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FLUCTUATIONS OF SEQUENCES WHICH CONVERGE
IN DISTRIBUTION

By HOLGER ROOTZEN
University of Lund and University of North Carolina

A sequence {Y,};_; of random variables with values in a metric space
is mixing with limiting distribution G if P({Y, € 4}| B) — G(A) for all G-
continuity sets 4 and all events B that have positive probability. It is
shown that if {¥,} is mixing with limiting distribution G and if the support
of G is separable, then the range {Yx(w); n = 1} is dense in the support of
G almost surely. A theorem that, under rather general conditions, estab-
lishes mixing for the summation processes based on a martingale is given,
and as an application it is shown that, under certain conditions, the range
of the periodogram is dense in R* almost surely.

1. Introduction. Distributional limit theorems for sequences of random vari-
ables (rv’s) in a metric space are usually based on some kind of asymptotic
independence, and thus one would expect that a typical realization of such a
sequence would fluctuate rather wildy. In the present paper this is made precise
in the following way. Let {Y,} be a sequence of rv’s on (2, <, P) that con-
verges in distribution to the distribution G (e.g., {Y,} are processes based on
normed sums or normed maxima of weakly dependent random variables). One
measure of the fluctuations is the “size” of the range {Y,(w); n = 1}. If it is
assumed that the support of G is separable then according to Theorem 2.2 below,
if {Y,} is mixing with limiting distribution G, then the range of {Y ,(w)} is dense in
the support of G for almost all w, and thus Y,(w) fluctuates strongly. We note
that the hypothesis of mixing is satisfied in many cases of interest (Rootzén
(1974)), and that a subsequence of a mixing sequence also is mixing. Further
it is interesting that although “mixing with limiting distribution function G”
looks like a distributional limit property, it actually implies a strong law.

The behavior of the realizations of a sequence of random variables is of special
importance in connection with time series analysis, and as an example the above
result is extended to the periodogram, which leads to a theorem that includes as
special cases results earlier obtained by e.g., Grenander (1951) and Olshen (1967).
Here the tool is Theorem 2.4 which establishes mixing for the summation pro-
cess based on a martingale, for a large class of martingales.

The main theorems are given in Section 2, and in Section 3 they are applied
to the periodogram. All proofs are postponed to Section 4.

2. Main theorems. Let {Y,};_, be a sequence of measurable mappings from
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(Q, &, P) to a metric space (S, p) with its Borel g-algebra & i.e., the Y, ’s are
rv’s in (S, &). The sequence {Y,}; converges in distribution to a probability
distribution G on (S, .%”) (notation: Y, —,; G) if P(Y, € A) — G(A) for all G-
continuity sets 4 € S.

DerFINITION 2.1. The sequence {Y,}; is mixing with limiting distribution G if
P({Y, e A}| B) — G(A)

for every G-continuity set 4 € S and every B € &£ with P(B) > 0.

This important concept is due to Rényi and it is known that e.g., sequences
of normed sums or normed maxima which converge in distribution also are
mixing under rather general conditions.

THEOREM 2.2. If the sequence {Y,}7 of tV’s is mixing with limiting distribution
G and if the support of G is separable, then the range {Y (w); n = 1} is dense in the
support of G, for w outside a null set.

Now consider the special case where {Y,} is a sequence of real random vari-
ables. If we note that subsequences of mixing sequences are mixing and apply
Theorem 2.2 to the countably many subsequences {Y,, Y,,,, ---} for n =1,
2, ... then the corollary below easily follows. (It is also a direct consequence
of Theorem 1 of Fischler (1967).)

CoROLLARY 2.3. If the sequence {Y,} is mixing with limiting distribution function
G then almost surely
lim sup, ., Y, = sup (supp G) ,
lim inf, ., Y, < inf (supp G) .

Kesten (1970) has rather extensively studied the range of normed sums of
independent, identically distributed rv’s. Let us see what Theorem 2.2 can
give in that context. Firstly let Y, = (X; + ... + X,)/n* where the X,’s are
independent and identically distributed with zero means and finite variances.
Then {Y,} is mixing with limiting normal distribution function and thus accord-
ing to Theorem 2.2 the range of {Y,} is dense in R almost surely, which also is
one of Kesten’s results. Secondly, let instead the X,’s belong to the domain of
partial attraction of a stable law and consider the sums X; + ... + X,, normed
with the proper constants. Then Theorem 2.2 gives results not contained in
Kesten’s paper, and in particular throws some light on problem (2), page 1174,
of that paper.

Of course, in many cases much more precise results about e.g., limsup,_.. Y,
than those of Corollary 2.3 are known. It is however intersting to note that it
is not possible to find asymptotic bounds for Y, using only the hypothesis of
Theorem 2.2.

Recently rather general central limit theorems for martingales have been

2 We say that the set A4 is dense in the set B if B ¢ Cl(A).
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proved by Brown (1971), Scott (1973) and McLeish (1974). The following
theorem gives the mixing version of their functional limit theorem.

Let {S,}; be a martingale on (Q, <7, P) with S, = > 1%_, X, forn > 1, E(X;) =0
and E(S,?) = s,’ < oo where 5, T 0o as n — oo.

Define for n = 1 and w € Q random functions Y,(+, ) on [0, 1] by

Y, (t, w) = 5,7'S,(w) for re[0,1] suchthat s5<s2<s2,,,
k=0, ceeyh (S0=S0=0).

Then Y,(+, ) belongs to D = D(0, 1), the space of real functions on [0, 1]
which are right continuous and have left-hand limits. Further let W denote
Wiener measure on D(0, 1). In the sequel we will use the metric d, on D(0, 1)
defined on page 112 of Billingsley (1968). Under d, the space D(0, 1) is separable
and complete.

THEOREM 2.4. If {S, )" is a martingale as above, the random elements {Y,}7 in
(D(0, 1), d,) are defined by (2.1) and furthermore

5,7 N Xt —p 1 n— oo
827" Lhar X1 Xe| > e5,) —2 0 n— oo
for all ¢ > 0 then {Y,}; is mixing with limiting distribution W.

CoROLLARY 2.5. If {Y,}¢ satisfies the conditions of Theorem 2 and N' is an in-
finite set of integers, then for w outside a null set the set of functions {Y,(+, w);
ne N'} is dense in the set of continuous functions on [0, 1] that vanish at zero.

One advantage of using mixing to prove strong limit theorems is that sequences
that differ from a mixing sequence by a sequence tending to zero in probability
are mixing as well; see Lemma 2.6 below. Thus for example if the normed sums
of a stationary process can be approximated in probability by a normed martin-
gale then the results of Theorem 2.4 and Corollary 2.5 carry over to the sta-
tionary process. The usual method of extending strong limit theorems is to
make approxiximations that hold almost surely. (See e.g., Heyde (1973) for
extensions of the law of the iterated logarithm.) Since convergence almost
surely is a stronger requirement than convergence in probability it is necessary
to impose more restrictive conditions when using that method than when using
the method of the present paper.

LeMMA 2.6. If {Y,}r., and {Y,'}7_, are sequences of random variables in the met-
ric space (S, p) such that {Y,'} is mixing with limiting distribution G and such that
o(Y,, Y,)) —p 0 then {Y,} is mixing with limiting distribution G.

3. An application: the periodogram. The results of the previous section easily
carry over to various quantities from time series analysis, e.g., those considered
by Heyde (1973) and Hannan (1973), but here we only consider one example,
the periodogram, which contains some new problems.

Let {X,}7__., be a strictly stationary sequence with zero mean and covariance
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function r, = E(X,X,,,) = {".e"*"f(2) dA, where f is the spectral density func-
tion. The periodogram

1,(4) = 2L 2il=-n (L Pt Xka+|u) et = 1 [nt 2ihes X [
T n 2r

is a natural estimate of f(4) based on a sample X;, ---, X, of length » and it is
also asymptotically unbiased, but unfortunately its variance does not tend to
zero if f(2) > 0. Under certain conditions the periodogram is asymptotically
x*-distributed, and conceivably it could also converge in some stronger sense
than “in distribution.” However, it has often been observed that the periodgram
computed for different values of n does not settle down as n increases. A num-
ber of authors, e.g., Grenander (1951) and Olshen (1967), have given some ex-
planations for this. The best result in this direction is that of Olshen (1967),
who showed that if X, is an (infinite) moving average of independent variables
and 7,(4) converges in probability, then it converges in probability to zero.
However, using the methods of the previous section, we will obtain stronger
results under weaker conditions. The conditions (3.1) and (3.2) of the theorem
below correspond to the conditions (iii) and (iv) of Theorem 1 in Hannan {1973).

Let _#, be the g-algebra generated by the variablesupto X,,i.e., #, = o(- - -,
X, 1, X,), and put A . = (), A Let x,% = EX, || A) — E(X, || Ais)
be the part of X, , stemming from the innovation at time k. Furthermore write
[|X]| for E(|X]*)? and let y,/*(+) be the distribution of the y*-distribution with f
degrees of freedom.

THEOREM 3.1. Let {X,} be a strictly stationary sequence with zero means satisfy-
ing any of the following conditions

(3.1) Do x| < o0 and A, istrivial,

or
X, =22 _.a¢,; where {e])°. isa stationary sequence
of martingale differences with (), 0(---,¢,_1,¢,) trivial,

3.2) and {a,}>. arereal numbers with Y32 _.a'< oo, and
furthermore  g(x) = Yiv._. a,e*® is continuous is some
neighbourhood of 2 .

Then {I(A)}z-, is mixing with limiting distribution function y,’(+ [(f(2)/2)) if 4 # 0,

+n and limiting distribution function y,*(+[f(2)) if A =0, +=r. Furthermore, if

f(2) > O then for any infinite subset N' of {1,2, ...} the range {I,(A); ne N'} is
dense in R* almost surely.

The n-dimensional version is as follows.

THEOREM 3.2. If {X,} satisfies (3.1) or (3.2) for A = 4, i =1, ..., k and fur-
thermore 2, + +24, for i # jand A, = 0, +x fori =1, ..., k then

(3-3) P(iaa {Tu(4) = x}| B) — [Tz 2'(x:/(f(2:)/2))
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as n—s oo forall (x, ---, x,) and Be & such that P(B) > 0. If 2, =0, += for
some i then the corresponding factor in the right-hand side of (3.3) changes to
1'(%[f(4;)). Furthermore, if f(;) > O fori =1, - .., k then for any infinite subset
N’ of {1, 2, - .-} the range {(I,(%,), - - -, I,(4,)); n € N'} is dense in R,* almost surely.

4. Proofs.

ProOF oF THEOREM 2.2. Use the notation B(x, y) for the open sphere in S
with center x and radius y. The support of G (notation: supp G) is the set
{s€S; G(b(s, ¢)) > 0, ¥ & > 0}. Choose points {r;};" in S such that (i) r, e supp G
fori=1,2, ..., (ii) {r;} is dense in supp G, and (iii) if x is an atom of G then
r; = x for infinitely many i’s. Choose positive numbers ¢; | 0 such that the
sphere B; = B(r,, ¢,) is a continuity set of G for each i. Let 4, = {w|Y, e B;*
forall n = 1}. Then P(Ug, 4;) = 0, since if not, P(A,) > 0 for some i and we
have by the definition of mixing that

P(Y,eB,|4)— G(B;) >0 n— o0
since r; € supp G. This is a contradiction as {Y,, € B} n A, = @ for all n.

Let o, be such that {Y,(«,); n = 1} is not dense in supp G. Then there exist a
9 > 0 and an x € supp G such that the sphere B(x, d) contains no point of {Y,(a,);
n = 1}. By (ii) and (iii) the sphere B(x, §/2) contains infinitely many of the r,’s,
and since ¢, | 0 there must be an i, such that B;, C B(x, 9). Since Y,(o,) e
B(x, 0)* C Bf forn =1, 2, ... it follows that v, e A;- Thus

{0 |{Y,(®); n =z 1} is not dense in supp G} ¢ U, 4; ,
which since P(|Js2, 4;) = 0 proves the theorem. []

ProOF oF THEOREM 2.4. By using the Skorokhod representation as in Scott
(1973) it can be shown that the conditional characteristic functions of linear
combinations converge and by using Lemma A.1 of Rootzén (1974) and the
Cramér-Wold theorem as in the proof below it follows that the finite-dimen-
sional distributions are mixing. Since it is well known that {Y,} is tight, this
proves the theorem. An alternative approach is given by McLeish (1974) who
used a very nice technique to prove a central limit theorem for martingales and
then also noted that his method easily can be applied to prove mixing. []

Proor oF THEOREM 3.1. First assume that (3.1) holds. Extending the ideas
of Scott (1973) and Heyde (1973) wé are going to approximate {X,} with a se-
quence of martingale differences {Y,; _#,} where Y, = 32_, x,%** (which con-
verges in mean square), by showing that [[n=% Y7, X, e — n=t 317 Y, €| — 0
as n — oco. However, we have that

Tia Yttt = 3 ettt 2adxtr 4 N ettt Dnmnmer1 X, €
(4'4) = r X et — i E(X | Mo)em
+ X et X

where the first equality follows by changing the order of summation and the
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second by noting that
Dt x, ™ = EX, || A) — EX.|| ) = X, — BE(X, || A) -

Since E(X,||.#..) = 0 we have that E(X,||.#;) = )} 7, x;;% and thus, using
first that x,™ and x," are uncorrelated if m =+ n, then stationarity and finally
(3.1), that

| Do E(X, || A)e || = n™t Hos | D Xt e
(4.5) St e (Xt |1xll)?
S (X xDn™t X (B e=o lIxtsal)) — 0

as n — oo. In a similar way

(4.6)  n7 X e D xSeM = 7 D || e aere X
St R (D XS — 0
as n — oo. Together with (4.4)—(4.6) this implies that

(4.7) |ln=t Zia X — n7t Z1, Ve - 0

as n— oco. The hypothesis (3.1) implies that f is continuous and thus
n7Y|3r, X, e'|* — 2xf(2) (see Olshen (1967), page 513) and furthermore
nY| 5, Y,e|]? — E(Y,}) as n — oo, and thus E(Y,?) = 2xf(2), which concludes
the proof of the approximation.

The next step of the proof is to apply the Cramér-Wold technique to
n~t 3ir, Y,e*. To avoid trivial complications assume that 2 + 0, += and that
f(A) > 0. Let a and b be real numbers, not both zero. We are going to show
that

(4.8) n~t 3ir, Y, X(a cos At + bsin i) — (a* + bY)xf(2) n— oo
and
(4.9) n~t 3in, Y, X(acos At + bsin A1)’ I(|Y(a cos At + bsin At)| > ent) —, 0
n—-oco,Ve>0
which by Theorem 2.4 implies that the sequence f{an~* };», Y, cos s+
bn=% 3r_, Y, sin 2} is mixing with limiting distribution function @(./{a’zf(1) +
b*rf(A)}t). However, putting § = 2 arctan (—b/a), (4.8) is seen to hold for
arbitrary a and b if for § e [—=, 7]

(4.10)  nt Yr (Y2 — 2xf(3) + ! Yii, (Y2 — 27f(A)) cos (24t + 6) —, O

as n— oo. Since _#Z_, is trivial {X,} is ergodic, so the first term tends to zero
a.s., and it only remains to prove that the second term tends to zero. Put
€, = Y2 — 2xf(2). Then {, is integrable and E{, = 0 and thus for arbitrary
¢ > 0 it is possible to “truncate” so that {, = {, 4+ {,”” where {{,} is a bounded,

ergodic and stationary sequence with zero mean while E(|{,””|) < ¢. Then the
second term in (4.10) equals

(4.11) nt 3§/ cos (24t + 0) + n7t 33r L cos (24t + 0) .
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Using the spectral representation and that _#_, is trivial, it is seen that
ln=t Xr_, €,/ cos (24¢ + 6)|| — 0 as n— oo and since Eln~* 37, (" cos (24t +
0)| < e this implies that the expression (4.11) tends to zero in probability and
thus concludes the proof of (4.10). The proof of (4.13) is easy and is not given
here.

This establishes that {an~* > 7_, Y, cos 2t + bn~t 32, Y, sin ¢} is mixing, i.e.,
that

P({an~* ¥7_, Y, cos At + bn~* 37, Y, sin 2t < x}| B) — @(x/{a*nf(2) + bznf(2)}})

as n — oo for all B e £# with P(B) > 0dnd all real e and 5. But by the Cramér—
Wold theorem this proves that the 2-dimensional vector ((2zn)~* 37, Y, cos 1,
(2wn)~t Y1, Y, sin Af) —, N(0, 0, f(4)/2, f(2)/2,0) on the probability space
(R, &, P(-|B)), and thus because of (4.7), that ((2zn)~* 37, X, cos it
(2zn)~t 37, X, sin At) —; N(0, 0, f(4)/2, f(2)/2, 0) on (Q, &Z, P(-|B)). This im-
plies that

PUI(2) < x}| B) = P<{§;E; (X, X, cos 20 + Zl& (X, X, sin Aty < x} |B>

— 1'(*X/(f(2)/[2))

and thus proves the first part of the theorem, i.e., that {/,(4)} is mixing with the
stated limiting distribution function. The second part then follows immediately
by Theorem 2.2.

To prove the theorem under the hypothesis (3.2) note that the Cesaro sums
of g(2) converges if g is continuous in some neighborhood of 1 and apply Lemma
1 of Olshen (1967) to conclude that

lIn=t Loy Xee™ — n7ig(2) Ty e8| -0 n—oo.
Then complete the proof in the same way as above. []

Finally Theorem 3.2 follows in the same way as above by using the Cramér—
Wold theorem in 2k dimensions.
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