The Annals of Probability
1976, Vol. 4. No. 1, 13-26

A TWO-DIMENSIONAL FUNCTIONAL PERMUTATIONAL
CENTRAL LIMIT THEOREM FOR LINEAR
RANK STATISTICS!

By PraNAB KUMAR SEN .
University of North Carolina, Chapel Hill

Some two-dimensional time-parameter stochastic processes are con-
structed from a sequence of linear rank statistics by considering their
projections on the spaces generated by the (double) sequence of anti-ranks.
Under appropriate regularity conditions, it is shown that these processes
weakly converge to Brownian sheets in the Skorokhod Ji-topology on the
D?[0, 1] space. This unifies and extends earlier one-dimensional invariance
principles for linear rank statistics to the two-dimensional case. The case
of contiguous alternatives is treated briefly.

1. Introduction. Let {X;, i > 1} be a sequence of independent and identically
distributed random variables (i.i.d. rv) with a continuous distribution function
(df) F on (— oo, o). Consider the linear rank statistics

(1.1) Ty = XL (¢ — Cy)ay(Ry,) , ¢y =Nl NzLT,=0,
where {c,, i = 1} is a sequence of (known) constants, {[ay(1), - - -, ay(N)], N = 1}
is a (triangular) sequence of real scores, and the ranks {Ry;} are defined by
(1.2) Ry, =2 ,uX,—X;), 1<i<N, where u(f)=1, t=0
=0, t<0O0.
Note that R, = (Ry,, - - -, Ryy) assumes all possible permutations of (1, - .., N)
with the common probability (N!)~!, and by the classical Wald-Wolfowitz—
Noether-Hoeffding-Hajék permutational central limit theorem (PCLT) [viz,
Theorems 6.1 and 6.2 of Hajék (1961)], under suitable regularity conditions,
(1.3) Ay Cy I Ty) — A0, 1) as N— oo,

where C; = 4, = 0, and for N = 2,

(1.4) Cyl= ¥ (¢, — Cy)?, Ay = N1 Yilay(i) — ay)? and

i 1 .
N = N i ay(i) .
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14 PRANAB KUMAR SEN

For N = 2, consider a stochastic process W,» = {W,®(t): tel}, I =[0, 1],
where

(1.5) Wyh(t) = Ay 7'Cy T and
n(f) = max {k: C;* < tC,*} tel.

From Sen and Ghosh.(1972), it follows that as N — oo, W,® converges in law
to a standard Brownian motion on I; this provides the first functional PCLT
for linear rank statistics. In the context of progressively censored nonparametric
tests for the life-testing problem, Chatterjee and Sen (1973) have formulated a
second functional PCLT which may be posed as follows. For every N = 1, let
Ty,=0, and

(1.6) Ty, = i €5y — Enlay() —ay* (], 1=r= N-—-2, and
=T,, rN—1,N,

where S, = (Syp - - +» Syy) is the vector of antiranks, that is

N

(1.7) Xy, = Xyu» 1SN or Rysy, = Sways» 1SiEN,
where X, ; < - -- < Xy, y are the order statistics corresponding to Xj, - - -, Xy, and

(18)  ay*() =N —nN"Tiuay(), 1Sr=N—1;
=0 for r=N.

Thus, in the usual terminology, Ty , is a censored linear rank statistic where the
censoring occurs at the rth order statistic X, ,, r =1, ..., N. For N = 1, let
Vyo =0, and define

(1.9) Vyre= Ay — (N= D7 E ulay(j) —a* (0], 1=sr=N-—-2;
:ANZ, I‘=N—1,N.

On denoting by Sy(r) = (Syi> -+ > Sw), 1 S 7 =N, and by <%, the o-field
generated by S,(r), we observe that E[Ty| %y =Ty, and V(Ty,) = Vy,,»
1 < r < N. Consider the process Wy® = {W®(1): t e I}, where

(1.10) WyP(t) = Ay 'Cy ' Ty vy and
r(f) = max {r: Vy , < tA,’ tel.

Then, W,® converges in distribution to a standard Brownian motion on I, and
this provides the second functional PCLT for linear rank statistics. [Actually,
in Sen et al. (1972, 1973), these processes were defined on the C[0, 1] space with
slightly different definitions; however, their results remain good on the D[0, 1]
space with the current definitions. |

In the current paper, a two-dimensional time-parameter process is constructed
on the D0, 1] space, such that its vertical and horizontal cross sections are
w,® and W,®. Under suitable regularity conditions, it is shown that the pro-
posed process converges weakly to a standard Brownian sheet on the unit square;
this extends the earlier results of Sen et al. (1972, 1973) to the two-dimensional
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case. The theorem is formulated in Section 2 and its proof is presented in Sec-
tion 3. The last section includes an extension of the theorem for contiguous
alternatives.

2. The basic theorem. Let I’ = {t = (#, 1,): 0 < t < 1} be the unit square,
where a < b means that a, < b, i = 1, 2. For every N (= 2), consider a two-
parameter stochastic process W, = {W,(t): t € I*}, where

(2.1) Wi(t) = AN_ICN—IT'n(tl),'r(tz) tel?,
(2.2) n(t) = max {n: C,7*C,* < t} and
r(t) = max{r: Vi, , < 45},

and 4,% C,*and V, , are defined by (1.4) and (1.9). Let D0, 1] be the space
of all real functions on I* with no discontinuity of the second kind, and associate
with it the Skorokhod J,-topology as in Neuhaus (197F). Then W, e D0, 1],
V N = 2. Also, note that the space C?[0, 1] of all real, continuous functions
on I, is a subspace of D’[0, 1]. We introduce the following assumptions needed
for our subsequent results:

AssUMPTION 1(a). {c; i = 1} satisfy the Noether-condition, viz,
(2.3) limy_, {Cy~[max,g;<y (¢; — )]} = 0
in fact, we will need the more restrictive condition:

AssUMPTION 1(b). {c;, i = 1} satisfy the Hajek (1968) condition, i.e.,

(2.4) {[max,g; <y N(c, — ¢y)"]/Cy" = O(1) .

AssUMPTION 2(a). For every N (= 1), the scores are defined by
(2-3) ay(l) = Ep(Uy)), 1 =i N, () = ¢(u) — $u(¥) uel,
where U, < --- < Uy, are the ordered random variables of a sample of size

N from the rectangular (0, 1) df, and both ¢,, ¢, are nondecreasing and square-
integrable inside /.

AssuMPTION 2(b). [Hoeffding (1973).] For some r > 1,
(2.6) §5 [$;)][log (1 + |$;(w)])]" du < o0 j=12.
Note that (2.6) is less restrictive thaq ¢;eLl,r>2,forj=1,2.

Note that if & * be the o-field generated by R,,, n = 1, then by (1.7), & ,* =
Z,™. Now, by Lemma 2.1 of Sen and Ghosh (1972), E(T,,,,|.% ,*) = T,, while
by Lemma 4.1 of Chatterjee and Sen (1973), E(T,|£,") =T, ., 1 = r = n.
As Z,"is Sinr: 1 < r < n, from the above two identities, we conclude that
under (2.5), '

(2.7) E[Ty| Z,"] = T, Vi<r<n<N.

Thus, the process W, in (2.1) is fabricated by the s-field generated by {S,(r):
l<r<n<N})L
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Let W = {W(t): te I’} be a standard Brownian sheet on I?, so that P{W e
C’[0, 1]} = 1, all finite dimensional distributions of W are Gaussian, E w(t) =0,
VYtel? and

(2.8) E{W(s)W(t)] = s A t = [min (s, #,)][min (s,, £,)] Vs, tel®.
Then, the main result of the paper is the following.

THEOREM 1. Under Assumptions 1(b) and 2(b), as N — o ,
2.9) Wy—, W, in the Ji-topology on the D0, 1] space.

The proof of the theorem along with certain related results is presented in
Section 3.

3. The proof of the theorem. For simplicity of manipulations, we may stand-
ardize (without any loss of generality) the score function ¢(u), u € I, such that

(3.1) WWpydu =¢ =0 and A = {}g*u)du=1.

Note that, by definition, C},, — C;? = [(k + 1)/k][cts1s — Epu]> kK = 1, so that
by (2.3),

(3.2) limy_ {Cy~[max,gpcy_, (Chiy — Al =0.
Also, by Assumption 2(a) and Lemma 4.2 of Chatterjee and Sen (1973),
(3.3) limy o, {Ay~[max,c,cy (Vy,, — Vy,-)]} =0.
For every p eI, let us define
(3.4) B,(u) = p(u), o<u<p,
=¢ =0 -p7e0d, p<usl;
w(p) = (§ 8,°(u) du — [§3 §,(u) dul’) = §3 §, () du — (§ p(u) du)?

(3-5) =P du+ (1 —p)(4,"), 0<p=1;
y(l)y =A4*=1.
It may be noted that v(p) is 1 in p (eI), and as in Hajek (1961), we have
(3.6) [limy_, r/N = p] = [lim,_.., A,V . = v(p)] vpel.

First, consider the convergence of finite dimensional distributions of {W,} to
those of W. Define @, as in (3.4) and let

(3.7) Tp) = Xt (e — E)au(Ryi; p) »

(3-8) T.X(p) = Zia (6 — €)P,(U)) nzl, pel,
where {U;, i > 1} are i.i.d. rv’s with the rectangular (0, 1) df and

(3.9) a0, p) = E,(Uy) <i<n pel.
Then, by Theorem 6.2 of Hajek (1961), for every pel,

(3.10) E[T,(p) — TXP)PC,? =0 as n— oo
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Also, note that forevery r: 1 <r<n—1,

G-1) G [T, — T,(r/m] = (n — D™D [a.) — a0, p)I*
+ Lirnla(r) — a,G, p)F}
where by (1.8), (2.5), (3. 4) (3.9) and Assumption 2 (a) along with Theorem a

(on page 157) of Héjek and Sidak (1967), it can be easily shown that if r/n — p
(as n — o0), pel, then

(-12) 7t Faau(s rfn) — @,u(il(n + 1)P— 0,

nHZa0) — o(f(n + D) + (1 = Diek. — a,* (]} -0,
so that
(3.13) [r/n— p] = C, T, , — T (r/n) —,0.
Finally, for every pel, p'el, as p’ — p,
(3.14) E[T.*(p) — T.XPFIC = §i[,() — ¢, ()] du — 0.
Hence, from (3.6) and (3.10) through (3.14), it follows that

(3.15) Wy(t) — Wy*(t) —, 0, for every tel,
where
(3'16) WN*(t) = CN_IA IT;‘(tl)(” 1(’2)) tel”.

Consequently, it suffices to show that for every m (> 1) and t,, -- -, t,, € I%, as

n — oo,
G17) Wi =W (t), -+ -5 Wyk(tn)] =, [W(L), - - -, W(t,)] -
Since §; ¢,(u) du = 0, p e I and §; ¢, (1)@, (4) du = §§ ©*(u) du + (1 — p)(p,*)* =
vp)for0 < p< p < 1, EWy*(t) =0, tel* and
Cov [Wy*(s), Wy*(t)]
= E[Wy*(s)Wx*(1)]
(3.18) = Gy Ay ™D (6 — Caiep) (€ — Cotip) E[B100,y (U) 104, (UD) ]}
(n* = n(s)) A n(t))
= (N L)AyPCy™? 8, (¢, — Cp)?
= (AN L)ATHCLCYy ) S (A L) A L) =SAt.

Consequently, to prove (3.17), it suffices to show that W% ,, has asymptotically
a multinormal distribution. For this, note that

(:19) Wi = Ay Cy (T (6 — Caiey)Pumr0,y(Un), 1 < j < m)
= XL (dg, —l(tn)(Ui)’ lsjsm=XL2Zy,, say,
where the Z, ; are mutually independent vectors, and d\) = 4,7'C,~(c; — &,,. i)

if i < n (1)), and is 0, otherwise. Also, by definition, EZ,, =0, V1 < i < N,
and .

(3.20) ChE(Zy,Z} )] < y(1)Chl[((d;;'v)dgy’)))j,j’=l,---.m] >
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so that by (2.3) and (3.19), as N — oo,
(3.21) max, .,y {SUP,.o [V(Zy ; A)/A' ]}
= v(){max,g,gy [CH[((E°di3)) 5,51, ]I} — O -

Hence, as N — o, Zy;, 1 < i < N, have all infinitesimal elements. So, by
virtue of (3.18) and (3.21), to prove (3.17), we only need to show that for
every ¢ > 0,

(3.22) N E(|Zy (|| Zy ]| > €)} — O as N — oo,
where ||u|| = (uw’). By (3.19),
(3.23) 1Zal* = X7 [P Bl-101,(Us)

< {maxg;cn [dTHEZ T éf—lun)(Ui)} I<i<N.
Let us denote by ‘
(3.24) Ay = MaX,g;cy MaX,g;gp [df) and Uy* = 27 éz-l(tﬂ)(Ul) )
so that by (2.3) and (3.18), @y — 0 as N — oo, and by (3.22)—(3.23), for every
e >0,
(3.25) o1 E{l|Zy 4l PH(Zy ] > )}

= (L% L7 AP P)EUU* > &lay)])

elay— o0 as N— oo.

Also, Loor,dy?P<m, and by Assumption 2, (3.4) and (3.24),
limy ., E[U*I(U* > K)] = 0. Consequently, (3.25) implies (3.22), and the
proof of the convergence of f.d.d. of {WW,°} is complete.

For g = 1, for the tightness of D?-valued processes, Wichura (1969) has con-
sidered some interesting inequalities for a multidimensional array of independent
random summands. Unfortunately, our W,° (or W,) does not involve a two-
dimensional array of independent random variables, so that his inequalities are
not usable for our purpose. Usually, for D?-valued processes, some prabability
(or moment) inequalities [viz, Billingsley (1968, pages 128-130)] insure tightness.
In our case, these require the evaluation of absolute moments (of order greater
than 2) of [W,(t,, t,) — W' (11, 8,) — W'(sp, 1) + W'(sy, 55)] (Where s < t), and
these, in turn, require additional regularity conditions on the score function ¢
in (2.5) in order that the moments conform to the desired pattern. In the fol-
lowing approach, we establish tightness under Assumptions 1(b) and 2(b). Note
that W, vanishes at the lower boundary of I?°. For every se/? let By(s) =
{ft:s<t<(s+01)A1},0< < 1. Then, to prove the tightness of {IW,}, it
suffices to show that for every seI?and ¢ > 0, » > 0, there exista J (> 0) and
an integer N,, such that

(3.26) P{sup [|Wy(t) — Wy(s)|: te By(s)] > ¢} < »d* .N=N,.
Towards this, note that |W,(t) — Wy(s)| < |Wy(t) — Wy(s;, )] + [Wy(sy, 1) —
Wy(s)|, ¥ t € By(s) where

(3~27) SuP.esa(s) IWN(sv tz) - WN(S)I = CN_IAN_I{maXrlgrgrz |Tn-,r -T |} 4

U
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n, = n(s,), r, = r(s,) and r, = r((s, + 6) A 1) are defined by (2.2). Now, by
Lemma 4.1 of Chatterjee and Sen (1973), for every n (> 1), {T, ,, %, 1 <

r < n} is a martingale and by our (3.15)—(3.17), CN‘IAN—I(T,,PT; —Thr) =0
N(O, s5,0). Consequently, on using Lemma 4 of Brown (1971), it follows by some
standard steps that for every ¢ > 0 and » > 0, there exist.a 6 (> 0) and an N,,

such that for N > N,,

(3.28) P{sup [|Wy(s;, 1) — Wy(s)|: 8, < 8, < (8, + 0) A 1] > de} < 490°.
Hence, to prove (3.26), it remains to show that

(3-29) P{sup [[Wy(t) — Wi(sy, )] te By(s)] > e} < $70°.

Since, for a fixed #,, {Wy(t,, ,) — Wy(sy, t,), 5, < 1, < 5, + 0} is not necessarily
a martingale sequence, the usual proof [as for (3.27)] is not directly applicable
here. We need some back and forth replacement of W, by some related pro-

cesses. For this reason, we define first T, (p) as in (3.7) and consider a process
W, = {(W,(t): t e I?}, where

(3.30) W(t) = Ay7'Cy™ ity (VH(%2)) ter
and n(1,) and v are defined by (2.2) and (3.5). Note then

(3.31) T, ,— T,(r/n) = 2t (¢ — C)bu(Ryy; r/n)

where

(3.32) b,(i;r/n)y = a,(i) — a,(i;r/n)y, 1ZiZr,

=a,*r) —a,(irjn), r<i<n.
Since, by Assumption 2, ¢ = ¢, — ¢, with ¢; 7, j = 1,2, the b,(i, ) can be
expressed as the difference of two terms where for each term, ¢; is . Thus,
for convenience of manipulation, we assume in the sequel that ¢ is /. Then,
by (2.5), (3.4)and (3.9), for i < 1, |b,(5; r/m)| = [nGZ) §om [p(W) — Tl (1 —
u)*~*du| and noting that u»'~'(1 — u)"~* attains a unique maximum at u =
(i — 1)/(n — 1) (< r/n) and exponentially converges to 0 as # — 0 or to 1, we
claim on letting k, = [r(n — r)/n]t log n that
(3.33) |b,(5; )| = O(n™Y) i<r—k,,
= d|p(rn) — ¢Ful, di=l, r—k,sisr.
In a similar manner, it can be shown that
(3.34) |bui; )| = O(n k) 5 izr+k,,
= 0)le(r/n) — @7l T<IK<T A4k,
Further, by (2.5), (3.4) and (3.9), »r, b,(i; r/n) = 0 and by Assumption 2 (a),
[r(n — r)/n*][@(t/n) — ¢},]* is bounded for all 1 < r < n (and it goes to O as
rin — 0 or 1). Hence using Assumption 1(b) and proceeding as in the Wald-
Wolfowitz (1944) proof of the PCLT, we obtain that for every m (= 1),

(3.39) C.*E(T,,, — To(r/m)™ = O(([n~k,]le(r/n) — ¢3.])")
= O((log n)="[r(n — r)[n]~™7*).
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Hence, using the Markov and the Bonferroni inequalities (and choosing m ade-
quately large) we obtain that for every » > 0,
(3.36) Max,gy MaX,g,cnny Cy YT, , — To(r/n)) —»,0  as N— oo.

We shall comment on the two tails (r < n” and r > n — n") later on. Again,
by (3.4), for ¢ < p, ¢,() — ¢, () =0, if u < q, < o(q) —,* f g<u<p
and is ¢,* — ¢ * if u > p. Hence, under Assumption 1 (b),
Cn_IITn(P) - Tn(q)l
= O(n™) Xt lan(is p) — an(i; 9)|
= 0 )le(g) — ¢.* Lt PUni €[4 PI} + 19,* — 0% Tt P{U, > p)]
= 0(”_5)[]?’(‘1) - Soq*ln(p -9+ ISD,,* - Soq*l
X {n(l — p) + (np(1 — o))t log n + o(1)}]
= O(mH{n(p — @)1 — 9)7[§} ¢*(u) du]?
+ [n(1 = p) + (np(1 — p))tlog n + o (H][o(D[(p — 9)*(1 — p)II}
= O([n(1 — )17 ¥[n(p — PIIT; ¢*(x) du]?)
+o([n(p — @It + (log mp(p — 9)I*) = o(1)
for every p — n7' < g < pel. Thus, by (3.6), (3.36) and the above discussion,
it follows that to prove (3.29) when 0 < s, < 1 — 24, it suffices to show that
for N = N,
(3:37)  Plup[|Wy(t) — Wy(s,, 1)
SELE5 40,5 <4 < 5+ 20] > k) < 1po?
(later on, we shall comment on the case where s, = 0 or s, + 26 = 1).
Let us consider the family of one-parameter processes
(3.38) Wyt +) = (W1, 8): 0 < s < 1} tel.
Let &, * be the o-field generated by R, = (R,,, -+ -, R,,), forn > 1; F * is
/" in n. Also for every N (= 1), on defining n(,) as in (2.2), we denote by
(3.39) F ) = F ke Lel,
so that &, *(r)is /intel
LeEMMA 3.1. For every N (= 1), {W,(t; +), Z y*(t); t € I} is a martingale.
Proor. By (3.30), (3.38) and (3.39) it suffices to show that
(3.40) E{To(p): pel}|Z,*] = {T.(p): pel} almost surely.
Since by (3.4) and (3.9), 21, a,(5p) = n(§d,()du = n§i¢(u)du =0, Vpel,
n =1, we may rewrite T,(p) as X7, ¢,d3,(R,; p), pel, n > 1. Hence, for
every pel,
(3.41) E[T,(p)| F0*] = Dt GE{dy(Rusass ) |5 0%)
+ Car1 E{@y (R p1nis P) | F 04}
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Now, given % *, R, ,,,,,can assume the values 1, - - -, (n 4+ 1) with the common
probability (n 4 1)7%, so that E{@, (R, 10115 P) | F 5*} = (n + )™t 1178 G, 14(0
p) = 0. Thus, the second term on the rhs (right hand side) of (3.41) vanishes.
Also, for 1 < i< n, given & *, R, can be either R,; or (R,; + 1) with re-
spective conditional probabilities (n + 1)~%(n 4+ 1 — R,;) and (n + 1)7'R,;, so
that
E[dn+1(Rn+1i; P) I '-7%*]

= a,(R.;; p) 1<ign,
where the last identity follows from a well-known recursion relation among the
expected order statistics. From the above, we have E[T,,.(p)|-Z.*] = T.(p)
for every pe I, n = 1, and this implies (3.40). []

Let us now denote by W,(t,, 5,3 6) = {W,%(t,, ;) — W' (ty, 85) 18, < 1, < 5, + 6},
nel,0<s,<1—3d,andlet||W, 1, 553 0)|| = SUP, <t <o vs | Wal(tis 1)) — Wyt 55)|
t, € I, be the corresponding process of “sup” norms. Since is a convex func-
tion, we obtain from Lemma 3.1 that for each s, ¢ /,

(3.43) (W't 533 0)||, F y*(t); eI} is a nonnegative sub-martingale.

Therefore, using Theorem 3.3 of Doob (1967, page 316), proceeding as in the
proof of Lemma 4 of Brown (1971), and finally, using the Schwarz inequality,
we obtain the following.

LeMMA 3.2. Forevery s,el,0< s, <85, +0 <1,¢e>0and N> 1,

P{sup, <; <o 45 SUPs,sty50,447 W3t 1) — Wy'(ths 53)| > €}
(3.44) = P{Supslgtlgslw I WNo(tv 533 0)|| > ¢}
< QIP{IW3 (51 + 8, 553 8) — W5y, 535 0')|| > ¢/2}

~.

X E{||[Wy'(sy + 8, 555 8') — Wy'sy, 555 )|} -

Returning now to the proof of (3.39), we observe that by virtue of Lemmas
3.1 and 3.2, it suffices to show that for every ¢ > 0 and »”” > 0, there exist a
0': 0 < ¢ < 1and an N,, such that for N > N,,

(3.45) P{|W,(s;, + 8, 8,3 8") — Wy(s,, 535 0)|| > €} < 7"(0')*;
(3.46) E{||W\3(s, + 8, 853 ) = Wy(s1, 533 0)||7} < C&' C<oo.

Unfortunately, {W,(s, 1), t € I} does not possess a martingale property. So, to
prove (3.45)—(3.46), we again make use of (3.36). First, note that by (3.6)
and (3.36), to prove (3.45), it suffices to replace W,° by W, and &’ by 8" = 25'.
Also, [[Wy(s; 4 0,553 0") — Wiy(51, 85, 0")|| <[ W81+ 95 835 0")|| + | Win(s1, 555 0”) |,
where

(347 [Wa(s, 53 0")|| = max {4y Cy Ty, — To, in = T =13}
with n = n(s), r, = r(s,) and r, = r(s, + 0") being defined by (2.2). Third, we
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recall that by Lemma 4.1 of Chatterjee and Sen (1973), {r,., £,",1<r<n}
is a martingale, for each n > 1. As such, proceeding as in (3.27), we obtain
that for every ¢’ > 0,

(3.48) Plmax [|T,, —T,,|:rn=r<n]>"4,Cy)

< QEZ@P{Zy(")| > ¢"[2}]F
where Z,(3") = Ay"'Cy™(T,.., — To)s EZy(0") = C2Cy Ay (Vo — Vi) =
50" and Z,(0") converges in law to a normal df with 0 mean and variance sd".
Since, for x > 1, P{|.#7(0, 1)| = x} exponentially converges to 0, we conclude
that the rhs of (3.48) can be made smaller than »"(6”)*/2 when ¢" (or 0) is
chosen small. Hence, the proof of (3.45) is complete.

To prove (3.46), it is enough to show that for every s e I, E{||W,%(s, 553 0)||) <
(C/2)¢’. For this, note that by (3.6) and (3.36), for N sufficiently large,

(3-49) 1W3°(s, 525 )| < [[Wils's 525 0" + Qu
where s’ = (s — 9'/2) vV 0, 6" = 20’ and Q, = Q,* + o(1) with
(3.50)  Qu* = max, .o, (A Cy T (rj) — To(rfn) — Ty + T}
and ' = n(s'), r, = r(s,) and r, = r(s, + 9”) are defined by (2.2). Thus, it suf-
fices to show that for every " > 0, there exists an N, such that for N > N,
(3.51) E{[[Wy(s', 53 0")|I7} < (C[4)0" 5
(3.52) E(Qy**) < (C[4)o" .
Now, (3.51) follows directly by using (3.43), (3.47) and Theorem 3.3 of Doob
(1967, page 316), while to prove (3.52), note that
(3.53) Qy* < 2{max, .., |T(r/n) — T, ,|/4,Cy)

= z{maXrISrSrz Q;\fkr} ’ SaY’
where, by (3.35),

[E(Qy™)) = 2'[E(max, <, Q3D

(3.54) <2 %, e, BQF) < 24, — r)[O(N-Y(log N)™)]

= [0(1)][O((log N)=3)] — 0 as N — oo.
Hence, E(Q,**) can be made arbitrarily small by choosing N adequately large.
This completes the proof of the theorem when 0 < s, < 1.

To complete the proof of the theorem, we need to show now that (3.37) holds
for s, = 0 and's, = 1 — 2. We consider only the case of 5, = 1 — 26 as the
other case follows on parallel lines. For this, first, we need to extend in (3.36)
the domain of r from n — n7 to n. Note that under Assumption 1(b)

Cn-llTn,r - 'nl = IZ?=T+1 [(CSM - (,_'”)/C”][a”(i) - an*(r)]l
(3.55) S {[Z0 41 (s, — GO L r1a (aa(0) — @ *(n))TH
={[0((n — N/m)][n(4,* — V., ,)]}?
= 0([(n — (4" = Va1 »
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where by Assumption 2(b), (n — r)(4,> — V,,) — 0 as n — oo whenever r >
n — Klogn. [Note that p*(u){log (1 + |p(u)|)} = o((1 — u)~*) asu — 1.] Hence,

as n— oo

(3.56) max, xiognsrsn Con Y nyr — Tal = 0 with probability 1.
Similarly, under Assumptions 1(b) and 2(b), as n — oo,

(3.57) MaX,_g 1og nsrsn Cu | Tu(r/n) — T, — 0  with probability 1.

Thus, we need only to prove a result parallel to (3.36) for n — n” <r < n—
Klogn where > 0. For this, we proceed as in (3.31) through (3.34) where
we let k, = (n — r) and instead of evaluating the 2mth moment, we bound the
moment generating function of C,~(T,(r/n) — T, ,); the latter exists for all such
r and ¢t = O(log n). Using then the Bernstein and the Bonferroni inequalities,
we obtain that as N — oo,

(3‘58) max'nSN maxn—n’lérén—K logn CN—IlTn,r - n(r/n)l _)p 0 *

The proof of (3.52) for 5, = 1 — 24 also follows as in (3.53)—(3.54) where
in (3.54) we use the inequality that for 9 > 0, exp(JEQ,*) < E{exp(90,*)} =
2kt E[exp(9Q%,)] = XL, O(N777) = O(N"7) —»0as N — co (Where y > 0). []

Note that by (2.1), (3.4) and (3.9), W,°(¢, 1) = W,(¢, 1) for every tel and
hence, the lengthy steps in (3.30) through (3.37) are not needed. Further, by
Lemma 2.1 of Sen and Ghosh (1972), {Wy(t, 1); tel} is a martingale, and
hence, by using Lemma 4 of Brown (1971), it follows that under assumptions
1(a) and 2(a),

(3.59) sup {|Wy(t, 1) — Wy(s, 1)|: |t — 5] < 0} 50 as N— oo.

Hence, W,® in (1.5) converges weakly to a Brownian motion under Assump-
tions 1(a) and 2(a). Similarly, Wy(1, 1) = W,%1, 1) for every tel, and by
Lemma 4.1 of Chatterjee and Sen (1973), {W,(1, #); t eI} is a martingale, so
that W,® in (1.10) weakly converges to a standard Brownian motion under
Assumptions 1(a) and 2(a). Third, if we let foreverye: 0 < e < 4, Wy, =
(W)t hel,e <t, <1 —¢yand W, = {W(t): tel, e < t, < 1 — ¢}, then for
the tightness of W, ., we do not need Assumption 2(b) and hence, Wy, , —_ W,
under 1(b) and 2(a). However, for (2.9) to hold, we are unable to replace
(2.4) by (2.3) and Assumption 2 (b) by 2(a).

In general, the scores {a,(i)} need not be specified by a,(i) = E¢(Uy;) 1 <
i < N, as in (2.5), e.g., ay(i) = #({/(N + 1)), 1 <i < N. Thus, the question
arises whether in (2.5) one may replace {a,(i)} by more general scores. For
arbitrary scores, the martingale result in Lemma 3.1 does not hold, and this
causes complications in the proof. However, if {ay(i), ] < i< N; N = 1} be
any arbitrary sequence for which

(3.60) N7 Bl lay(i) — E¢(Uy:)| = o(N7H)
where ¢ satisfies Assumption 2, then the results hold without any difficulty by
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noting that in (1.6), the difference of the two linear rank statistics (for the two
sets of scores) is 0(Cy), and hence, in (2.1), their difference is asymptotically
negligible. In fact, (2.6) insures (3.60) for ay(i) = ¢(i/(N + 1)), i=1,---, N,
whenever ¢ is absolutely continuous inside /.

4. Weak convergence to a drifted Brownian sheet. When the X, are not
identically distributed, the PCLT does not hold. Nevertheless, the asymptotic
normality of the standardized form of T, can be established under certain addi-
tional regularity conditions (viz, [6, 7, 10, 11]). The convergence of the f.d.d.’s
of {W,} to those of some appropriate Gaussian functions can be established by
similar techniques. But, Lemma 2.1 of Sen and Ghosh (1972) and Lemma 4.1
of Chatterjee and Sen (1973) do not hold when the X; do not have the common
df and, for this reason, the current proof of the tightness of { W} will not work
in such a case. If one intends to use the basic projection approach of Hajek
(1968) or the weak convergence approach of Pyke and Shorack (1968), one
needs to extend their basic results to the entire sequence of sample sizes {n < N}
and this, in turn, demands more restrictive regularity conditions. We intend
to show here that for contiguous alternatives, weak convergence of {W,} to a
drifted Brownian sheet follows quite easily from our Theorem 1.

Consider a triangular array {X,,, 1 < i < N; N = 1} of row-wise independent
rv’s where

(4.1) o Fy(x) = P(Xy; £ X) = F(x — dy,) I1<i<N,
and {d,;, 1 < i < N; N = 1} is a triangular array of constants, such that
4.2) supy 2, dy; < oo and max, ;. y da; — 0 as N— oo .

Further, assume that F is absolutely continuous with a continuous density func-
tion f and a finite Fisher information

(4.3) I(f) = §2u [f'([f(0)] dF(x) -
We denote by P, , the joint df of (Xy,, - - -, Xy,) when the d,,; are all equal to
0 and by Q, , when (4.1)—(4.3) bold, for k = 1, ..., N. Then, from the basic

results of Chapter 6 of Hajek and Sidék (1967), we conclude that under (4.1)—
(4.3), Qy is contiguous to P, and this implies that under (4.1)—(4.3),

(4.4) Oy Is contiguousto Py, Vk<N.
Let us now denote by

(4.5) Pu) = — f/(Fw))[f(F(u)) 0<u<l

and defining ¢, as in (3.4), we let '

(4.6) o(p) = (i $,(u)¢(u) du)[[AI}(F)] pel.

Also, we assume that on defining n(t,) as in (2.2),

4.7 At) = limy_, Cy™* T8 (¢; — Coiey )i exists for all ¢, e/.
(¢ )%n
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Then let v be defined as in (3.5) and let

(4.8) r={ut) = B(HAt)p(v(t)); te I’} .
Finally we construct the T, ,, 1 < k < n < N as well as W}, from the sequence
{Xy1s - -+ Xyy}, for N = 1. Then, we have the following.

THEOREM 2. Under Assumptions 1(b) and 2(b) and (4.1)—(4.3), (4.7),
(4.9) Wy —t—_ W as N— oo .

OUTLINE OF THE PROOF. (3.17) and (4.4) really imply that the f.d.d.’s of
Wy — p converge to those of W; since the proof follows by the same technique
as in Hajek and Sidak (1967, pages 216-219), the details are omitted. For
the proof of tightness of {W,} under {Q,}, we denote the modulus of continuity
by w,(x) = sup {|x(t) — x(s)|: |t — 8| < J,s,tel?},0< 0 < | andlet

(4.10) BY, = {(Xyp -+ s Xyn)t 0;(Wy) > ¢} where ¢ > 0.

Then, in the course of the proof of the tightness part of Theorem 1, we have
really shown that

(4.11) lim sup, P{BY).| Py} — 0 as 0—0.
Therefore, by the contiguity of Q, to P, and (4.11),

(4.12) lim sup, P{B{.|Qy} — O as 0—0.
Hence, {W,} is also tight under {Q,}. [

In the context of nonparametric tests under progressive censoring, Chatterjee
and Sen (1973) have utilized the process W,® in (1.10) for constructing suitable
sequential tests. In many practical problems, the N observations do not enter
the scheme at the same time and this introduces additional complications neces-
sitating a two-time parameter process to describe the phenomenon. Both Theo-
rems 1 and 2 are quite useful in this context and the details will be studied in
a separate paper.
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