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A MAXIMAL INEQUALITY AND DEPENDENT
STRONG LAWS

By D. L. McLEisH
York University

This paper contains a general dependent extension of Doob’s inequality
for martingales, E(max;s, S;?) = 4ES,%. This inequality is then used to
extend the martingale convergence theorem for L» bounded variables, and
to prove strong laws under dependent assumptions. Strong and ¢-mixing
variables are shown to satisfy the conditions of these theorems and hence
strong laws are proved as well for these.

0. Introduction. Among the most useful tools of probability theory are the
many devices used to bound, in L, norm or in probability, the quantity max,, |S,|
where S, = Y., X;. When the X, are independent random variables, many
inequalities such as those of Kolmogorov, Ottaviani, and Bernstein are avail-
able; when S, is a martingale, we have from Doob’s inequality (Doob, page 317)

(0.1) Imax,c, [Sifll, < qllS.ll, for p>1, pP+g7=1,

where ||+ ||, denotes the L,(Q) norm for random variables, and ||U||,, is defined
as esssup |U]|.

In this paper we give a comparable result for dependent variables under con-
ditional expectation assumptions. This is used in Section 1 to derive an analogue
of the martingale convergence theorem and strong law.

It is well known (cf. Chung (1968), page 119) that when the X, are independent
random variables with EX; = 0, 3, E|X,|?/i* < oo forany 1 < p < 2 is a suf-
ficient condition for the strong law to hold: S,/n — 0 almost surely. Chow (1967)
has proved a similar result when the X; are martingale differences, and a num-
ber of authors, for example Cohn, and Iosifescu have studied the strong law
under ¢-mixing assumptions. A source for the latter results is the book by
Tosifescu and Theodorescu (1969). Chow’s martingale result is extended for
p = 2 by (1.9), and in Section 2, the law of large numbers under mixing con-
ditions weaker than both ¢-mixing and strong mixing is investigated.

Finally in Section 3 we briefly treat functions of mixing processes, with an
application to functions of the form f,(2*w).

In none of these theorems is stationarity required. Applications are made to
autoregressive time series.

1. Mixingales. Let {& ", —oco < n < oo} be any sequence of subsigma
algebras of the probability triple (Q, %, P) which are increasing in n. We will
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830 D. L. MCLEISH

represent the conditional expectation E(U|.&# ™) by E,, U and for random vari-
ables X, X,, - - (specified later) put S, = 312, X,. Recall that (S,, ¥ ") isa
martingale if each S, is integrable and;

(1.1) (a) E,,X,=0 a.s. and
(b) Each X, is measurable & ".

For martingales, it is no restriction to assume that each of the & * is complete,
in which case (b) is equivalent to

(b) |E, X, — X,|]l;, =0 forall n.

(In the following we do not assume the % " are complete; (b’) is introduced
purely for motivational reasons). We now define the asymptotic analogues to
(a) and (b’). :

(1.2) DeriniTION. The sequence (X,, & ") is a mixingale if, for sequences
of finite nonnegative constants c, and ¢,, where ¢,, — 0 as m — oo, we have for
alln =1, m=0,

(a) HE'n—m Xn||2 é ¢m C, and
(b) HX'/‘ - En+m Xn”Z = ¢m+lcn'

For example if ¢,, = 0 for all m = 1, then this coincides with the definition of
an L, martingale. Normally c, will be some measure of the relative size of the
random variable X, such as the norm ||X,||,, and in general,

(1.3) Xl < 1 X,lls + 11X, — EuXolls < (0 + ¢2)c -

For fixed n, Lemma 1, page 184 of Billingsley (1968) implies that the left-hand
side of (1.2b) is nonincreasing in m, and by the conditional Jensen’s inequality,
this holds as well for the left-hand side of (a). Therefore, we may assume ¢,,
is nonincreasing, for otherwise we could replace ¢,, by ¢,,’ = min, ,, ¢, in (1.2).
By the same authority, ||E_. X||; < ¢, ¢; for all m, and hence is 0. Similarly,
X, —E_.X,=0a.s. forall i.

This, then, is the asymptotic analogue to martingales. Often each X, is & -
measurable, in which case (1.2b) is automatic. We will require a specific rate
of convergence of ¢,, to 0, to which end we adopt the following definition:

(1.4) DeriNITION. we will call the sequence {¢,} of size —p if there exists a
positive sequence {L(k)} such that

() X 1/nL(n) < oo

(b) L, — L,_, = O(L(n)/n)

(c) L, is eventually nondecreasing and

(d) ¢, = O[1/mL(n)]r.

REMARK. Observe that condition (b) will follow for any sequence L, such that
L, — L,_, is regularly varying with exponent —1 (cf. Feller (1971), page 280).
For example any sequence which is O[nt log n(log log n)"+°]~# with ¢ > 0 is of
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size —p/2. Also summability conditions such as )7, ¢,’ < oo imply, for
monotone sequences ¢,, that ¢, = o(1/n"/?) and hence that ¢, is of size —gq for
any ¢ < 1/6 (Knopp (1946), page 124). I am indebted to P. Billingsley for both
the information and reference.

For the next lemma, define Y; , = >/, (E;;;, X; — E;y,, X;) for each k, j.
Observe that if the X; are any square integrable random variables then (Y ,,
S itk j=1,2, ... is a square integrable martingale.

(1.5) LemMMA. Let {X,} be any sequence of zero-mean, square integrable random
variables, & " any nondecreasing sequence of sigma algebras such that E_, X, =
X, — E, X, =0a.s. foralli. Then the partial sums S, have a representation as an
infinite sum of square integrable martingales S, = Y\v__. Y, , a.s. for all n, and for
any positive sequence {a,};

E(max,, ., S, < 4N -wa){Xr—wa Var (Y, )} .

(A number of persons have pointed out since the submission of this paper that
this representation is used elsewhere in the literature; in the stationary case it
is apparently due to Statulevicius (1969) and Gordin (1969), but also appears
in Heyde (1973), Scott (1973), Philipp and Stout (1974) in varying forms.)

Proor. We show first that X, = 32 _ (E;,, X; — E;,_, X;) a.s. Now,
Dihmem (Ep Xy — EprXy) = Ein Xy — Ei i X .

The first term on the right-hand side forms, for fixed i, a martingale sequence,
and hence, by Doob (1953), Theorem 4.3 (page 331) converges as n— co to
E(X,|Z =) = X,.

Similarly, the second term forms a backwards martingale sequence, and con-
verges to 0 almost surely by the same authority. Therefore S; = 37 . ¥;,a.s.

Observe that by Cauchy-Schwartz, for j > 1,

Y, ,
¢ aa’; = (Xheme @) (D= Yik/ar)
%

St = e @

If we now take max;_,, then take expectations on both sides of this inequality,
and finally apply Doob’s inequality (Doob, page 317) to bound the right-hand
side, we get the desired inequality.

We now prove a mixingale analogue of Doob’s inequality.

(1.6) THEOREM. Let {X} be a mixingale such that the sequence {{,} is of size
—3%. Then there exists a finite constant K depending only on {¢,} such that for all n,
E(max,g, S;") < K(Xi, ¢.”).

Proor. Rearranging the terms in Lemma (1.5) yields
EZ}
E(max;g, $;) £ HLil-» ) Lia { 42

1
EE?X,

0

+ T EZ2(aik — 47

+ + D FEL Xfa™ — a2y}
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if the a, = a_, is a positive sequence, nonincreasing in i = 0, and Z; , = X, —
E;,. X;. By (1.2), this is less than

7)) HZrwa)(Diae) (P 2 B ga — et

For i > 1, set a; = a_, = min,_, 1/jL(j) and a, = a, and observe that g, is sum-
mable, nonincreasing, and for all sufficiently large i, a, = 1/iL(i) follows from
(1.4a) and (1.4c). Therefore, as k — co,

@t — ait, = L(k — 1) + k[L(k) — L(k — 1)]
= O(L(k)) by (1.4b).
Therefore ¢,*(a,™* — a;t,) is O(1/kL(k)) and by (1.4a) is therefore summable. []

As a consequence of the Cauchy criterion for almost sure convergence, we get
the following analogue to the martingale convergence theorem for L, bounded
random variables.

(1.8)  CoOROLLARY. Suppose {X,} is a mixingale such that {{,} is of size —% and
2.6 < oo. Then S, converges a.s.

This corollary, with Kronecker’s lemma, leads to the following;:

(1.9) COROLLARY. Suppose {X;} is a mixingale with {¢,} of size —% and
e, clfi* < oo. Then S,/n— 0 a.s.

Note also that if X, is a square integrable sequence of martingale differences
such that 37, EX;?/i* < oo, then a strong law follows from Corollary (1.9). This
result is included in Chow (1967).

ExampLE 1. Let {§3;i=...—1,0,1,2, ...} be a sequence of martingale
differences: i.e. setting & " = d(§,,, Epyys -5 §,) for n = m, assume that
EE,| &) = 0a.s. and E€,2 = 1. For any doubly infinite array of constants,
{d,}put X, = > _d, & Wewillassume Y32 . d;, < oo for all n, whence
X, is well defined (almost surely) by the martingale (letting the upper limit of
the summation approach co) and the reverse martingale (letting the lower limit
approach —oo) convergence theorems. Then (X,, & ") is a mixingale with
¢, = 1 for all m and ¢,* = sup, > i.ji_w>m) s and so if ¢, is of size —1,
1/n 335, X, —, . 0 follows from Corollary (1.9).

Frequently the sequence d, ; above is of the form f,_, for some square sum-
mable sequence f;, in which case we need only know that the tails 37 ., fi* =
O(1/mL¥m)) as m — oco. This is true if {f;} and {f_;} are of size —1 with the
function L slowly varying at co, for by Feller (1971), 9.5, page 281,

- 1 1
Zi:m N ~ as m-— oo .
PPLY i)  mLim)
ExaMpLE 2. Let X, bean autoregressive series of the form X, = ' e d X, i+

Y,. Put &% ™ =o0(X,, X, - -, X,,) and suppose Y, satisfies E(Y, | & ;') =0
a.s. for all n. Suppose also that ¢, = sup, ||X,||, < oo, 25 |d| < 1, {d,} is of
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size —3$, and the sequence L, in (1.4) is slowly varying at co. Then S,/n — 0
a.s. as n— co.

Proor. Clearly,
IE(X, | Z 22" £ Dmn |4l [ Xacills + D0 [ [|E(X s | 25™)]a

for m = 1. Taking the supremum over n on both sides

(1.10) Pn = o 2iiZmir || + 271 || P for mx=1.

First we choose a constant C, such that lim sup, _., |d,|n?L(n) < C,. Now define
for each n, f, = max {|d,, CyniL(n)} if N5, CL() < 1 — Y2, |d| and
otherwise f, = |d,|. Observe that

(1.11) |d,| = f, forall n and i<,
We also define recursively v, = ¢, and
(1.12) V= P Linia [i) + D1 fiVns for n=1.
Now (1.12) is the renewal equation (cf. Feller (1957), page 290) and therefore
if we put F(s) = 22, fis" V(s) = Do v: 5,
b, = ¢y, n=0
= ¢ Lizarr [ for nz=1

and
. F(1) — F

B(s) = Nz bis' = (1 — F(1)) + ¢, (H)

then the equation has a solution in terms of generating functions;
B(s)
1.13 ' V(s) = —2 .
(1.13) 0 =15
Since f, ~ C,/ntL(n) it follows from Theorem 5, page 447 of Feller (1971) that
constant
B ~ sT1.
O ~ Tz — 9y !

But this, (1.13) and the fact that F(1) < 1 imply that
(1.14) V(s) ~ constant s11

(1 — LA/ — )

But it is easily shown from (1.12) that v,, — v,,,; = 2, fi(Vm_i — Vpy1;) for
m = 1, and v, = v,. Therefore, by induction, v, is monotonic and, again by
Theorem 5, page 447 of Feller (1971), and (1.14), v, ~ constant/ntL(n). But
(1.10), (1.11) and (1.12) imply ¢,, < v,, for all m. Therefore ¢,, is of size —1
and by Corollary 1.9 (with ¢, = 1 for all i), S,/n —, . 0. ]

The conditions of Example 2 are trivially satisfied if d; decreases exponentially;
eg,di=ar for0<r<land a < (1 —r)r, orifd, = 0 for i = n,, say and
i |di| < 1. MacQueen (1973) considers this case (with only finitely many d,
nonzero) and under additional restrictions, proves a similar result when the sum
Yi2 |d;| is allowed to be equal to 1.
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2. Mixing. We now apply the concept of mixingale to prove strong limit
theorems under strong and ¢-mixing conditions. Define two measures of de-
pendence between sigma algebras & and .7 by

¢(F, ¥) = SUPpe s gewpumsa [P(G|F) — P(G))| and
a(F, ) = SUPpe o+ ge, |P(FG) — P(F)P(G)| .
The following lemma relates the concept of mixing to that of a mixingale. (2.2)
is due to Serfling (1968).

2.1 LEMMA. Suppose X is a random variable measurable with respect to 57,
and 1 £ p<r < co. Then

(2.2) |E(X|Z7) — EX||, = 2{p(=, SO |X]], and
(2.3) IB(X].57) — EX||, < 22 + Dfa(-=, )PP\ X]], .

Proor. For (2.3) put « = a(&, %), ¢ = a”V"||X||,, and X; = XI(|X]| < ¢),
where I(A) is the indicator function of the set 4, and X, = X — X;. Here we
have neglected the trivial independent case and assumed « > 0. Then

IEX|F7) — EX]||, < [|E(X]57) — EXl, + [|[E(X.| &) — EX)|,
< (20)PPEVE(X, | ) — EX| + 2|1 X],

< o)>-v/r(dacy 4 2 144l

C("-P)/P ’

where the first term in the last step follows from Lemma (5.2) of Dvoretsky
(1972), and the second from the standard inequality
1

cr?

E\XPI(X] > ¢) = EIXTI(|X] > ¢) .

Substituting for ¢ and using the fact that ||X,||, < ||X]|,, this bound becomes
227 + e ], i
In this section we consider a doubly infinite sequence of random variables
{X;; —o0 < i< oo} defined on (Q, %, P) and put & " =e(X5n=<i=<m).
(A one-sided sequence may be handled within this framework by defining X; = 0
for all negative j.) Define

(2.4) Pm = SUP, P(F Ty F T and
(2.5) a, = sup, a(F ., F rtmy.

We usually assume these quantities to converge to 0 at a specific rate.
Observe that ¢, — 0 is a weakening of the ¢-mixing condition; it would be
equivalent if & »tm» were replaced by .% 5, in (2.4), and a number of strong
limit theorems under conditions on ¢,, so defined are found in Iosifescu and
Theodorescu (1971). In this case the existence of a zero-one law facilitates the

proof of such results. In the same way, a, — 0 is a weakening of the strong
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mixing condition introduced by Rosenblatt (1956). Blum, Hanson, and
Koopmans (1963) have used .% i as we do, but they use the stronger depend-
ence coefficient ¢,, = sup |P(4B)/P(A)P(B) — 1| where the supremum is taken
overall Ae & ", Be Z »msuch that P(4) and P(B) > 0, and over all n. G.
O’Brien (1975), has shown that any decreasing sequence with limit 0 is possible
for either «a,, or ¢,,, and a minor extension of his example verifies that our mix-
ing conditions so defined are weaker than the usual ones (as well as being easier
to verify). Clearly ¢, = ¢, = «,, and for this reason we restrict ourselves to

the two weaker conditions ¢,, or a,, — 0.

(2.6) REMARK. We will assume throughout the remainder of this section
that r is a number chosen (we assume such a number exists) with 2 < r < oo
such that either;

(a) {p,} is of size —r/(2r — 2) or
(b) r > 2 and {a,} is of size —r/(r — 2).

The following theorem is a dependent analogue of the sufficiency half of the
three series theorem.

2.7 THEOREM. Suppose there exists a sequence of constants 0 < d; < oo such
that, defining X, = X, I[|X,| < d,] the series;

(@) . P(X] > d)
(b) ¢ 1%,

converge. Then Y, (X, — EX,) converges a.s.

Proor. By (a) it suffices to show

S (X, — EX)) converges as 1 —» oo . But,
(2.8) [|E;—m(X; — Ez\_’z)||2 < 20,7\ X |, by (2.2), or
< Sa, | K by (2.3).

Therefore X, — EX, is a mixingale with {¢,} of size —} and ¢, = ||X;||,. There-
fore, applying Corollary (1.8) to the sequence proves (2.8). []

We now extend some of the strong laws known in the independent case to
mixing variables.

Let g,(x) be a sequence of nonnegative, measurable functions on [0, co) such
that g,(0) = O for all » and for a sequence of positive numbers {d,};

(a) inf, inf,o; g,(x)/x" > 0 and

(b) lnfn infa:>d,n gn(x) > 0.

The following lemma parallels Loéve, 16.4 (b).

(2.9) LEMMA. Suppose Y 7, E*"g,(|X,|) < co. Then 3}, (X, — EX,) con-
verges a.s.

Proor. Using (a) and (b) above, one can find positive numbers K, K,
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independent of n, for which
EVg (X)) Z (K PIX| > ] + Ko § X P7
and therefore the two series in (2.7) converge.

If we now apply Lemma (2.9) to the sequence Y, = X, /n, 9,(x) = x? for some
1 < p<randd, =1 for all n, we obtain the following:

(2.10) THEOREM. Suppose for some p with r|2 < p < r < oo one has

@.11) s g l” |

n?
and that each X, has O mean. Then 3, X, [n converges a.s. and S,[n— 0 a.s.

When the r.v.’s are independent, we may take r = 2 and obtain the theorems
of Kolmogorov (p = 2), and Marcinkiewicz and Zygmund (p < 2; cf. Chung
page 119).

If (2.11) holds for any p, r such that 1 < p < r/2, the referee has pointed out
that the strong law follows from Kronecker’s lemma and the monotone con-
vergence theorem without any restriction on the dependence. Moreover, the
condition:

(2.12) sup; E|X,|"** < oo for any positive 4§

is sufficient for (2.11). Again in the independent case (letting » = 2), this reduces
to Markov’s theorem, but as the degree of dependence increases (r 1), higher
moments are required to be uniformly bounded. The idea here is that we may
trade off some of the independence in exchange for knowledge of higher
moments.

The following theorem is analogous to an i.i.d. Strong Law, and to Loéve’s
3°, page 242.

(2.13) THEOREM. Supposer = 2, {&sup, P[|X,| > x]dx < oo, and E(X,) =0
forall n. Then S,/n— 0 a.s.

Proor. Put q(x) = sup, P[|X,| > x]; we apply Lemma (2.9) to the sequence
Y, = X,/nwith g,(x) = min (x*, 1)and d, = 1 foralln. Then } 7, Eg,(|Y,|) =
Sie 2 (s q(nx)xdx < 2 (¢ q(x) dx, by the moments Lemma, Loéve, page 242.
It follows that

1
—n—Z?=1X]- —E.Yj—>0 a.s.,

where X; = (X; V —j) Aj. But |[EX,| < (7 q(x)dx — 0 as j— oo.

3. Functions of mixing processes. Suppose {§,; —oco < n < oo} is astrong or
p-mixing sequence (for example an appropriate Markov chain). In this section
we consider random variables defined by X, = f,{§,; —o0 < j < oo} where f,
is a nonrandom function of the whole history, past and future, of the process.
Such variables will be called “functions of mixing processes” (cf. Billingsley,
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Section 21). Our restriction on f, will be that £, is “almost” a function only of

a neighborhood of the present epoque (§,ms Enmyrs -+ +s Enypm)s that is, the addi-

tional knowledge of the distant future and past of the process will have only a

marginal effect on an approximation, based on the present, of X,. We now lend
some rigor to this condition.

Put

Fm =06 ) for m>=n.

Om = SUP, O(F "y F 20) s or

s F om) s and

a, = sup, a(F *
v, = sup; ||E(X;| F M) — X|||, for all m.

3.1 THEOREM. Suppose EX, =0 for all i, {v,} is of size —}, and
22 |1 Xi||.2/i* < oo for some r with2 < r < co. Moreover, assume either

(a) {p,} is of size —r/(2r — 2) or
(b) {a,} is of size —r/(r — 2) with r > 2.

Then S,/n — 0 a.s.
Proor. Clearly

1Esam Xills = | Eeam (X | E0) L + 11X — EX |0,
= 200 VNEX D 4 v bY (2.2),
= 2¢,'V"||Xi||, + v, Dby the conditional Jensen’s inequality
or
= St VE(X | FED, 4+ va by (2.3)
< St XL + v, -

Also, by Lemma 1, page 184 of Billingsley, ||E, s, X; — X||; < vyn. Therefore,
X, is a mixingale with ¢,, = 20{,7/" 4 vi,, 5 0F Sa}; 3T 4 v, (the square brackets
denote “the greatest integer contained in”), and ¢, = max (||X,||,, 1). Therefore,

by (1.9), S,/n— 0 a.s.

ExaMPLE. Let (Q, &, P) be the unit interval with its Borel sets, and with P
representing Borel measure. Consider a sequence f, of measurable functions on
Q such that {} f,(#) dP = 0 and Y 7| Ef,’/k* < co. Define the random variable
w,() equal to the kth digit in the binary decimal expansion of w (as usual,
possible ambiguity is eliminated by taking a terminating expansion whenever
possible). Put & ,* = 6(w,, @4y, -+, ®,). Let § denote the periodic exten-
sion of g to [0, oo) and define X,(w) = f,(2*w). Observe that since each f, has
period 1, X, is # 7}, ;-measurable. Therefore, for » in the interval [jj2*+™,

(J + D2+,
E(X, | E0)(0) = E(X,| 5 Em)(0) = 27 S () dy
/\
= E(/,]-7 9)2).
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Therefore,
E(X, — E(Xe| ZEM) = E{fi — E(fi | 7™M}

We will assume
(3.2) = sup, E{f, — E(f,| F ™)} isofsize —1.

In words, this means that the sequence f, can be approximated within v,, in L,
norm by a sequence of step functions which are constant on intervals of the
form [ j/2™, (j + 1)/2™). Now the conditions of Theorem (3.1) are satisfied with
r = 2, for the random variables w, are independent; thus S,/n — 0 a.s.

It is easy to show that (3.2) is a consequence of the following condition.

There exists a positive nondecreasing function g(x) defined

(3.3) on [0,1] andsets Q' c Q of P-measure 1 such that
|[fu(@) — fi(@)| < g(|o — @) for all k and o,e Q)
and {g(2~™)} isof size —}%.

Any function g(y) = O(1/—Iny)? as y — 0 for some 6 > } is of size —% and
hence appropriate in Condition (3.3). We summarize these results with the
following theorem.

(3.4) THEOREM. If {f,} is a sequence of zero-mean functions on [0, 1] with
S Efilk? < oo, such that (3.2) or (3.3) holds, then 1/n 3i%_ L fu(2¥0) — 0 almost
everywhere.

(3.5) THE STATIONARY CASE. When the sequence {X,} is stationary and satis-
fies the usual strong mixing condition, the results of Section 2 are known to
hold with the only requirement that a, — 0.

Similarly if all of the f,’s are the same function f, the conclusions of (3.4)
hold for any zero-mean L, function f.

Both of these well known results are immediate consequences of the ergodic
theorem.
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