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A RENEWAL THEOREM FOR CURVED BOUNDARIES
AND MOMENTS OF FIRST PASSAGE TIMES!

By MICHAEL WOODROOFE
University of Michigan

Let X3, X, - - - be i.i.d. with a finite positive mean x and a finite positive
variance ¢2 and let S, = X1+ -+ 4+ X», n=1. Further, let 02 a < 1
and ¢, be the first » = 1 for which S, > cn® and let W(a) = S, P{t. > n,
c(n + 1)* — S, < a}. Under some additional conditions on the distribution
of X; we show that W, converges weakly to a limit W, where W(a) =
B tP{Sk = (k + 1)ap — a, for all k = 0}, with 8 = 1/(1 — @). We then find
the asymptotic distribution of the excess R, = S, — ct. and show that R,
is asymptotically independent of #.* = (£, — E(t:))/E(ts)}, and we compute
E(t;) up to terms which are o(1) as ¢ — oo.

1. Introduction. Let X, X,,- - . denote independent and identically distributed
random variables which have a finite positive mean g, let S, = 0, and let S, =
X, + .-+ 4+ X, for n > 1. Further, let ¥ be a positive function on (0, co) for
which V(x) = o(x) as x — oo, and let

=inf{n = 1: §, > cV(n)}

for ¢ > 0, where inf @ = oo. Observe that ¢, is finite w.p. 1. If ¥(x) = 1 for
all x > 0, Pr {X, > 0} = 1, and the distribution of X, is nonarithmetic, then the
renewal theorem (Feller (1966), page 347) asserts that U(c) = E{s,} is finite for
every ¢ > 0 and that

(1.1) lim U(c) — U(c — a) = ap!

as ¢ — oo for every a > 0.

In this paper we will extend (1.1) to a wider class of boundaries ¥ and to
distributions which are not concentrated on (0, o), although we will impose
some additional conditions on the distribution of X;.

We will assume throughout this paper that V' is a positive, continuous, even-
tually concave function on (0, co) for which ¥(x) = x*L(x) for x > 0, where
0<a<l,and

Lix+y), 1 _ 1
(1.2) 1= o<?)

as x — oo for every y > 0. Equation (1.2) is more restrictive than requiring that
L vary slowly at co, but includes all functions of the form L(x) = log¥(1 + x),
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x>0, with ke R. Let
W a) = N P{t, > k,cV(k + 1) — S, < a}

fora > 0and ¢ > 0. We observe that if V¥ = 1and X, > 0, then W (a) = U(c) —
U(c — a) for 0 < a < ¢. In Section 3, we will show that if X, has a finite posi-
tive variance, a finite third moment, and a suitably smooth distribution, then

(1.3) lim W(a) = e §§ ¢(y) dy
for a > 0 as ¢ — oo, where g = 1/(1 — a) and
(1.4) o(y) = P{S, = (k + Dap — y, forall k = 0}

for 0 < y < 0. Of course, if ¥ =1 and X, > 0, then (1.3) reduces to (1.1).
If V =1, then (1.3) is closely related to, but distinct from, a result of Spitzer
(1960), Theorem 5.1a.

Relation (1.3) has several interesting consequences. Let
R, =S, —cV(t,), c>0,

denote the excess over the boundary. In Section 4 we will show that R, has a
limiting distribution H as ¢ — oo, where H has density

h(y) = Bp~'P{S, = kap + y, forall k = 1}

for 0 < y < co. Moreover, we will show that R, is asymptotically independent
of t,* = (1, — E{t,})/E{t,}}, which has an asymptotic normal distribution.

In Section 5 we use the asymptotic distribution of R, to compute E{z,} up to
terms which are o(1) as ¢ — co. In fact, we show that if V(x) = x= for x > 0,
then

E{t} = cfp~t + pptv — jaflo’pn™ + o(1)

as ¢ — oo, where ¢? is the variance of X, and v denotes the expectation of H (and
is given explicitly in equation (4.5)).

The asymptotic properties of stopping times of the form ¢, have been studied
by Chow and Robbins (1963), Chow (1966), Siegmund (1967, 1968, and 1969),
and Gut (1972 and 1974) under a variety of assumptions on V" and the distri-
bution of X}, X,, ---.

2. Preliminaries. In this section we will suppose that X, X, ... are i.i.d.
random variables with a finite positive mean ¢ and a finite positive variance o’.
In addition, we will sometimes impose the following condition.

ConpitioN C. X, has a density f (with respect to Lebesgue measure) which
is continuous a.e. (with respect to Lebesgue measure). Moreover, some power
of the characteristic function of X is integrable.

To motivate the lemmas of the section, we observe that

@.1)  W(b) — W(a) = X {1, Plt > k[S* = 2}dG*(2) + Iia(e¥(1))
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for 0 < a < b < oo, where

_ S — kpy
(2.2a) S = TR
b a
(2.2b) I, = I(a, b) = (y,, — m]
(2.2¢) g = He+ D) =k
okt

and G, * denotes the distribution function of §,* for k > 1. We observe that for
a.e. ze L[G*], P{t > k|S,* =z} £ ¢, (b, z), where

Geolb 2) = P[Sy; < eV(j) — jk7[eV(k + 1) — B, 1 </ < k| S, = 2)
with

Sp; = S; — jk7'S,

for j=1, ..., k. Similarly, P{t > k|S,* = z} = ¢, .(a, z) for a.e. z € I,[G,*].
In this section we will derive an asymptotic expression for an appropriate ver-
sion of ¢, ,.

Let X,, = X, — k*S,,j=1, ...,k — 1. If Condition C is satisfied, then we
may construct a regular conditional distribution for X, -- -, X;,_,, given §;*
as follows. By Condition C and the local limit theorem for densities (Feller
(1966), pages 489-490), S, * has a density g,* which is continuous for k suffi-

ciently large and converges to ¢, the standard normal density, uniformly on R.
Let g, denote any density on R and let

9o+ Yew 2) = TUZL s + p + ok T22)ok (g + ok~iz — Fizl y)
and
e - s Veer]2) = G =+ s Viers 20065 (2) M 0,00 (96%(2))
+ 1123 9o(yM10(95*(2))
for (yy, -+ +» Y1, 2) € R%. Then

(2.3) 0u(z, B) = §5 9(yrs + s Vea| 2) dyy -+ dyiy s

B e B(R*"), z € R, defines a regular conditional distribution for X,,, - - -, X, ,_,,
given S,*. We will sometimes write Q, , for Q,(z, ).

Let Y, - -+, ¥,4_, denote the coordinate functions on R¥-!, k > 2, and let
Te; = (Yay - -+, Yy;) denote the projection from R*~*onto R/, 1 < j < k. Also,
let F, denote the distribution of X; — p and let F,? denote the product of j copies
of F,.

Lemma 2.1, If Condition C is satisfied and if I is any compact interval, then for
any j =1, Q,, 0 w;} converges strongly to F, uniformly with respect to zel.
Moreover, letting T,; = Y, + -+« + Y,; forl £ j <k — 1,

lim § |T;|dQ, ., = E|S; — ju|

as k — oo uniformly with respect to z € I for each j = 1.
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Proor. If I is given, then there is a k, = k,(I) for which g,* is positive and
continuous on 7 for k > k,. It is then easily seen that for kK > k, and z e/,
0., o 7y, has density :

hei(yi -5 ¥il2)

@4 = [(55) Mttt + e okt

x gt (571 ) 2 — ot = i St} oo

with respect to Lebesgue measure. Thus if z,, kK = 1, is any sequence from I,
then
im Ay (s - o5 pi120 = IH s + 1)

fora.e. (y,, -+, y;). The firstassertion of the lemma now follows from Scheffe’s
theorem (Lehmann (1959), page 351).

Let M, and m, denote the maximum of g,* and the minimum of g,*(z) for
zel, respectively. Then A (yy, « -+, y;|2) < 2M_;m, ™ T f(ye + ¢ + k~to2)
for y,, -+, y; € R?, ze I, and k sufficiently large, so

T2,dQ, , < 2M,_;m,Yjo¥{1 + jk=z*
140, J J

J
is uniformly bounded for z ¢ / and k sufficiently large. The lemma now follows
from the convergence of moments theorem (Loéve (1963), page 184).
It is easily seen that the equation
(2.5) pd = cV(A)
has a unique solution 2 = A(c) for c¢ sufficiently large, and it is known that

t,JA— 1 w.p. 1asc— oo (Siegmund (1967)).
In our next lemma we let T;,; = Y,, + -+ + Y,; for 1 < j < k.

LEMMA 2.2. Suppose that Condition C is satisfied and let I be any compact interval.
If k = k,— oo as ¢ — oo in such a manner that k ~ 2, then
lim,, ., lim sup,_., Q, AT\; = cV(j) — jk7[cV(k + 1) — )]
for some j <k —m}=0
uniformly with respect to z € I for any y € R.
The proof of Lemma 2.2 is similar to that of Lemma 2.1, but longer and

much more technical. We defer it to Section 6.

LEMMA 2.3. Suppose that Condition C is satisfied and let I be any compact inter-
val. Let

Deo(ys 2) = QuolTis < V() —jk[eV(k + 1) =yl 1 =j =k}
for yeR and zeR. If k— oo as ¢ — oo in such a manner that k ~ 2, then

lim ¢, (y, 2) = ¢(y) uniformly with respect to z € I for every y € R, where {(y) =
P{S; = (j + Dap — y, forall j =z 0}, as in (1.4).
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Proor. By Lemma 2.2, ¢, (), 2) = ¢ (), 2) + &(c, m), where ¢¥ (v, z) =
Qv ATw;=cV(j)—jk[cV(k+1)—y], for k—m< j<k}and lim,,_,, lim sup,_,, |e(c,
m)| = 0, uniformly on compacts (in z) for each fixed y. By symmetry, we also
have

Pim(ys 2) = Qu{—Ty; < cV(k — j)
— (k — Pk7{eV(k + 1) — y], for 0<j<m).
Moreover,
Wik — j) — (k — Pk[eV(k + 1) — y] = (1 — @)j — ap
as ¢ — oo for each fixed j. Thus, by Lemma 2.1, ¢¥,(y,2) — P{S; = (j +

Dap — y, for 0 < j < m} as ¢ — oo for each fixed m. The lemma now follows
by letting m — oo, since P{S; < (j + 1)ay — y, for some j > m} — 0 as m — oco.

3. Arenewal theorem. In this section we will suppose that X, has a finite
positive mean ¢ and a finite positive variance ¢?. Let I be any compact interval
and let

Jy={k=0:y,el} and J={k=0:y¢l},
where y, is as in (2.2¢c). Further, let
(3.1 WA @) = Tyes, Pt > ko cV(k + 1) — S, < a}, i=0,1,

for a = 0, so that W, = W + W The dependence of W, and W,* on I will
be suppressed in the notation.

Lemma 3.1. If Condition C is satisfied and if I is any finite interval, then
lim W(b) — Wa) = (B~ \i $(2) dz)(§, 4(2) dz)
as ¢ — oo for 0 < a < b < oo, where ¢ denotes the standard normal density and ¢
is as in (1.4).
PrRoOOF. Let I, be as in (2.2b). Then
(3-2) W) — Wa) = ks, S5, Prolbs 2)9:%(2) dz,

where g,* denotes a density for S,* and ¢, , is as in Lemma 2.3. As ¢ — oo,
k ~ 2 uniformly with respect to k e J, and g,*(z) — ¢(z) uniformly with respect
to k e J,and z e R, so that

V1, Duo(b5 2)9,%(2) dz ~ P(b)ok~H(b — a)g(y.)

uniformly with respect to k e J,. Since y, — y,,; ~ (1 — @)po~*k~* uniformly
with respect to k € J,, it now follows easily that .

lim sup W(b) — Wo(a) < (b — a)p(b) §, $(y) dy

as ¢ — oco. A similar lower bound with ¢(a) replacing ¢(b) may be obtained for
the lim inf, and the lemma then follows from the Riemann integrability of ¢.
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LemMA 3.2, Suppose that Condition C is satisfied and that E|X?| < co. Then
lim,, , limsup, .., W \(b) — W}(a) =0

for0 < a < b< oo. Moreover, if I is any finite interval, then there is a constant
B = B, for which W \(y) < B(1 + y) forall y = 0 and all ¢ > 0.

The proof of Lemma 3.2 is somewhat similar to that of Lemma 3.1, but longer
and more technical. We defer it to Section 6.

THEOREM 3.1. Let X, X, - - be i.i.d. with finite positive mean p, finite positive
variance o*, and a finite third moment. Suppose also that Condition C is satisfied.
Then

lim W.(a) = By~ 5 ¢(y) dy
for0<a< coasc— oco. Here B =1/(1 — a)and ¢ is as in (1.4).

Proor. The theorem follows directly from Lemmas 3.1 and 3.2 by letting
¢ — oo and I 1 R in that order.

It is clear from Theorem 3.1 that if z is a continuous function with compact
support in [0, o), then

(3-3) lim §§ 2(y) dW(y) = Br §5 2(y)d(y) dy

as ¢ — oco. A more interesting class of functions is covered by the following
theorem.

THEOREM 3.2. Suppose that the hypotheses of Theorem 3.1 are satisfied. If z is
a nonincreasing, nonnegative, integrable function on [0, co), then (3.3) holds.

ProoF. To establish Theorem 3.2, one integrates the left side of (3.3) by parts,
applies the dominated convergence theorem, and then integrates the limit by
parts. The dominating function is supplied by taking I = (» in the second con-
clusion of Lemma 3.2.

4. On the excess over the boundary. In this section we will find and study
the asymptotic distribution of the excess over the boundary

R, =S, — (1)
as ¢ — oco. We denote the distribution function of R, by H,.

THEOREM 4.1. If the hypotheses of Theorem 3.1 are satisfied, then H, converges
weakly to a limit H as ¢ — oo, where H has density

(4.1) W) = BuP(S; = jap + y, forall j = 1}.
Moreover, if E|X,**'| < oo, then the first k moments of H, converge to those of H.

PRroOF. Let F denote the distribution function of X,. Then,

(4.2) Hya) = (¢ [F(a +y) — F(y)1dW(y)
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for 0 < a < . Moreover, for each a > 0, the integrand in (4.2) is the differ-
ence of two functions to which Theorem 3.2 applies, so that H, (a) converges to

H(a) = pp=' (¢ [F(a + y) — F(»)1¢(y) dy
asc — oco. That H' = h follows from standard manipulations, but it is not clear
that 4 is a density. To see this observe that .

§& h(y) dy = BpE{M"},
where M = min {S;:j = 1} with X/ = X, —ap and S/ = X' + ... + X/.
Now M = X/ + min {M,, 0}, where M, has the same distribution as M, so that
EM} = (1 — a)p — E{M~}—that is, E{M*} = (1 — a)p.
The proof of the second assertion in Theorem 4.1 is similar to that of the first.
We need the following result which is due to Siegmund (1968) in the case
that ¥(x) = x* and has been extended by Gut (1974), pages 299-300.

THEOREM 4.2. Let X,, X,, - - - bei.i.d. with finite positive mean p and finite posi-
tive variance . Then the distribution of

tc* = Z_)I(tc - /2)
converges weakly to the normal distribution with mean 0 and variance t* = ['o’p~*

as ¢ — oo.

THEOREM 4.3. If the hypotheses of Theorem 3.1 are satisfied, then 1.* and R,
are asymptotically independent. That is,

(4.3) lim P{t,* e 1, R, e J} = (=7 {; $(y=™) dy)(§; A(y) &)
as ¢ — oo for all intervals I and J.

Proor. Let
Sc* = U_I(Ic - 1)_%[CV(tc) - #(tc - 1)] ;

then it follows easily from Taylor’s theorem and Theorem 4.2 that s,* — c~',* — 0
in probability as ¢ — oo, so it will suffice to show that s,* and R, are asymptot-
ically independent. If I and J = [a, b] are finite intervals, then

Ps, el,R,eJ} = {7 [F(b +y) — F(a + »]dW.i(y)

where W2 is as in (3.1). It now follows easily from Lemma 3.1 and an argu-
ment similar to that given in the proof of Theorem 4.1 that

lim P{s*el,R,eJ} = (Y, 9dy)({, 2 dy).

The extension to unbounded intervals is routine.

We will now relate the asymptotic distribution H to the distribution F of X;.
Let X, = X, — ap and M = min {S;': j = 1}, as above. Further, let F, and ¢,
denote the distribution function and characteristic function of X;’ and let G and
w denote the distribution function of M and the characteristic function of
M- = min {M, 0}, respectively. Then # = gp~(1 — G) on [0, o), and a result
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of Spitzer (1960) asserts that
(4.4) w(t) = exp{ XL k7 (Lo (¢ — 1) dF (%)}
where * denotes convolution. See also Feller (1966), page 576.
THEOREM 4.4. Let X,, X,, - - - bei.i.d. with finite positive mean p and let H be
as in Theorem 4.1. Then the characteristic function of H is given by

B = - (240 = D) wio

for t 0, where w is as in (4.4). If, in addition, X, has finite, positive variance o?,
then the mean of H is

2 2,,2
(4.5) v= TH QD v kS, — kap))
(I =)
The first assertion follows from the identity M = X,’ + min {M,, 0}, where
M, = min {S},, — S/: j = 1} has the same distribution as M and is independent

of X;’. The second then follows by differentiation. We omit the details.

5. On the expectation of 7. In this section we will derive an asymptotic
expression for the expectation of the first passage time z,. We suppose through-
out that X}, X,, - .- arei.i.d. with g > 0and 0 < ¢? < oco. We will also suppose
that V(x) = x%, x > 0, in which case

A= Cﬂp_ﬁ
for ¢ > 0. We will need to know when powers of ¢* = 2-}(¢, — 2) are uni-

formly integrable.

THEOREM 5.1. If E|X||” < oo for some y > max {4, B}, then t,** is uniformly
integrable with respect to ¢ > 0.

The proof of Theorem 5.1 will be given in Section 7.

THEOREM 5.2. Suppose that the hypotheses of Theorem 3.1 are satisfied, that
V(x) = x*, x > 0, and that E|X,|" < oo for some y > max {4, B}. Then

E{t} = cfp=f + Bp~v — Jafle’n" + o(1)
as ¢ — oo, where v is as in (4.5).

ProoF. By Wald’s lemma we have pE{1,} = cE{t,"} + E{R;}. This may also
be written as

E{t, — A} = 2~E{t,* — 2%} + p'E{R,}
= A E{ad*(t, — ) — $a(l — a)2,*7%(t, — 2’} + p'E{R}},
where |2, — 4| < [|t, — 2|. Equivalently,
E{t, — 2} = Bp'E{R)} — JaE{(A - A7)t *2 .

Now E{R} — v, |4/2| — 1, and ¢,** is uniformly integrable, so it will suffice to
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show that [1/2,| is bounded. It is clear that |2/2,| is bounded on {t, = 14}
Moreover, on {r, < 12}, we have

Ja(l — a)A,*? = (A% — 1@ 4 ade i(t, — D)1, — )~ < 42e2

6. Proofs. In this section we will present the proofs of Lemmas 2.2 and 3.2.
We suppose throughout this section that X, X,, ... are i.i.d. with a positive
mean p¢ and a finite positive variance o?.

In order to prove Lemma 2.2, we need some auxiliary results. The first of
these is an invariance principle for conditional distributions which may be of
minor interest in its own right. In the notation of Section 2, let T, =
Yiu+ -+ + Yy, j < k, where Y,; are the coordinate functions on R*-!. Fur-
ther, let Z, be a continuous function on [0, 1] for which Z,(0) = 0 = Z,(1) and

Z,(jk) = o=%T,, , =1, k=1,

and Z, is linear on each of the intervals [(j — 1)k=%, jk=], j =1, .-+, k — I.
It is easily seen that Z, is a measurable mapping from R*-! into C[0, 1], when
both spaces are endowed with their Borel sigma algebras. Let Q, , be asin (2.3),
let Q, denote the distribution of a Brownian bridge in C[0, 1], and let d denote
the Prokhorov distance between probability measures on the Borel sets of C[0, 1]
(Billingsley (1968), pages 237-238).

LemMa 6.1. If Condition C is satisfied and if I is any compact interval, then
limd(Q,, o Z,7*, Q,) = O uniformly with respect to ze I as k — co.

Proor. It will suffice to show that if z, - ze R, then Q,* = Qo Zi?
converges weakly to Q,. That the finite dimensional distributions of Q,* con-
verge (strongly) to those of Q, follows from the local limit theorem for densities
(Feller (1966), pages 489-490) by an argument which is similar to that given in
Steck (1957).

To show that Q,*, k = 1, is tight, it will suffice to show that for every ¢ > 0,
there is an n = n, for which

6.1) SUPizn, Qr,z 1| Tesl > ek, for some j < kd} = 0(9)

as 0 — 0 (Billingsley (1968), page 56). Given ¢ > 0, let d > 0 and let m = [kd]
be the greatest integer which is less than or equal to k6. Further, let 4, be the
set of y € R™ for which |T,, ., ;| > ek* for some j < m, so that the left side of (6.1)
is simply Q, ., o 7in(4y). If Ay, is as in (2.4), then, as in the proof of Lemma
2.1, there is a constant B for which

Bem(Y1s =5 Ym | 2) = BTIM, f(3e + 2 + 0k3z))

for all y = (y5, - -, yu) € R™ and all sufficiently large k. It then follows easily
that .
Qu.zp © Tem(Ar) = BP{|S; — ju — jok~tz,| > ¢k?, for some j < m)
= BP{|S; — jp| > %ek?, for some j < m}
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for k sufficiently large and 4 sufficiently small. Relation (6.1) now follows from
standard arguments (Billingsley (1968), page 69).

LEMMA 6.2. Suppose that Condition C is satisfied. Let F; — B(R*™') be the
smallest sigma algebra with respect to which Y, i = j, - .-, k — 1, are measurable.
If I is any compact interval, then {J7T;s ¥ j=1, ---,k — 1} is a reverse mar-
tingale on the probability space (R*~*, B(R*Y), Q, ) for all z e I for k sufficiently
large.

Lemma 6.2 follows easily from considerations of symmetry.

We will now prove Lemma 2.2, which asserts that if Condition C is satis-
fied, and if k = k, ~ 2 as ¢ — oo, then lim,__ lim SUP, oo Q1 AT; = cV(j) —
Jk~[eV(k + 1) — y], for some j < k — m} = 0 uniformly in z ¢ I for any com-
pact interval / and any y e R. We divide the range j < k — m into j < ko,
ki <j<k(l —¢), and k(1 —¢) <j <k —m, where 0 < d < ¢ < 4. Since
v(j) = V(j) — jk~*V(k + 1) is concave on ki < j < k(1 — ¢) for ¢ sufficiently
large, we have min {v(j): k6 < j < k(1 — ¢)} = min {v(kd), v(k(1 — ¢))} = m(c),
say, for ¢ sufficiently large. It is easily seen that m(c) ~ v(kd) ~ V(k)[0* — 9]
as ¢ — co for g sufficiently small. In particular, ck=*m(c) — co as ¢ — oo, so that

(6.2) lim Q, {T,; = cv(j), for some j, kd <j< k(1 —e)} =0

uniformly with respect to z e I as ¢ — oo by Lemma 6.1.

From (1.2) it is easily seen that j='¥(j) is nonincreasing in j for j sufficiently
large. Let u(j)=j='V(j)—k='V(k); then min {u(j): j <k} ~u(kd)~k=V(k)[d**—
1] as ¢ — oo. Thus, for ¢ sufficiently large and ¢ sufficiently small

Q1. ATy; = cV(j) — jk[cV(k + 1) — y], for some j < kd}

(6.3) < Q, ,{/ 'T,; = $cV(k)o*-'k=*, for some j < ko}
2kd!
= h dy < 4p~0*~*E|X, —
=y " () dy < 4n | vl

by Lemmas 2.1 and 6.2 and the martingale inequality.
Finally, if ¢ is sufficiently small and m is sufficiently large, then
Wk —j) — (k — pk—[eV(k + 1) — y] = §ju(1 — a)
for m < j < ke and c sufficiently large. It now follows from symmetry, Lemma
6.2, and the martingale inequality that
Q. dTh; = <V (j) — jk7[eV(k + 1) — y],
6.4) for some j, k(1 —e) <j < k — m}
< 0u{—Ty; = 3jr(1 — a), for some j, m < j < ke)
é 218#_1 S |m-1Tkm| dQIc,z

forallzel, ifcis sufficiently large (and m is sufficiently large and ¢ is sufficiently
small). By Lemma 2.1, the right side of (6.4) tends to zero as ¢ — co and
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m — oo (in that order). Thus, Lemma 2.2 follows from (6.2), (6.3), and (6.4)
by letting ¢ — o0, 6 — 0, and m — co (in that order).

To prove Lemma 3.2 we will also need some preparation. We will use the
fact that if E|X;?| < oo, then there is a constant B for which

(6.5) l9:%(2) — ¢(2)| = Bk=X(1 + |#)

for all z € R for k sufficiently large, where g,* denotes the density of S,*. See
Petrov (1964). In particular, it follows from (6.5) that g* = sup {g,*: k = 1}
is integrable.

LeEMMA 6.3. Lety, = o %k~ i[cV(k + 1) — kp], k = 1, asin(2.2c). Then there
is a sequence ¢,, k = 1, for which ¢, — 0 as k — oo and

1 o cVik + 1)
- =z 4 (@=L — 2¢) L k=1.
Yk )’k+1_~(k+ )i {20 (@ — 3 &) ok + 1)}

PROOF.

Ve = Yurn = o {k7Hk + 1) — (k + )74k + 2)7}L(k + 1)
+ coH(k + D74k + 2)*{L(k + 1) — L(k + 2)}
+ o (k + 1) — kY
=A+ A+ A, say.

Simple convexity arguments show that —A, < co~'V(k + 1)(k 4+ 1) Ha — 4]
and that A; = tpe~*(k + 1)t for k = 1. By (1.2) there is a sequence ¢,, k = 1
for which ¢, — 0 as k — oo and

1A, < ca-k + 1)k + 2)°L(k + 1), < 2e07(k + 1)~V (k + 1),

for k = 1. Lemma 6.3 follows easily.

We will now give the proof of Lemma 3.2, which asserts that if Condition C
is satisfied and if E|X;| is finite, then lim,, , lim sup,_,, W,(b) — W (a) = O for
0<a<b< oo and that W/(y) < B(1 + y) for all y = 0 and all ¢ > 0 for
some constant B (see (3.1)). Let

(@—YH*<r<}i and 20=1—7%a— .

Then, it will suffice to prove the first assertion of the lemma in the special case
that b — a < dp/do, for the general case may be reduced to a finite sum of
terms to which the special case applies.

LetJ,, = {keJ,: k < 2rd}and J,, = J, — J,,. It follows easily from the fact
that k~'V(k) is eventually nonincreasing that cV(k) < kp/2y for k = 272 and ¢
sufficiently large. Thus

0
Ve Y 2 A= e — 3 = 20))(k + D)7 =

for k = 2y4 and c sufficiently large by Lemma 6.3. Thus for ¢ sufficiently large
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and b — a < dpf4o, the intervals I, = (y, — o~%k~%b, y, — 6-k~a], k € J,,, are
disjoint. Consequently (with the obvious notational conventions)

(6.6) W2(b) — Wa) £ Xresy, $1, 96%(2) d2 < § 1y 9*(2) dz,
which is independent of a, 4, and ¢ and tends to zero as /1 R.
To estimate W™ let k, be so large that k='(k) is nonincreasing for k > k,. If
a < a' < 1, it is then the case that ck='V(k) = p(27)*~* for k, < k < 274 + 1
for ¢ sufficiently large. Consequently,
cVik + 1) — kp = kp{(2r)* ™" — 1} = kpr*, say,

for ky < k < 272 + 1 for ¢ sufficiently large. Given b > 0, let

ky = ky(b) = max { 2b ko} .
P

r*’
Then for k > k,(b), we have
6.7) W) = T P{S; > cV(j + 1) — b}
. 2\ .
= 2k S, > cV(j+ 1) — b} + X, (ﬁ;}j) EIS; — juf

*

which tends to zero as ¢ — oo and k — oo (in that order). Moreover, letting
k = k,(b) in (6.7), we find that W"(b) < A(1 + b) for b > 0, where A4 is inde-
pendent of b and ¢. Thus (6.6) and (6.7) combine to establish Lemma 3.2.

7. Uniform integrability. In this section we will give the proof of Theorem
5.1. We suppose throughout that X, X, - .. are i.i.d. with positive mean and
finite positive variance and that V(x) = x%, x > 0.

LemMma 7.1. If either a < & or E|X|" < oo for some 1 > B = 1/(1 — a), then
lim AP{t, < a2} = 0 as ¢ — co.

ProoF. We use the easily verified fact that

P{max,., (S, — k) > y} < KP{S, — ny > y)

forn = 1and y > 0, where K= = inf {P[S, — kp > 0]: k =1} > 0 (cf. Loéve
(1963), pages 247-248). Letn = 2 be an integer and let L = L(n, c) be an inte-
ger for which n*~! < ad < n*. Further, let 6 = 1 — a’-=. Then

(7.1) Plt, < ad} < 21F, P{S, — kp > den=-1, for some k < n'}
< K X5, P, — nip > deni-by
Let A4, be (he event that |S,*| > dck~* and let
r(c) = max,; {4, |S,*[*dP .

If @ < §, then r(c) — 0 as ¢ — oo by the uniform integrability of |S,*%, k = 1,
and the right side of (7.1) does not exceed

K(de)= i, n' =200 p(c) = ¢7r(c)0{n1-2 0] = o(27Y)
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as ¢ — oo. Similarly, if « = { and if E|X||" is finite for some y > f, then the
right side of (7.1) does not exceed
K(0c)™r Rl nmr@-VE|S ; — nip|r = O{Lc™7} = o(27Y)

as ¢ — oo.

Lemma 7.2. If E|X\|" < oo for some y > 4, thenlim §, ., t*dP = 0 as c—co.

Proor. The integral in question does not exceed

328P{t, > 44} + X jza 8P >} -

Letting 6 = 1 — 4!, we find that P{r, > j} < P[S; — ju < —jou} < Bj~# for
all j = 42 for some constant B. The result follows easily.

We will now prove Theorem 5.1, which asserts that if V(x) = x* for x > 0
and if E|X||" is finite for some y > max {4, B}, then 7,*%, ¢ > 0, are uniformly
integrable. By Lemmas 7.1 and 7.2, it will suffice to show that there is a func-
tion J for which yJ(y) is integrable over (0, co) and

P{lt*| >y, ak < 1, < 44} < J(y)
forall y > 0andall ¢ > 0. Let

Jo(y) = supyz, P{IS;*| > y}
for y > 0. It is easily seen that yJy(y) is integrable. Given y > 0, let n be the

greatest integer which is < 2 — yA}. Then since cx* — px is decreasing x > a*2,
we have

(7.2) P{t, > ad, t.* < —y} < P{S; — jp > ¢j* — jp, for some j < n}
< KP{S, — np. > cn* — np}

for n = a; and, of course, the left side of (7.2) is zero if n < ad. Let h(x) =
ex® — px for x > 0. Then £ is concave and 4(2) = 0, so that

h(n) = K(n)(n — 2) = p[1 — all~*n*-1]yAt = ouynt,
where 0 = 1 — a* > 0. It follows that

P{tc > C(Z, tc* < —y} é KJO(aﬂy)

for y > 0. A similar, somewhat simpler, argument will show that P{r, < 44,
t* >y} < J[$(1 — a)y] for y > 0 to complete the proof of Theorem 5.1.
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