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A NOTE ON INVARIANCE PRINCIPLES FOR INDUCED
ORDER STATISTICS!

By PrRaANAB KUMAR SEN
University of North Carolina

Weak convergence of a sequence of two-dimensional time parameter
stochastic processes constructed from partial sums of induced order statis-
tics to a standard Brownian sheet process is established.

1. Introduction. Let {(X;, Y;), i = 1} be a sequence of independent and iden-
tically distributed random vectors (i.i.d.rv) with a bivariate distribution function
(dfy H, and let F and G, be respectively the marginal df of X, and the condi-
tional df of Y, given X, = x; F is assumed to be continuous so that ties among
the X, can be neglected in probability. Foreveryn (= 1),letX,, < .- < X, ,

be the order statistics corresponding to X, ---, X,, and, as in Bhattacharyya"

(1974), the induced order statistics Yy, ---, Y,, are defined by

(1.1) Y.=Y; if X,,=2X; for jk=1,..-,n.
Let m(x) = E(Y,| X, = x), 6*(x) = E({Y, — m(x)}*| X; = x) and assume that
(1.2) 0< o= (=, 0%x)dF(x) < oo .

Let F, be the empirical df of X, - - -, X, F,”(f) = inf{x: F (x) =1}, te I=]0, 1],
(1.3) gut) = [+ o¥(x) dF,(x)  and

@) = {0 o (x) dF(x), tel,

so that both ¢, and ¢ are nondecreasing (in ¢) and, in addition, ¢, is stochastic
in nature. For every n (= 1), consider a stochastic process W, = {W (1), te I}
by introducing a sequence of integer-valued, nondecreasing and right continuous
functions {k,(f), t € I} where k,(f) = max {k: ¢,(k/n) < t¢,(1)}, tel, and then
letting W, (1) = {n¢,(1)}*S,1,r)» t € I, Where

(1.4) S = 24 Y, —m(X, )}, k=1,---,n; S =0.

By an interesting application of the Skorokhod embedding under a conditional
setup, Bhattacharyya (1974) has shown that under suitable regularity condi-
tions, W, weakly converges (in the Skorokhod J;-topology on D[0, 1]) to a stand-
ard Wiener process. We shall show that for a sequence of two-dimensional time
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parameter stochastic processes constructed from the S,, in (1.4), weak conver-
gence to a Brownian sheet process holds under less stringent conditions and the
conclusion applies to W, as well. Since for a multiparameter process, the clas-
sical embedding technique runs into difficulties, the task is completed here by
using certain convergence properties of ¢,(f), defined in (1.3). The main results
are presented in Section 2 and the proofs in the concluding section.

2. The main results. We assume that the following uniform integrability condi-
tion (less restrictive than Condition 1 of [1]) holds:

2.1 sup,ez E{Y, — m(x)YI(|Y, — m(x)] > s)| X; = x)—>0 as s— oo,

where I(A) stands for the indicator function of the set 4 and R = (— oo, o).
Let us now consider a two-dimensional time parameter stochastic process
W = {W,xt), tel?}, I =[0, 1]%, t = (¢, t,), where we set

(2.2) W (t) = {nd (D)} *Stne iy o0 5 tel?,
[4] being the largest integer < ¢ (> 0) and
(2.3) k,(t) = max {k: gb[,,,l](k/[ntl]) < tng[,,tl](l)} , tel®.

Note that W, * belongs to the space D0, 1]. Also, let W* = {W*(t), te I’} be
a standard Brownian sheet on /2. Then, our main theorem may be presented as
follows.

THEOREM 1. Under (1.2) and (2.1), as n — oo,

(2.4) W, * —_ W*, in the J-topology on D0, 1].

The proof of the theorem is outlined in Section 3. In the rest of this section,
we consider the following two results which are required in the sequel. Let
B, be the sigma-field generated by {(X, ;, V,;,), ]l < j< k},fork=1,.-.,n
and &7, , be the trivial sigma-field. Also, let .o, be the sigma-field generated
by (X, -+, X,), n = 1. Finally, let{c,;, | < i< n; n = 1} be a double sequence
of arbitrary constants and we define

(2.5) Sho= 2tk clY —m(X, )}, k=1,---,n; Sk =0.

LeEMMA 2. For every n(= 1), {Sk, &, s 1 < k < n} is a martingale closed on
the right by S¥,.

Proor. Note that by Lemma 1 of Bhattacharyya (1974), given .7, the Y,;
are all conditionally independent with Y,; having the conditional df G, , and
conditional mean m(X,;), j=1, ---,n. Hence, on writing E(S}, |, ,) =

E(E(S}, | ¥, &B,,}) it follows by standard arguments that by (2.5), E(S¥, | 7, ,) =
Sk, k=<n. []

Note that the ¢’(X;) are i.i.d.rv’s with mean ¢?, so that by the Khintchine strong
law of large numbers, as n — oo,

(2.6) Pu(l) = {2, 0%(x) dF,(x) = n~* 3J1_, 0%(X,) — ¢*, almost surely (a.s.).
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Also, by (2.1),

2.7  SUP,ep0i(x) < oo
Finally, by the Glivenko-Cantelli theorem, as n — oo,
(2.8) max, ., |F(X,,) — k/n| >0 a.s.,

and hence, by (1.3), (2.7) and (2.8), we arrive at the following.

LeMMA 3. Under (1.2) and (2.1), sup{¢,(t): te I} < sup{o%(x): x € R} for all
n, and

(2.9) |9.(8) — ¢()] — 0 a.ss. as n— oo, forevery tel.

3. Proof of Theorem 1. We need to show that (i) the finite dimensional dis-
tributions (f.d.d.) of {W,*} converge to the correspondig ones of W* and (ii)
W, is tight. Unlike the case of partial sums of independent rv’s, here for
ki < nj, j=1,2, with n, < ny, (X, 15 -+ 5 Xy 4) N (X1 + -+ X,y ) Deed not
be equal to (X, ,, -+ -, X, ,) With k = k; A k, = min (k,, k,), and this introduces
additional complications in the proof.

First, consider the convergence of the f.d.d.’s. Note that

(3.1) EW*S)W*(t) = s At = (5 A 1)(5, A 1) for all s, tel?.
We shall show that W, * has asymptotically the same covariance structure. For
this, first, consider nonstochastic integers

3.2) n; = [nay], k; =[n;r;], (ajr;)el? for j=1,2.

Note that for «; or y; equal to 0, S"jkj = 0, and hence, we need to confine our-
selves only to the range 0 < «;, 7; < 1, j = 1, 2. Also, note that

(3:3) (1)} E(S iy Sayr) = {1Pn(1)} E{E(S ey Sy | )} 5

where by Lemma 3 and the Schwarz inequality, |E(S,;, Suyu, | -5)|/ng.(1) =
{ng (1)} Any ¢, (ky/n)ny @, (ko[np)}t is bounded for all n, and thus, E(S,; S., |
&7,)[ng (1) —, ¢, a constant, implies that E(S,, S,.,)/nd.(1) — ¢, as n— co.
For this reason, first, we show that under (2.1) and (3.2),

(3.4) {ng (D} E(Spp, Spy | 70) = (a1 A )11 A 13) as n—oo.

If a; = a,, then, by Lemma 1 of [1] and our Lemma 2 (with all the ¢,;, = 1),

we have E(S, S, | ) /nd.(1) = E(S; | 7,)[nda(1) = nyd, (k[n)[nd,(1) —
a)(71 A 15) 8., as n — oo, by (2.3) and (2.6), where k = k, A k,. Hence, (3.4)
holds. Next, consider the case of a; < a,. It may be noted that for n, < n,,

(Ko s Xao) N (Ko 15+ 05 X 1)) = (X 150+ 05 Xy i) Where g (S kg A (n,—ny))
is a nonnegative integer valued random variable. Thus, in this case, the lhs (left
hand side) of (3.4) reduces to :

(3:5)  {mé.((k — @)fm)ndp(1)} = n7n{Po ()/Pu(DYH P (ks — @)[m) /P (1)} -
Hence, by virtue of (2.6) and (3.2), it remains to show that for a; < a,,
(3.6) (ks — @)fny >, 11 A 1as as n— oo.
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First, consider the case of 71 <7, Letu(f) =1 or0accordingastis > or <0
andlet M = ¥72, ,, u(X, , — X,). Then,alittle examination reveals that g = 0
if M < k, — k,. Also,

3.7 P{M = m} = m(BD("R™) (% {F(x)}ertm=Y1 — F(x)}"2~*1~™ dF(x) .

Further, (k, — ky)/n— (2,7, — au71) = (2, — @), + ay(7: — 11)» 72 > 71, SO that
from (3.7), it readily follows that as n — oo,

(3.8) PIM<k,—k}—>1, e, Pg=0}—1.

Thus, (3.6) holds. Let us next consider the case of 7, = 7, but a,7, = a, 7.
Note that, by definition,

(3.9) Kapirma < Xagiy < Ko tymga >

sothat F(X, . _,) < F(X,, ) < F(X, 1 q41)- Also, by (2.8), |[F(X, ) — k,/n,|—0
a.s. and max {|F(X, ;) —j/m|: 1 £j< n}—0as., as n— co. Hence, using
(3.2), we obtain immediately that (k, — ¢)/n, —, r,, which proves (3.6). Finally,
the case of a, < a, and 7, = 7; but a,7, < a,7, can be dealt with in a similar
manner. Hence, (3.4) holds in general. To obtain (3.4) for k; = k,(t;),j =1, 2,
defined by (2.3) [instead of (3.2)], we note that, by definition, 0 < tyPraep(1) —
Gtng(en(O/[nt]) < [n] Max {o(Xipy )t 1 S J < [4]} >0 t = (4, 1), and
hence, ¢y, 1(ka(t)/[11:])/Prnea(1) — o, in probability, as n — co. As a result, by
(2.2), (2.3) and (3.4), we conclude that

(3.10) E{W, ()W, (1) | 7.} —, (s A t) as n— oo,
E{W, *s)W,*(t)} —»s A t, as n— oo, forall s, tel®.

Now, for every fixed m (= 1) and t, - .., t, € I? consider an arbitrary linear
compound

(3.11) T,= 2™, 4 W, ¢,) where 4+ 0 and ||| < co.
By virtue of (2.2) and (2.3), (3.11) may be rewritten as
(3.12) T, = {ng, ()}t 21,y e, { Ve — m(X, )},

where max, g, [c,] < ¢ < o0,

and the c,; depend on (i) 4, (i) t;, j =1, ---, m and (iii) the triangular array
of order statistics {X, ;, | < j < k; 1 < k < n}. Now, given %/, the Y, ; —
m(X,, ;) are all conditionally independent with means 0 and conditional variances
o%(X, ;). the c,; are all held fixed and (2.1) insures that under this conditional
setup, the Lindeberg condition holds for the sequence {c,;(Y,; — m(X, ), 1 <
J = n}. Sothat, conditionally, given %7, T, is asymptotically normal with mean
0 and variance

(3.13) {ng (D} Zies chi0’(X,,) -

On the other hand, if V, ,, be the conditional (given .%7,) covariance matrix of



478 PRANAB KUMAR SEN

(W, x(t), - -+, W,*(t,)}, then (3.13) is equal to 'V, , 4, and by (3.10), it con-
verges in probability to 2'V,, 4, where V,, = ((t; A t})); 4-1,....» iS positive definite.
Hence, unconditionally too, T,, is asymptotically normal with mean 0 and vari-
ance 'V, 4. Thus, forevery t,, .- -, t, € I’, the joint df of {W, *(t,), - - -, W, *(t,)}
is asymptotically the same as that of {W*(t,), - .., W*(t,)}, and the proof of
the convergence of the f.d.d.’s is complete.

Let us now consider the proof of tightness of {W, *}. Note that, for every
(8, 1) < (8a» 1), the increment over the block is

W, (815 1)s [Sas 1])
(3.14) = W, *(Sp 1) — W, *(Se 1) — W, 5(sp, 1) + W, *(50, 1)

= {ngl’fn(l)}—&(’slnzk2 - Sn2k1 - Snlq2 + Snlql)
= {ngu (D} (D52 {Yays — m(Xop )} — D2 g {Vayy — m(Xa,5)]) s

where n; = [ns;], $n(k;[no)/$a (1) —1; and &, (g;/n,)[¢, (1) — s; for j=1,2.
Note that the sums on the rhs of (3.14) may contain a common subset. However,
this drops out with the result that for some # (= 0), there are k, — k, — & and
¢, — ¢, — h terms for which the corresponding X, , are all distinct. A similar
representation holds for any other neighbouring block. Thus, if we set 5, <
s, < syand 1, < t, < tysuch that the Lebesgue measure of the blocks are equal,
i, (S5—8)t—t)=(E—s)t—6) = - = (85— 5)(t, — t) =1, say,
then, by virtue of (3.14) and Lemma 1 of [1], we can again show by steps similar
to those employed in the first part of the proof of the theorem that under the
conditional model (given .&77),

(3.15) E({W. (515 1)s [82 LY WX((825 1) [85 ]| 0) = €, 22,
almost everywhere,

where ¢, is bounded for every n and lim, . ¢, = 1; a similar inequality holds
for any other neighbouring blocks. Hence, using the multiparameter extension
(viz., [2]) of the Billingsley inequality ([3], page 128), the tightness of {W,*}
follows readily from (3.15). [J

REMARKS. Bhattacharyya (1974) considered the convergence of {n¢(1)}-1S,,;,
tel and in his Skorokhod representation, he needed an additional condition
that ¢%(x) is of bounded variation on R. By changing S, t0S,,, ., t € I, we are
able to eliminate the above condition in so far as the weak convergence result
is concerned. Also, if we consider the weak convergence of {W,*(1, 1), te I} to
a standard Wiener process, the proof simplifies a lot. Here, the martingale result
of Lemma 2 (for ¢,, = 1, i = 1) and (2.1) provide the access to the first theorem
of Section 3 of McLeish (1974) and the proof follows quite simply. The condi-
tion that F is continuous can also be dropped as in [1]. '

Whereas the weak convergence of {W, *(1, 1), t € I} has been used in [1] to
provide some asymptotic tests for regression functions, our Theorem 1 may be
used to provide some sequential analogues of these tests.
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