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AN INVARIANCE PRINCIPLE FOR RANDOM WALK
CONDITIONED BY A LATE RETURN TO ZERO

By W. D. KAIGH
The University of Texas at El Paso

Let {S»: n = 0} denote the recurrent random walk formed by the partial
sums of i.i.d. integer-valued random variables with zero mean and finite
variance. Let T=min{r = 1: S, = 0}. Our main result is an invariance
principle for the random walk conditioned by the event [T = n]. The limit-
ing process is identified as a Brownian excursion on [0, 1].

1. Introduction. Let X, X,, ... be a sequence of i.i.d. random variables de-
fined on a probability space (Q Z", P). In all that follows we assume the X;
are integer-valued with span 1 and EX; = 0, EX;? = ¢ < co. Form the random
walk {S,: n > 0} by defining S, = 0and S, = X; + --. + X,,n > 1. Our main
result describes the chance behavior of the random walk conditioned by a “late”
return to the origin.

More precisely we define the hitting time 7' to be min {n > 1: S, = 0} (4
if no such n exists) and investigate the limiting behavior of the sequence {S,}
conditioned by the event [T = n]. To provide additional motivation and back-
ground we discuss other related works.

Let D = D[0, 1] be the function space of all real-valued, right-continuous
functions on [0, 1] with left-hand limits and denote by = the sigma field of Borel
subsets generated by the open sets of the Skorohod J,-topology on D. Introduce
another hitting time 7* = min {n > 1: S, < 0} and consider the four sequences
of probability measures {P,}, {P,*}, {P,*}, {P,°} defined on (D, &) by assigning
probability

P,: P[S,jont = x,, --., S, ,[on} = x,]
(1.1) Pt P[S,font = x,, -, S,Jont = x,| T+ > n]
P*: P[S,Jont = x,, ..., S, Jont = x,|T > n]
P,°: P[S,jont = x,, ..., S, Jont = x,|T = n]

to the random function Si,,/on!, 0 < t < 1. Denoting weak convergence of
probability measures on (D, &) by =, we discuss the weak limits of each of
the above sequences under our assumptions.

The well-known theorem of Donsker gives P, — W where W is the probablllty
measure corresponding to Brownian motion on [0, 1]. It follows from a theorem
due to Iglehart (1974) that P,* — W+ under the additional assumption E|X;|* < oo,

where W* corresponds to the process which he has entitled Brownian meander.
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The introduction to Brownian meander occurs apparently in Belkin (1972) where
it is shown that P, * — W* and W+ = |W*|.

The main theorem of this paper was announced in Kaigh (1974) and is the
result that P,° — W° where W° is the process entitled Brownian excursion
(signed) by Ité6 and McKean (1965). We remark that Brownian excursion as
well as each of the previously mentioned weak limits assigns probability one to
continuous sample paths.

As for the other sequences the weak convergence of {P,°} is attacked through
the approach discussed in Chapters 3 and 4 of Billingsley (1968) which requires
a demonstration of the appropriate convergence of the finite-dimensional distri-
butions and a verification of tightness. It will be seen that the finite-dimensional
distributions can be treated with relative ease, but that tightness requires con-
siderable effort.

2. Preliminaries and a statement of the main result. A study of the condi-
tioned random walk must focus initially on the behavior of the hitting time.
From our assumptions T is finite a.s. and for r, = P[T > n]and f, = P[T = n]

(2.1) lim,_,, ntr, = (2/n)to ;
(2.2) lim,_,, nif, = o/(27)t .
The first expression is well-known and the second follows from a result of Kesten

(1963).
Next we record a result of Belkin as

(2:3) lim,_.. P[S,/nt < x|T > n] = §=. (|yl/20%)e """ dy .

The proof of (2.3) appears in [1] and a statement is contained also in [2]. It is
instructive to view (2.3) as a conditional central limit theorem.

It will be seen that the key to both tightness and convergence of the finite-
dimensional distributions of {P,°} is the following result contained in Kaigh
(1975):

(2.4) lim, ., sup, [nP[T,,, = n] — (x|/ont)d(xjon)] =0,

where T\,, = min {n > 1|8, = x} and ¢(f) is the standard normal probability
density function. The above expression actually is equivalent to a local version
of (2.3). (See [7] for a more thorough discussion.)

Now we discuss briefly the Brownian' excursion process W°. It6 and McKean
(1965) provide two alternative derivations (we prove its existence as the weak
limit of conditioned random walk) and show that W° is a Markov process on
[0, 1] with nonstationary transition density p given by

P(0,0; 1, ) = [2z8(1 — 1)*]"ty* exp[ —y*/2¢(1 — 1)]
for 0<t<1l and —c0o <y < o0;

(1 — 1)t Ja B(pa/(1 — 1,)Y)
(I = )ty ¢(n/(1 — 1)}

'IL-—»oo

(2.5) P(ts Y15 by ys) =
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— Yo\ _ g it ) :l
x (=6 [ ((tz—-tl)i) ¢((t2-tl)i)
for 0<<t,<1 and y,y,>0.

The distributions of We for t = 0 or 1 are degenerate at zero.
Finally we state the main result. The proof is deferred until the next section.

THEOREM 2.6. The sequence of probability measures {P,°} on (D, <7') defined by
(1.1) converges weakly to a probability measure W° which assigns probability one to
continuous sample paths. The weak limit W° corresponds to the Brownian excursion
process on [0, 1].

3. Proof of Theorem 2.6. The proof will follow from Theorems 15.1 and
15.5 of Billingsley (1968). It is necessary to demonstrate convergence of the
finite-dimensional distributions and tightness for {P,°}.

We consider first the convergence of the finite-dimensional distributions. It
must be shown that for any finite collection 0 < 1, < - < £, < 1

lim, ., P,°[€: £(f) < x;, -+, §(1) = x,]
noseo P[Spfont < Xy, ooy Sppyfont < x| T = 1]
= Weo[§:6(t) £ x5 - -+, E(1)) £ x4] forall x,.-.--,x.eR.
The following facts are required to obtain the desired conclusion:
(3.1) lim,_, (2. 7, 'P[Sufont edy; T > [n]] = (2. 4t7¥|ylev** dy ;
(3.2) lim,_, {=, P°" ”l[S[M]/ani edy,; T > [n]]

= (=t |:¢ ()’1 - yz) _ ¢<2’%}’2)] I(MZN,, dy,

uniformly on compact sets (as a function of y,);

(3-3) lim (r,[f)P" [T = n — [m]] = 2(1 — ) plo(y/(1 — 1)})

uniformly in y. Both (3.1) and (3.2) were used by Belkin to prove P, * = W*,
A combination of (2.1) with (2.3) will yield (3.1) and a discussion of (3.2) ap-
pears on pages 53-55 and 61 of Belkin (1972). An application of (2.4) provides
(3.3). Itis of interest that (3.3) was not required in the proof that P, * — W*,

Using (3.1), (3.2), and (3.3) and an induction similar to Belkin’s (1972, pages
54 ff) we obtain convergence of the finite-dimensional distributions. Since the
techniques required are very similar, we refer to either Belkin (1972) or Iglehart
(1974) and omit the details. ’

Next we consider the tightness of the sequence {P,°}. The techniques again
are similar to those required in showing tightness of {P,*}; however, the change
of the conditioning events entails a significant increase in effort.

Our goal is to apply Theorem 15.5 of Billingsley (1968). For xe D and
T < [0, 1] set

= lim

W (To) = sup {|x(s) — x(?)| : s, t € Ty}
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and define the modulus of continuity of x by
W, (0) = SUPygic1-, Wolt, t + Pl for 0<p<l.
Then it suffices to show that for every ¢ > 0
(3.4) lim, ,limsup, .., P,°[x: W (0) = 2¢] = 0.
To verify (3.4) we require two preliminary results.

LeMMA 3.5. For fixed ¢ > 0, there corresponds to each 0 € (0, 1) a positive inte-
ger ny = ny(0, ) such that
PY[T = n — k] < 4Q21)}(0/e)e™ =D Pr*[T = n — [nd]]
= ¢(3, )P"[T = n — [nd]]
for all x and all k < [nd] whenever n > n,. |
Proor. By (2.4) there exists N, such that
sup, [nP*<[T = n] — (|xl/0)g(x/o)| < 1
whenever n > N,. Now choose n, so that n — [#d] > N, whenever n > n,. Then
for every k < [nd]
sup, (n — k)P*[T = n — k] < sup, |(n — k)Pe-bideio—blT — p _ []
— (n|x|fo(n — k)Hp(ntxjo(n — k)H)|
+ sup, (nt|x|/o(n — k)!)g(nx/o(n — k)*)
= 1+ sup, [y[$(y)
=1+o(1)g2 whenever n > n,.
Again from (3.3)
lim, . (1 — [W0))P*[T = n — [13]] = (¢/o)(1 — &) *(efo(1 — d)})
so there exists n, such that
(n — [n6])P*M[T = n — [18]] = (¢/20)(1 — 8)~tp(c/o(1 — d))
whenever n > n,.
Now take n, = max {n;, n,}. Then for every k < [nd]
sup, P"*”[T =n — k]
P*[T = n — [nd]]

< 2= ofep2o)(1.— ) (efo(t — D] < <@, )

= n—k

In addition we require a result contained in the fourth formula on page 50
of [2].

LEMMA 3.6. For fixed ¢ > 0, there corresponds to each ¢ (0, 1) a number
(0, €) > 0 and a positive integer m, = m(0, ¢) such that

P[S /= x; T > [18] — k] = A(9, ¢)
for all x = ¢ whenever [nd] — k = m,. Also for each ¢ > 01im; , (9, ¢) > 0.
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We can proceed now to verify (3.4). Following the approach of Belkin (1972)
define the random time
v = (0, ¢) = inf {r: sup,,ciy, [x(5) — x(7)| = 2¢}
where the infimum of the empty set is + co.
Then for any 6 € (0, )
Po[W,(0) 2 2] = Po[c 3]+ P[0 <t <1—3d]+ Pl —d=sc=s1],
and it suffices to show that each of the terms

lim sup, |, lim sup,,_.., P,°[z < 9]
3.7 lim sup, , limsup,_, P,°[0 < 7 < 1 — 4]
limsup, ,lim sup,_, P,°[1l —d = 7 = 1]
approaches zero as 0 | 0.
Initially we consider P,°[0 < r < 1 — 4].
Pe[d<t<1—4d]
= Dawafu PO < £ <1 = 8 Syquyfrt = 5T > n — [n9]]P*H{T = [nd] -
From Lemma 3.5 we obtain for large n
sup, P"4[T = [nd]] < c(1 — 3, e)P**[T = [nd]] .
It follows then for n sufficiently large

Pe[d<t<1—3] '
< fule(l = 8, )P*H[T = [nd]]
X Tauo P[0 < T <1 = 8, Sy_punyfnt = x; T > 1 — [nd]]
< fule(l — 6, )P™[T = [nd])P[d < v < 1 — &; T > n — [nd]]
< fule(l — 6, )P [T = [nd]]P[d <t < 1 — &; T > [nd]]
< 7ol = 8, )PM{T = [nd]]P[sUP,g g1y Wilt, £ + p] Z 263 T > [nd]]
< fi'e(l = 8, )PP{T = [n]]PIT > [nd]]P.[W.(0) Z 2] -
From (2.1) and (3.3) lim sup”wf”‘lr[,,”P”*s[T = [nd]] < oo. Since P, = W
we obtain
(3.8) limsup, P[0 <7t<1—0]=0 for every 0€(0,4%).

The idea of the preceding argument roughly is that conditioning away from
zero does not greatly affect the fluctuations in the middle portion of the process.
From the Markov property of the random walk the condition T = n affects the
oscillations of the paths over (d, 1 — d) only through the distribution of S,_,;.
The initial inequality obtained from Lemma 3.5 guarantees that the effect of
the conditioning on the fluctuations is mild.

Now we consider P,°[r < d]. Clearly we have

P,°[r £ 9] £ P[max,g, [Stun/nt| = ¢|T = n]
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so it suffices to prove that
lim sup,_., f,~'P[max,, |Si,,/nt| = & T = n] — 0 as 010.

To show this define 7, = min {j: 1 < j < [nd]; S;/n* = ¢}. Then for any fixed
m < [nd] we obtain from Lemma 3.5
P[max,, S;, /0t = e, T, = [10] — m; T = n]
< c(@, )P T = 1 — [13]] T2 0sm Dase Plen = ks Syjnt = x; T > k]
< o3, OP[T = 1 — [10]) Eftnsom Duze Plen = ki Syfnt = x; T > k]
o PImin; 55, S;/n* = —e/2]
P[min;_, S;/nt = —¢/2] ,
= {c(0, e)P"‘és[T = n — [nd]]/P[min;,, S;/nt = —¢/2]}
X Zk ni—m Qiaze P[Tn = k; Sy/nt = x; T > k]
X Prmin, i, S;/nt 2 x — ¢[2]
< {8, )P*[T = n — [nd]]/P[min,,, S;/nt = —¢/2])
X Ziilasom Dz Plta = ks Sifnt = x; T > k]
X PS8 ifnt = x — ¢f2; T > [nd] — K] .

From the above it follows for large n
P[max, ; Su/nt = & 7, = [n0] — m; T = n]
(3.9) < {¢(3, )P**[T = n — [n6]]/P[min,,, S;/n* = —¢/2)
X P[Stunfnt Z ¢/25 7, 2 [18] — m; T > [nd].
Next we obtain a similar inequality for z, < [#6] — m. For any fixed m < [nd]
P[max,, S[,,t]/ni = &1, < [n6] — m; T = n]
= D™ Tae Ple, = ks Syfnt = x; T > k]P*<[T = n — k].
From Lemmas 3.5 and 3.6 it follows that for sufficiently large n
P[max, , Si,n/nt = ¢; 7, < [00] — m; T = n]
= [, 5)/2(5 )] Ll Loz Plra = ks Sufnt = x; T > k]
(3.10) X P[Sp, ufnt 2 x; T > [n6] — KIP*[T = n — [nd]]
< [¢(3, &)/A(3, )]P™[T = n — [nd]]
X P[Sinar/nt > & 7, <'[n0] — m; T > [nd]] .
A combination of (3.9) and (3.10) will give
P[maxté‘; S[,n”/n% g 6; T = n]
(3.11) < ¢(3, )P [T = n — [nd]]P[Spupy/nt = ¢/2; T-> [nd]]
X {1/4(9, ¢) + 1/P[min,,, S;/n* = —¢/2]}.
By (3.3)
lim,_o, nP"™[T = n — [n0]] = (1 — 8)~¥e/o)p(e/o(l — D)3 .
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From (2.3)
lim, ... nP[Spun/nt 2 €/2; T > [nd]] = o(2/m)}07% {5oas (1/20%)| yle=v*** dy
= 0(2nd) te¥8

Since m is fixed lim,,_., P[min;,, S;/n* = —¢/2] = 1. Using these facts and (2.2)
provides

lim sup,, ., P[max, , Si,,/nt = ¢|T = n]
< 07%¢(0, €){1/A(0, €) + 1}ed~}(1 — 0)~¥g(efo(1 — d)t)e~<*/%%

For fixed ¢, lim, |, ¢(d, ¢) < oo and lim, ,4(d, &) > 0 so

lim,  ,lim sup, ., P[max,., S;,s/nt = ¢|T =n] =0.
A symmetry argument will show

lim; ,lim sup, ., P[max,, |S;, /nt| = ¢|T =n] =0
which completes the proof that

lim sup,,, lim sup,_., P,°[r < 6] -0 as 0]0.

We consider finally P,°[1 — 6 < r < 1]. The chance behavior of the final
portion of the conditioned random walk is the same as the initial portion so
consideration of the reversed random walk and the result just proved will show

lim, , lim sup, ., P[max,_,<,<; |Spu/nt| = €| T = n]

and the verification of (3.7) is complete.
From Theorem 15.1 in [3] we obtain P,° = W°.
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