contains discontinuities of 4, for all + > T for some T which depends on
the neighborhood. Suppose either 4(x) = oo and A(y) < oo, or vice versa, then
there exists a T, , such that &,(x) > k(y) and A,(y) = h(y) for all t > T and we
can proceed as before.

There exist points of .>“-discontinuity for 4 at which #, is .&“-continuous for
all . One such point, x,, is defined as follows: my(x,) > 0, 7”,(x,) = —( + 1),
and 7’ (x) =1+ 2% for i=1,2,3,.... Thus we need Lemma 3.5 in its
stated form.

LEMMA 3.6. If v and 2 are atomless then h is &*-continuous a.s. (y,), s > 0.

PrOOF. As mentioned in Section 2, the ~“-topology is a refinement of the
F-topology at all points of (S=, R,~) except those x for which z(x) = 0. This
fact and Lemma 3.2 imply that the .>“-discontinuities of 4, are contained in
Ay, U A4, U D,,. Suppose i has an S“-discontinuity at x. Then by Lemma 3.5,
there exists {x,, # > T’} such that x, —_ x as t — co and 4, is S-discontinuous
at x,.

First we examine the possibility that for some 7, x, € 4, for ¢t > T. Suppose
for t =T, >T, x,=x+ ¢, |¢ <d. Consider i such that 7,(x) < —T, <
T;41(x), then for j < i, |7;(x) — m;,4(x)| < 20. Let U(x) equal 7;_,(x) — m;(x),
which equals the jth interarrival time. Since § can be made arbitrarily small
this implies that U;(x) — 0 as J — —oo for such x. But for x such that z;(x) <
—s, the random variables U, are i.i.d. with measure v, so we know that U; — 0
with g,-measure 0. Thus if we exclude a set of y,-measure 0 we can assume
that x, ¢ A, for some arbitrarily large-z.

Suppose there is a subsequence of {x,}; call it {x, } such that x, € 4,. Since
4, is an &~closed subset of (§=, R,~)and x,, — , x, then x ¢ 4,. Thusby Lemma
3.3 if we throw out another set of x,-measure zero we can avoid this possibility.

The only other possibility is that there exists a subsequence {x, }.of {x,} such
that x, e D,, N 4, n 4,; x,, —, x thus x, = x + 8, where §, 0 as i — oo.
We can guarantee that ¢, 4 9, is a monotone increasing sequence (if necessary by
taking a subsequence). Consider the Q, -process: for input x, there is a departure
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at epoch 0;
Q‘i(xti’ t) = Q‘z‘—"i(x‘i + 0t + 51’) = Qti—ﬂi(x’ t+ 5i) .

Therefore, the Q, _; -process has a departure at epoch 4, when the input is x.
As in Lemma 3.1 it follows that for fixed k and x, D, ,(x) is monotonically non-
decreasing in . Consequently, if §; > §,,, then the departure from the Q, _, -
process (with input x) at epoch g, must be a later customer (higher index number)
than the customer who departs at g, from the Q, , _, . -process (with input x).
We can restrict {3,} (i.e. take a subsequence) such that |3,| \ O (strictly) and
then split it into a positive and negative subsequence {0,*} and {d,7}. If {d,*}
has an infinite number of elements then since the sequence is strictly decreasing
each element must correspond to the departure of an earlier customer, i.e., the
kth term corresponds to departure of the —kth or earlier customer. Thus at
epoch 0, as t — oo, the Q,-process has arbitrarily long queue-length and A(x) = co.
We shall return to this possibility later. If {3,*} consists of only a finite number
of elements we may ignore it. Now consider {J,"}: we know that the Q, _, -
process has a departure at epoch §,~ for input x; suppose it is the k(i, x)th cus-
tomer. Consider the limit points of {k(i, x),i = 1, 2, ... }. If k,is a limit point
then (because it is an integer-valued sequence) k(i, x) = k, for a subsequence
of i’s. This implies that x belongs to D,, but by Lemma 3.3, p(D, ) = 0.
If {k(i, x)} has no limit point then for i sufficiently large, the departure corre-
sponds to a customer with arbitrarily low index number and again the queue-
length at epoch 9,~ is arbitrarily large as i — oo, thus A(x) = oco.

We have shown that the set of &“-discontinuities for which # is finite-valued
has p,-measure zero. Now we show that almost all (g,) x for which A(x) = oo
are points of ~-continuity. Consider p,: let {k,} be a subsequence of {4},
t;— oo, t; #+ 5. Let D, = {x: h, hasan S -discontinuity at x}, then from before
t(U, D;) = 0. Suppose i(x) = oo for x ¢ |Jz, D;, then given any M there
exists T such that k,(x) > M, for t, > T. Because x ¢ D, there exists a neigh-
borhood N,(x) such that &, (y) > M for all y e N(x). Since h = h, h(y) > M
for all y € Ny(x). Thusif x, —_ x, then liminf, . A(x,) = M, but M is arbitrary
so lim,_,, A(x,) = oo, and % is &-continuous at x.

CoUNTEREXAMPLE 3.7. The function % is not a.s. “*-continuous. Consider
the special case G/D/1, where the interarrival distribution is uniform on [1, 2]
and unit service times. Consider x € (S=, R,*), 7,(x) = s, and =,/(x) = 1, for
all i, and a product neighborhood N; ,(x) = {y € ($*, R,*): |7(y) — mi(x)| < 0
and |z,/(y) — =,/(x)| < 6 for |i| < n}. Suppose z, is identical to x in all coordi-
nates except r,(z,) = 3 for i < —n. Then z,¢e N, ,(x), but k(z,) - co and
z, —_,x but A(x) = 0 or 1. Thus 4 is not Z”-continuous at x, but p, is concen-
trated on such x; thus almost all (z,) x € (§°, R,*) are Z-discontinuity points.
In fact, 4 is ZP-discontinuous everywhere.

4. A uniformity theorem. We shall obtain convergence of sequences of
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induced measures, such as yu,k,7%, essentially by showing that the limit of y, 4,
is independent of the rates with which ¢ and s approach co. For this we will
need some kind of “uniformity,” i.e. Theorem 4.5. We proceed with some
preliminary lemmas.

LemMA 4.1. If A isan S -closed, P -measurable subset of S*, p, a renewal
measure on S*, and {0,} a sequence of real numbers which converge to 0 as n — oo,
then lim sup,, .. u(A — 3,) < p(A).

Proor. First we verify that Mr_, [Uaem (4 —6,)]77 = 4. Clearly
[Unzn (4 — 0,)]7 D A4 because any point x € A has a sequence {x — 4, n = m}
in J,sn(4 — 0,) which &“-converges to x, thus it remains to show the reverse
inclusion. Suppose x € [Unzm (4 — 8,)]7 for all m, then two possibilities
exist: either

(i) xe A — o, for infinitely many n, which implies x 4 J, € 4 for infinitely
many n, which in turn implies that x € 4 because A4 is .5 -closed and x is an -
limit point of {x + 4,}; or

(i) xe 4 — g, for at most finitely many n, which implies that there exists
m, such that x € [U,om (4 — 0,)]""\Uwzm (4 — 8,), for m = m,. Thus for each
m = m, there is a sequence {x,, ;,i=1,2,3, .-} C Unzm (4 — 9,) such that
Xy —o X, @S i — co. By a diagonal argument, we can get a sequence x,,’ =
X bimy Where k(m) = min (k: |x,, , — x| < 1/m), x,' € A — 0, for some n(m) =
m. Thus x,’ + 8,. € A. Butx,’—_ xand d,.,, — 0, as m — co. Therefore
since A4 is &-closed, x ¢ A.

Suppose lim sup,, ., ¢£,(4 — 8,) = ¢. Given any ¢ > 0, there exists a subse-
quence n’ — oo such that p,(4 — d,.) > ¢ —e. Thus g,(U,sm (4 —0) >c—¢
and by monotonicity g, (MNw Unsm (4 —9,)) >c —¢e. From above 4>
N Unzm (4 — 0,) and so p,(A) > ¢ — ¢. Since ¢ > 0 was arbitrary, g,(4) = c.

LEMMA 4.2. Let p be a stationary non-lattice renewal measure on S« with in-
terarrival cdf F and finite expected interarrival time, m,. Let

R,,={xeS*:5s —nt < m(x) <5+ n?, for some i}, then
1 2
R, )= "1\ — F(s)ds = 1 — F(2/n)) .
FRup) = o (1= P ds 2 = (1= F2Jn)

Proor. If {B(f), —co < t < oo} is the stationary backwards recurrence time
process associated with g, then R, , = {B(s + n~') < 2n~'}. We know ([10], [20])
that B(s 4 n~') has density (1/m,)(1 — F), therefore

1
#(R,) = — " (1 — F(s)) ds.
nm
LEMMA 4.3. Again let p be a stationary non-lattice renewal measure on S and

R ={xeS°°:s—L§1ri(x)§s-|-i, for some i}, then
m m

8,m

limt—ow l#(Rc,m n Rs+t,m) - #(Rs,m)nu(Rs+t,m)l = 0 M
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Proor. Consider
#(Rs,m n Rs+t,m)
= P{B(s+i) <2/m and B<s+ t+ i) =< 2/ml»
m m

= {ymP {B (s +t+ %) < 2/m‘B<s + —’1;1—) = u} dF g oy m-1)(4)

= 5P {Besres (5 1 ) S 2} dF s ()

where B, is the backwards recurrence time process associated with y, and B the
process associated with . From [20]

lim,__ P {B,_m_l (s ot l) < 2/m} e {B <s 4 l) < 2/m} ,
m m
for any ¢ .
The lemma follows by dominated convergence.

LEMMA 4.4. Let A, A, --- be events in a sample space, and suppose that
3= P(A,) = oo. Suppose also that for some constants N and ¢ < oo, P(4,N0 4,,) <
cP(A,)P(A,) for all n, m > N, then P(Nn Unzm 4a) > 0.

Proor. See Lamperti (1963).

4.5. UNIFORMITY THEOREM FOR RENEWAL PROCESSES. Let A4, D A, D Ay- - -
be a sequence of FP-measurable, S -closed subsets of S*. Let {y,, t = 0} be a
family of translated non-lattice renewal measures on S=. If p(N7=1 A,) = 0 for
all t > 0, then p(A,)\, 0, uniformly int as n — co.

ProoF. Suppose the conclusion of the theorem does not hold, then there
exists an ¢ > 0 such that for each n there exists a ¢, for which g, (4,) = e.
The sequeuce {t,} is unbounded: suppose the contrary, then {t,} has a limit point,
t, < oo, and t,, —t,. Since p,(A4,)\,0 for all ¢ there exists an m such that
. (A,) < ¢/2, but by definition of {z,.}, g, (4,) > ¢ for n’ = m. From Section
2 we know that p, , = p, (T, ,_,,)”* where T, is the shift operator so Lo (An) =
pe(A, — (t, — t,)). Since t, —t,—0 we can apply Lemma 4.1 to get
#:.(4,) = ¢, which is a contradiction. Thus {#,} is unbounded and in particular,
we can take a subsequence which goes to infinity at a rapid rate. If R, =
{xeS=: 1, — n!' < m(x) < t, + n~', for some i} then we shall require that {z,}
approach infinity rapidly enough to satisfy u(R, N R,) < 2u(R,)u(R,), which
can be guaranteed by Lemma 4.3.

Now let us reconsider g, (4,) = ¢ > 0. The measure p, is concentrated
on Sp. Let B, = A, 0 ST5 p (By) 2 €. Clearly since A, is &-closed and
B, c A, we have M (Unzm B.)™" C U, 4,; thus it suffices to show that
2(Nm (Unzm Br)~) # 0, for some s, to get a contradiction. Equivalently, it
suffices to show that the set {x ¢ $~: there exists x, —, x such that x, e B,}
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has positive p,-measure for some s. Using Lemma 2.6, it will suffice to show
that this set has positive y-measure, where y, —,, z.

Let C, = Us<k-1 (B, + 0). This set is “P-measurable for reasons stated in
the proof of Lemma 2.4. Let C = (), Uzn Cis if x € C, then there exists a
sequence {x,}, x, € B, which has x as an S”-limit point. Thus to obtain our
contradiction it suffices to show that x(C) > 0. '

A slight problem arises because C, as defined above is not a disjoint union.
We can think of C, as the elements of S~ with a renewal in [#, — k7%, ¢, 4 k71,
say, at t, + d6(x); if 2 or more renewals occur we just consider the first one.
Then for such an x to be an element of C, we also require that x — §(x) € B,.
(Note that there may be other elements of C,: namely, those with 2 renewals
in [#, + k7Y, say, at #, + d,(x) and 1, 4 9,(x), such that x — §,(x) ¢ B, but
x — d)(x) € By.)

Let Ty(x) = min, (7(x) = t, — k™) and D, = {x e S=: x — (T\(x) — t,) € B}
and R, ={xeS~:t, — k' < m(x) < t, + k', for some i}; then u(C,) =
(R, 0 D). Letting the origin be #, — k=* and using a symmetric version of
Lemma 2.5 for forward recurrence times from the origin, we get

(R, 0 D) = - {2 _s pu(R, 0 D, [R)) (1 _ F(s _ <t,, _ %))) ds,  where
m,
R, = {xeS“: 4, — %g my(x) < s, for some il» .

But, by shifting the renewal sequence by #, — s, we see that u(R, N D,|R,) =
s, (By|no renewal in [t, — k=' 4 (1, — s5),1}) for t, — k' < s < 1, + k™, and
equals 0 otherwise. This first expression is greater than #, (B 0 {no renewal
in [#, — 2k7%, 1,)}) which for sufficiently large k is greater than ¢/2 because
e, (By) > e and limy_, ¢, (no renewal in[t, — 2k, ,)) = 1. Thus for sufficiently

large k,
ez () (1 - ro- (- 1)

= ()02

Since F has no atom at 0, we get x(C,) = ¢/2km, for large k. Therefore
Diien (Cy) = oo, satisfying the first hypothesis of Lemma 4.4. From the above
we also get 12(Cy) > (¢/2)p(R,) for large k.

From the above analysis and the inclusion R, D C, we get u(R,) = p(C,) =
¢/2p(R;) for k sufficiently large. This and the preceding implies that

#C; 0 G) < Ry 0 Ry) < 2pu(R,)pu(Ry) |
=2(2uC)) (2 €)= L uCucy)

for sufficiently large j and k. This fulfills the second hypothesis of Lemma 4.4.
Thus #(C) > 0, which is a contradiction, completing the proof.
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For the purpose of a discussion (Section 7) of the general theory of weak
convergence we note the following corollary.

COROLLARY 4.6. (Uniform ¢-additivity of translated renewal measures). Let
A, D A, D A, -+ - be a sequence of FP-measurable, & -closed subsets of S=, such
that N3, A, = @. Let {p,, t = 0} be a family of translated non-lattice renewal
measures on S*; then p,(A,)\, 0 uniformly in t as n — oco.

4.7. UNIFORMITY THEOREM FOR INPUT PROCESSES. Let p, be a family of trans-
lated input-measures on (S, R,*), with v non-lattice. Suppose A, C A, C --- are
F-measurable, S -closed subsets of (S, R,*) such that p(N, A4,) = 0 for all
5 = 8,. Then p(A,)\, O uniformly in s (s = s,) as n — oco.

Proor. The proof of Theorem 4.5 extends to this case virtually unchanged.
5. A continuity theorem.

THEOREM 5.1. Let p,, t > 0, be a family of atomless translated renewal meas-
ures on S and let p be the limiting stationary renewal measure. Suppose g, g,
S* — R, t = 0; g is bounded; g,(x) / 9(x), as t — co; g, is FP-continuous a.s.
(#,) forall s == t,t > 0; and g is S”-continuous a.s. (u,) for all s. Then p1,9,”" —,,
79, ast — oo.

Proor. By Theorem 2.1 of Billingsley (1968) it suffices to show that
lim, ., § fd(¢,9,7") = § fd(pg™), for all bounded, uniformly continuous real f.
Without loss of generality we can assume 0 < f < 1. Pick any such f; then
given ¢ > 0, there exists 6 > 0 such that |x — y| < ¢ implies |f(x) — f(y)| < e.

Let A, = {9 — g, = 0}. Because g, /' ¢ and g is bounded it follows that
A\, @. Let D, = {&-discontinuities of g — ¢,} C { < -discontinuities of g} U
{-discontinuities of g,}. By hypothesis then, for s + ¢, y(D,) = 0. Consider
the .&-closure of 4,: 4,7 C A, U D,; A7 is S-measurable by Lemma 2.4
and by above p(4,"7) = pu(A,) if s #t. Ast— oo, p(4,) "\, 0 foreach s, and
consequently so does g (A4,~7)\,0. Thus px,(N, 4,~7) = 0, for each s = 0.
By Theorem 4.5, p,(A4,~%)\, 0 uniformly in s as t — co. Since p,(4,~7) =
©(A,) we get p,(A,) "\, 0 uniformly in s as t — co, even though 4, may not be
S -closed.

Consider

1§ fd(ee9.7") — § fa(ug™)
= [§(fog)dp, — §(fo9)dy|
S5, l(fe9) — (fepldr + V5, (fo9:) — (fo9)ldp,
+ §4,1(fo9) — (fog)ldlp. — pl
+ $2,1(fo9) — (fo gl dlere — p| + [§s= (f o 9) d(pre — p)] -

From the above uniformity, there exists #, such that p,(4,) < e and u(4,) < e
for all + > #,. Hence §,,|fog, — fog|dy, < {4,dp, <e because 0 < f< I,

for t = ty; §;,[f09:— fogldp, < (s,¢dp, <e, by uniform continuity of f.
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Similar reasoning implies that the third and fourth terms are both less than e
if 5, ¢ = ¢,. Finally, we know (Lemma 2.2) that z, —, ¢ in the Z-topology.
By Theorem 5.1 of Billingsley (1968), p,9,”! —, pg,”* since g, is &*-continuous
a.s. (¢), which follows from the hypothesis and Lemma 2.6. Thus, the fifth
summand goes to 0 as 1 — oo.

COROLLARY 5.2. Theorem 5.1 holds also for the imput space (S*, R,).

ProorF. Same as Theorem 5.1.
6. A limit theorem for queue-length.

THEOREM 6.1. Let {Q(f), 0 < t < oo} be the queue-length process of a GI/G/s
queueing system with atomless interarrival and service distributions which starts at
epoch 0. As t — oo, Q(t) —, Qy, where Q, is the queue-length of a stationary
queueing process.

ProoF. Using the notation of Section 3, Q(f) = Q,(-, t). Starting at epoch 0
implies the input has measure g, Thus the distribution of Q(¢) is p,Qy(+, #)*
which equals ¢,0,(-, 0)~* = g, h,~". All the hypotheses of Corollary 5.2 are
satisfied except 4 is not bounded. Pick any N > 0 and let ' = min (4,,N)
and 4’ = min (k, N), then p,(k/)"' —, u(h')~" as t — oo by Corollary 5.2. If
n< N, then p(h/)(n)) = phX({n)) and p(k)X(n)) = ph~((n}). Thus
lim,_, p,h,~({n}) = ph~'({n}) for n < N. Since N is arbitrary we get conver-
gence for all integers, n. Define Q, as a random variable on the nonnegative
integers with distribution A=, which was established in Section 3 as the dis-
tribution of queue-length is a stationary process.

REMARKS 6.2. (i) In all the preceding, 4 could assume the value oo, so we
have actually dealt with light and heavy traffic.

(ii) There are more general queueing systems to which we cannot apply the
theory developed here. For example, the 4,’s associated with bulk-service queues
will not necessarily be monotone increasing. The simplest bulk service situa-
tion is the single server case where 2 customers are serviced simultaneously;
if a customer arrives at an empty queue he must wait for the next arrival before
he can begin service.

7. Relations to the general theory of weak* convergence. There is a well-
established theory of weak* convergence (weak convergence to the probabilist)
of probability measures on topological spaces, particularly complete separable
metric spaces X; [28] is perhaps the best reference, see also [11] and [25] (for a
treatment in the context of duality and weak* convergence).

We have two brief remarks to make relating our work to the general theory.
Let X be a completely regular Hausdorff space, C,(X) the bounded continuous
real-valued functions on X. A set of the form {x|f(x) = s}, fe C,(X), is called
a zero set in X. The reader is no doubt familiar with how the concept of tight-
ness is used to obtain the existence of a weak* limit for a sequence of measures
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whose finite dimensional distributions converge ([3]). For a complete separable
metric space X, tightness is equivalent to the formally weaker condition of uni-
form o-additivity: p,(Z,) —; 0 uniformly in n where Z, 5 Z,,, is a sequence
of zero sets with void intersection. Recall Corollary 4.6: this corollary does
not exactly fit the general theory of weak* convergence because of the incom-
patibility of the topology and s-field. Both tightness and uniform ¢-additivity
imply that the weak* closure of {g,} is weak* compact ([25], [28]). Indeed,
uniform ¢-additivity is equivalent to weak* compact closure, in the space of
bounded Baire measures on any completely regular X and available as a tool
even when all compact sets in X have measure zero (e.g., X = (§=, &”)). Thisis
our first point.

Our second remark is that we have not used uniform ¢-additivity as tightness
is ordinarily used: recall that a limiting measure x already exists. We were
instead motivated by its equivalence with weak* compactness, and this in turn
viewed from the functional analytical point of view in conjunction with Dini’s
classical theorem for uniform convergence of a monotone sequence of functions
on a compact set, ([1], page 425). Specifically, if M denotes the weak* closure
of a set {¢,} and M is compact, consider a monotone net f, € Cy(X) / fe Cy(X)
and think of f, f, as functions on M by fi(¢) = (5 f.dy, ¢ € M. Then each f,
and f is continuous on M and f,(¢) / f() for each p. Since M is compact the
convergence is uniform. Thus, f,(#,) = (s f; due. — (x fdp = f(r) independently
of the rates at which t and s converge. This is the basis of the ideas resulting in
5.1, whose proof cannot be put in this simple form because of the incom-
patibility of continuity and measurability.

Acknowledgment. The idea behind this paper evolved from a suggestion by
Professor Ward Whitt that much of [21] could possibly be approached using the
theory of weak convergence of probability measures. We would like to thank
him. We would also like to thank the referee who made valuable comments
and suggestions which we have incorporated into the paper.

REFERENCES

[1] ApostoL, T. M. (1957). Mathematical Analysis. Addison-Wesley, Reading, Mass.

[2] BEUTLER, F. J. and LENEMAN, O. A. Z. (1966). The theory of stationary point processes.
Acta. Math. 116 159-197.

[3] BILLINGSLEY, PATRICK (1968). Convergence of Probability Measures. Wiley, New York.

[4] BREIMAN, LEo (1968). Probability. Addisdn-Wesley, Reading, Mass.

[5]1 DALEY, D. and VErRe-JONEs, D. (1973). A summary of the theory of point processes.
Stochastic Point Processes: Statistical Analysis, Theory and Applications, (ed. P.A.W.
Lewis). Wiley, New York.

[6] DeSmit, J. H. A. (1971). Many server queueing system. Ph. D. dissertation, Techniche
Hogeschool, Delft. :

[71 DubLEY, R. M. (1966). Weak convergence of probabilities on nonseparable metric spaces
and empirical measures on Euclidean spaces. Illinois J. Math. 10 109-126.

[8] DupLEY, R. M. (1967). Measures on non-separable metric spaces. Illinois J. Math. 11
449-453.



[]
(10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

EXISTENCE OF LIMIT FOR QUEUE LENGTH 439

FEDERER, HERBERT (1969). Geometric Measure Theory. Springer-Verlag, New York.

FELLER, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley,
New York.

FREMLIN, D. H., GARLING, D. J. H. and HayDoN, G. R. (1972). Bounded measure on to-
pological space. Proc. London Math. Soc. (3) 25 115-136.

IcLEHART, D. L. (1973). Weak convergence in queueing theory. Adv. Appl. Probability 5
570-594.

Jacoss, D. R., Jr. and SCHACH, S. (1972). Stochastic order relationships between GI/G/k
systems. Ann. Math. Statist. 43 1623-1633.

KENNEDY, D. P. (1972). The continuity of the single server queue. J. Appl. Probability 9
370-381.

KIEFER, J. and WoLFowITZ, J. (1955). On the theory of queues with many servers. Trans.
Amer. Math. Soc. 18 1-18.

LAMPERTI, JOHN (1963). Wiener’s test and Markov chains. J. Math. Anal. Appl. 6 58-66.

Lovnes, R. M. (1962a). The stability of a queue with non-independent interarrival and
service times. Proc. Cambrige Philos. Soc. 58 497-520.

LoynEs, R. M. (1962 b). Stationary waiting-time distributions for single-server queues. Ann.
Math. Statist. 33 1323-1339.

MEYER, P. A. (1966). Probability and Potentials. Blaisdell, Waltham, Mass.

MILLER, D. R. (1972). Existence of limits in regenerative processes. Ann. Math. Statist. 43
1275-1282.

MILLER, D. R. (1974). Limit theorems for path-functionals of regenerative processes. J.
Stochastic Processes Appl. 2 141-162.

PraBHU, N. U. (1965). Queues and Inventories: A Study of Their Basic Stochastic Processes.
Wiley, New York.

PykEe, RONALD (1969). Applications of almost surely convergent constructions of weakly
convergent processes. Lecture Notes in Math. 89 187-200.

PykE, R. and SHORACK, G. R. (1968). Weak convergence of a two-sample empirical process
and a new approach to Chernoff-Savage theorem. Ann. Math. Statist. 39 755-771.

SenTILLES, F. D. (1972). Bounded continuous functions on completely regular spaces.
Trans. Amer Math. Soc. 168 311-336.

SMmiTH, W. L. (1958). Renewal theory and its ramifications. J. Roy. Statist. Soc. Ser. B 20
243-302.

TAKAcs, L. (1956). On secondary stochastic processes generated by recurrent processes.
Acta. Math. Acad. Sci. Hungar. 7 17-29.

VARADARAJAN, V. 8. (1961). Measures on topological spaces. Mat. Sb. 55 35-100; English
trans. Amer. Math. Soc. Transl. (2) 48 (1965) 161-228.

WHITT, WARD (1972). Embedded renewal processes in the GI/G/s queue. J. Appl. Proba-
bility 9 650-658.

WHITT, WARD (1973). Representation and convergence of point processes on the line. Yale
University technical report.

WHITT, WARD (1974). The continuity of queues. Adv. Appl. Probability 6 175-183.

[32] WicHURA, M. (1968). On the weak convergence of non-Borel probabilities on a metric
space. Ph. D. Dissertation, Columbia Univ.

DouGLAs R. MILLER F. DENNIS SENTILLES

DEPARTMENT OF STATISTICS : DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MISSOURI UNIVERSITY OF MISSOURI

CoLUMBIA, MISSOURI 65201 CoLUMBIA, MissoURI 65201



