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COUPLING THE SIMPLE EXCLUSION PROCESS

By THoMmAs M. LIGGETT!

University of California, Los Angeles

Consider the infinite particle system on the countable set .S with the
simple exclusion interaction and one-particle motion determined by the
stochastic transition matrix p(x, y). In the past, the ergodic theory of this
process has been treated successfully only when p(x, y) is symmetric, in
which case great simplifications occur. In this paper, coupling techniques
are used to give a complete description of the set of invariant measures for
the system in the following three cases: (a) p(x, y) is translation invariant
on the integers and has mean zero, (b) p(x, y) corresponds to a birth and
death chain on the nonnegative integers, and (c) p(x, ) corresponds to the
asymmetric simple random walk on the integers.

1. Introduction. The simple exclusion process was introduced by Spitzer in
[14] and has been studied extensively in [4], [9], [10], [11], [12], and [15]. It
models the behavior of infinitely many identical particles on a countable set in
such a way that the basic motion of each particle is that of a continuous time
Markov chain. Superimposed upon this motion is the exclusion interaction,
which causes transitions to occupied sites to be suppressed. The original mo-
tivating interest in this process came from the fact that when it is modified by
letting the particles undergo a form of random speed change, the resulting process
has the Gibbs measures of statistical mechanics as invariant measures. Thus
one of the major problems concerning the exclusion process is to determine the
exact structure of its set of invariant measures.

Satisfactory solutions to this problem have been obtained only when the
Markov chain is symmetric ([9], [10], [15]) and when it is positive recurrent and
reversible ([11]). In both cases, the solutions are based on the fact that essentially
all problems concerning the infinite system can be reduced to equivalent prob-
lems concerning only finitely many interacting particles. This simplification is
not available in greater generality, or even in the symmetric case if the process
with speed change is considered. Therefore, techniques which deal with the
infinite particle system directly are needed. In this paper, we will use the tech-
nique of coupling two copies of the process together to determine the set of
invariant measures in several cases.

Coupling ideas have been used extensively and have been very effective tools
in the study of systems of infinitely many interacting particles. The first and
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most frequent use of these ideas has been in the area of spin-flip processes (see
[11, [2], [3], [7], and [16], for example). In this context, they have been useful
primarily in cases in which the system has a unique invariant measure. The
simple exclusion process, on the other hand, typically has at least a one-parameter
family of extremal invariant measures—a situation which requires that the tech-
nique be used somewhat differently. In the exclusion process, coupling was first
used by Spitzer [15] to analyze the finite simple exclusion process in the symmetric
recurrent case. It was then used indirectly in [11] and [12]. As will be seen
here, while coupling is a common theme in the proofs of our theorems, it does
not in general suffice to prove any one of them. Other ideas, which vary from
case to case, are required to complete the results.

In order to define the simple exclusion process precisely, let S be a countable
set, and p(x, y) be the transition function for an irreducible discrete time Markov
chain on S. The simple exclusion process determined by p(x, y) is the Feller
process 7, on X = {0, 1}* which corresponds to the semigroup S(¢) of contrac-
tions on C(X), whose generator Q takes the following form on functions f which
depend on finitely many coordinates:

Qf(n) = 2ip@=tnm=0 PO MLf(May) — f()] -

Here 7,, € X is the configuration obtained from 7 € X by interchanging the x and
y coordinates. The existence of such a process was proved in [8] under the as-
sumption that sup, 7, p(x, y) < oo, which is always satisfied in the cases we are
considering here. The set of invariant probability measures for 7, is defined as

S ={p on X:uS(t) =p forall t+ = 0},

where pS(t) is the distribution at time 7 of the process when the initial distribu-
tion is p. . can be described in terms of the generator in the following way:

S ={p on X:{Qfdpy =0 forall fe Z(Q)}.

Since .~ is convex and compact in the topology of weak convergence, it is the
closed convex hull of its set _#, of extreme points. Thus, in order to determine
#, it suffices to study .7,. ‘

The verification that a given probability measure is invariant is usually a
straightforward computation using the form of the generator given above. Thus
in determining _7,, one often has a collection of measures which one knows are
invariant, and the difficult problem is to prove that the process has no other
invariant measures. There are two cases in which one has an explicit collection
of invariant measures. First, suppose that p(x, y) is doubly stochastic. Then if
v, is the product measure on X with v,{7: (x) = 1} = p for all xe S, it is known
and easy to check that v,e # for 0 < p < 1. Secondly, if m(x)p(x,y) =
m(y)p(y, x) for some positive z(+) on S (i.e., if p(x, y) is reversible), then it was
shown in [11] that v e _# for 0 < p < oo, where v’ is the product measure
on X with v{y: 9(x) = 1} = pr(x)/(1 + pr(x)) for all xeS. Note that these
two classes of invariant measures coincide when p(x, y) is symmetric.
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If 3, 7(x)/[1 + 7(x)]* < oo, v'» is not extremal, so some additional notation
will be required to describe 7, in reversible cases when 7(+) satisfies this property.
(It should be noted in this connection that };, 7(x)/[1 + #(x)]* = oo is exactly
the necessary and sufficient condition for the measures {1, 0 < p < oo} to be
mutually singular.)

(a) If 3, m(x) < oo, let A ={n: 3, 79(x) < oo}, 4, ={n: X, 7n(x) = n} for
nonnegative integers n, and v = v,, the pointmass on 7 = 1.

(b) If 3, 1/m(x) < oo, let A= {5: T, [1 — 7(x)] < o0}, 4, = {n: T [1 —
n(x)] = n} for nonnegative integers n, and v»** = y,, the pointmass on » = 0.

(c) If X, #a(x)/[1 4+ n(x)]* < o0, )}, 7(x) = o0, and };, 1/m(x) = oo, there
exists a T S for which }},., 7(x) < oo and };,,, 1/7(x) < co. In this case,
let A ={y: X,ern(x) < oo, Topr [1 —9(0)] < oo} 4, ={nped: T,.pn(x) —
Yizer [1 — 9(x)] = n} for all integers n, v~ = y;, and v = y,.

In all three cases, A4 is countable and 7, is a Markov chain on A4 for which the
closed irreducible classes are {4,}. Since v'*' e _#, v (4) = 1, and v*(4,) > 0
for each p e (0, o) and finite n, it follows that this Markov chain is positive
recurrent on each 4, and has unique stationary distribution

VW) = (| A,)

which is therefore independent of p. Note that in case (c) above, changing T
results only in a relabeling of the sequence {v*, n e Z}.

We now proceed to state the theorems which will be proved in this paper. In
each case, the results confirm the conjectures which would be made on the basis
of the comments in the previous two paragraphs. All but one of our results
deal with the translation invariant case, in which § = Z¢ and p(x, y) = p(0, y—x).
In this case, p(x, y) is doubly stochastic, so that v, e _# for each p € [0, 1]. The
main question then is whether there can be any invariant measures which are
not exchangeable. The first partial answer to this question is that if so, such a
measure cannot be translation invariant. Let & be the set of translation invari-
ant probability measures on X.

THEOREM 1.1. Suppose S = Z* and p(x, y) = p(0, y — x). Then
(NS =p0=ps ).

Since this result deals only with invariant measures which are also translation
invariant, it is of somewhat limited interest. It is a necessary preliminary,
however, to the proofs of Theorems 1.2 and 1.4 below. In the one dimensional
mean zero case, the above question can be answered completely:

THEOREM 1.2. Suppose S = Z', p(x, y) = p(0, y — x), ", |x|p(0, x) < oo, and
3. xp(0, x) = 0. Then

o=, 0=p< 1},

These two theorems will be proved in Section 3, after some preliminary results
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on the coupled process are obtained in Section 2. Theorem 1.1 could also be
proved by using the entropy techniques developed by Holley in [5] and [6].
However, our coupling approach appears to be somewhat simpler in this context.
It should be noted that if p(x, y) is symmetric, both theorems are contained in
the results in [9] and [15].

THEOREM 1.3. Suppose S =1{0,1,2, ...}, and p(x,y) =0 for |y — x| > 1.
Note that p(x, y) is reversible with 7(0) = 1 and

; 1)
(x) = T2 P,y +

e+ 1Y)
for x = 1. Then

(a) S =", 0=<p < oo} if 3, 7m(¥)/[1 + 7(x)] = oo.

(b) #, = ¥, 0 < n < oo} if X, w(x) < o0 or 3, 1/7(x) < co.

(c) S, =™, —0 £ n < oo} otherwise.

This result will be proved in Section 4. Only parts (a) and (c) are new. Part
(b) is a special case of Theorem 1.3 of [11] in case ), #(x) < oo, and a proof
similar to the one used there suffices in case ), 1/7(x) < oo.

In our final case, which will be discussed in Section 5, p(x, y) is both doubly
stochastic and reversible, so both classes of invariant measures play a role. It
illustrates the type of result which should be expected either if the zero mean
assumption is eliminated from Theorem 1.2, or if Theorem 1.3 is stated with
S = Z' instead of § = {0,1,2, .. }

THEOREM 1.4. Suppose S = Z', p(x,x + 1) = p,p(x,x — 1) = ¢, p+ g = 1,
and p + %. Then

Se={p 0= p 1} U ™, —00o < n < o0}.

This result was conjectured in [12]. If 0 < p < 1, p(x, y) is reversible with
n(x) = (p/q)*, so the measures v'™ were defined above. The cases p = 1 and
p = Oare allowed here, even though the chain is not irreducible. If p = 1, for
example, v is to be interpreted as the pointmass on the configuration 7,, where
7u(x) = 0 for x < —n and 7,(x) = 1 for x > —n. These measures are clearly
invariant, since no motion occurs if the process is begun in configuration 7,.
One of the interesting features of this theorem is that it is just as difficult to
prove in these cases as it is for 0 < p < 1. In fact, one might expect that if
p = 1, the process would be simple enough that one could see directly that the
only probability measures ¢ which are solutions to the equations § Qf dy = 0
for fe 2(Q) are the ones given in the above theorem. This does not appear to
be possible. '

Before proceeding to the detailed proofs, it may be helpful to give a brief
indication of how the coupling idea will be used. The coupling of the two copies
of the process has the property that 7,(x) and {,(x) will tend to be equal as much
as is possible within the constraints provided by the fact that each process



SIMPLE EXCLUSION PROCESS 343

separately must have the proper initial distribution and transition probabilities.
This enables one to argue along the lines of the following outline:

(a) If v is invariant for the coupled process, then

Dien [P(6 Y) + PO A, O 9(x) = Ly) = 1, 9(y) = L(x) = 0} < 0.
(b) The above sum is actually zero.
(c) Ifvis invariant for the coupled process, then

U O:n=Cor pz=l=1.
(d) If v is extremal invariant for the coupled process, then either

A, Oip=C =1 ot @ :npzlt=1.

(e) If py, € 7, then there exists an extremal invariant measure for the
coupled process which has marginals z, and g, respectively, and hence either
My Sy OF py = e

(f) This enables one to ‘“squeeze” an arbitrary pze._#, between two of the
known invariant measures.

Not all of these steps are completely accurate in the case of all four theorems,
but they do indicate the general flow of ideas in all four cases.

2. The coupled process. By the coupled process, we will mean the Markov
process r, = (7, ¢;) with state space X x X which has the following properties:
(a) the marginal processes 7, and {, are Markovian and have generator Q, and
(b) whenever 7,(x) = {,(x) = 1 for some x € S, the two marginal processes will
use the same random mechanisms to decide when the particle at x will attempt
a transition, and where it will attempt to go. Of course, it may be that in only
one or neither of the processes will the particle at x be allowed to move. More
formally, 7, is the Feller process on X x X whose generator  takes the following
form when restricted to functions f{(», {) which depend on only finitely many
coordinates:

Qe O) = B PSS ©) = f0, O]
and {(z)={(y)
or {(x)=0,{(y)=1
(2.1) + 2 pes (s o) — [, O)]

§(2)=1,{(y)=0
and 7(x)=7(y)
or n(x)=0,7(y)=1

+ v(x)zzcix)zlp(x’ )’)[f(’imn Cwy) _f(p’ C)] .
72y =L(y)=0

That such a process exists and has the properties mentioned above, provided
again that sup, 37, p(x, y) < oo, is a consequence of the results of [8]. We will
use the upper bar to denote symbols pertaining to the coupled process. Thus
# will be the set of invariant measures for r,, and . will be the set of transla-
tion invariant probability measures on X x X in case § = Z%.

One of the important properties of this coupling is that certain subsets of the
state space are closed for the motion. It can easily be proved using the results

of [8], for example, that P79y, = {,] = 1ifp = {, P79y, < ¢ ] = 1ifp < ¢,
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and P79y, > {,] =1 if » = {, where the inequalities are to be interpreted
coordinatewise. This observation leads to the following result.

LemMA 2.2, If ve Z,, then v{(n,0): n =L}, v{(n, O):n < L}, and v{(7, €) :
n = £} is each either zero or one. The same statement holds for v e (& N °), in
the translation invariant case.

Proor. Since the proofs in the various cases are all similar, we will consider
only the first one. Suppose ve . #, and 0 < y(B) < 1 for B = {(n,{): 7 = {}.
Then v = v(B)a + [1 — v(B)]B, where a(+) = v(+ |B)and B(+) = v(+ | BY). a e S~
since P7[y, € B] = 1 for y € B, and therefore 8 ¢ _# also. Since v is extremal, it
follows that v = « = 8, which gives a contradiction since v(B) < 1 = a(B).

In future sections, we will study the invariant measures for the coupled process,
and then use information about them to draw conclusions about the invariant
measures for the marginal process. In order to do this, we need to obtain rela-
tions between . and _#. First suppose that v € _# and p, and g, are the marginal
measures of v defined by p,(D) = v(D x X) and p(D) = v(X x D). Then it is
clear that y, and g, € . In the other direction, we have the following result.

LEMMA 2.3. (a) If p, py€ 7, there is a v e .7 with marginals p, and p,. (b) If
ths (€ F,, then v can be taken in _7,. (c) In the translation invariant case, if
ths My € F NS, then v can be taken in Z 0 7. (d) In the translation invariant
case, if p, p, € (F N 5°),, then v can be taken in (¥ n F),.

Proor. We will prove (a) and (b) only, since the proofs of (c) and (d) are
similar. Take f,, ¢, € %, and let v, be the product measure p, x #, on X x X.
Then v, S(r) has marginals g, and p, for all > 0, although it will not in general
be a product measure. Since X x X is compact, there is a sequence ¢, — oo sO
that 1/z, {¢ v, S(t) dt converges weakly to some probability measure v. Since
ve. # and has marginals g, and g,, the proof of (a) is complete. In order to
prove (b), take p,, p, € 7, and let

&7 ={ve 7:v has marginals g, and p}.

% is compact and convex, and is nonempty by part (a). Therefore %, + @&
by the Krein-Millman theorem. It suffices then to prove that %7, — _7,. Suppose
ve %, and v = a + (1 — 2)8 for some a and fe.# and 0 < 2 < 1. The
marginals of v are the same convex combinations of the marginals of a and ,
so a and fe . since g, and g, are extremal. Since ve .7, it follows that
v = a = B, and therefore that v € _7,.

Another important property of the coupled process can be seen most clearly
by thinking of it as a process in which the particles which move on S are of
four types: (O, 0), (1, 1), (0, 1), (1, 0). Then some of the transitions can be
thought of as resulting in the destruction of particles of the last two types and
their replacement by particles of the first two types. Therefore the “number”
(which is usually infinite) of particles of the first two types can only increase.
This is the basis for the next result.



SIMPLE EXCLUSION PROCESS 345

LEMMA 2.4. Suppose ve .7 and R is a finite subset of S. Then

Ziny [P )) + p(ys ON1a(*) + L)) = () = 1, 7(y) = {(x) = 0}
= 2iserwer P65 Y)MN(X) = C(x) = 1, 9(y) # L)}
— {n(x) % C(x), 7(y) = &(y) = 0}]
+ Zeeryern P> 0)Mn(x) = C(x) = 0, () # L(»)}
— Y7(x) # £(x), 7(y) = &y) = 1]
PrRoOF. Let f(7, {) = Xl.cr 1=t be the number of sites in R at which 3
and { agree. Since f depends on only finitely many coordinates, fe =,@(Q) and

Qf is given by (2.1). Therefore §{ Qfdv = 0 for ue_f The identity in the
lemma is then obtained by a direct computation of | Qf dv.

LEMMA 2.5. Suppose v e _# satisfies

2iny [P Y) + p(y, 0)An(x) = C(y) = L,n(y) = {(x) =0} = 0.
Then v{(n,{):p < Lorp = =1

Proor. It suffices to prove that »{n(x) = {(y) = 1, 9(y) = {(x) = 0} = O for
all x,yeS. Since p(x, y) is irreducible, it suffices to prove by induction on k
that this holds whenever p*(x, y) > 0. This is true for k = 1 by assumption.
Assume then that it is true for k < n — 1, and consider x,, x,, - - -, x, for which
P(Xo> X2)P(Xy X3) + - P(Xpas X,) > 0. Let E = {(, £) 1 9(x,) = Cx,) = 1, 9(x,) =
&(x,) = 0}. By the induction assumption,

W(E) = v(E, 9(x;) = {(x;) for 1 <i<n—1)
(2.6) =u(E, n(x;)=8(x) =1 for 1<ig<n—1)
+ T 7(x) = Cx) = 1
for 1 <j<i—1,9x)=2{x)=0).
Let

f(% C) = 1(77(:co)=C(xn_l)=1,;7(xn_.1)=C(x0)=0,7](a:i)=C(zi)=1 for1si<n—2and i=n} *

Then § Qf dv = 0 since ve 7 and fe 2(Q), and §{ fdv = 0 by the induction
assumption. From this it follows that the first term on the right side of (2.6) is
zero. A similar argument, combined with an induction on i, can then be used
to prove that the terms in the sum in (2.6) are also zero. Thus y(E) = 0.

If ¢, and 1, are probability measures on X, we will say that g, < p, if § fdp, <
§ fdp, for all monotonically increasing functions f in C(X). This is equivalent
to saying that there is a probability measure on X x X which concentrates on
{(7, ©): 7 = ¢} and which has marginals x, and p, respectively. One. proof of
this equivalence can be found in Theorem 53 of Chapter XI of [13]. Using this

relation, Lemmas 2.2 and 2.5 can be combined in the following way.

CoROLLARY 2.7. Suppose v e _7, has marginals 11, and y, and satisfies
Ziaw [P ) + POy ) PAn(x) = L(y) = 1, 9(y) = {(x) = 0} = 0.
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Then either p1;, < p, or p, < p1,. The same is true for v € (¥ N &¥), in the transla-
tion invariant case.

3. First applications. This section will be devoted to the proofs of Theorems
1.1 and 1.2. The crucial fact used in the first proof is the following.

Lemma 3.1. Suppose S = Z¢ and p(x,y) = p(0,y — x). If ve 7 n .S, then
v Oin=Cornp={ =1
Proor. For n = 1, let R, be the following cube in Z%:
{x=(xp -, x)eZ% |x]<n for 1 £i<d}.
The first observation is that

. 1
(3.2) lim,_,, pel Dizer,yer, [P Y) + p(y, )] =0,

so that the right side of the equality in Lemma 2.4 is o(n%) as n — oo for any
probability measure v. In order to see this, let m < n and write
Ziseryuer, P65 Y) + P> X)] = Ziaeryiy-aiza—m [P(X: ) + P(ys ¥)]
+ Zserprpuer, [P D) + p(ys 0)] £ 22m + 1) T\ 20 PO, 2)
+2[@n + 1) — @m + 1)
Statement (3.2) then follows by using a sequence m, in this inequality which
satisfies m,/n—1and n—m,— co. Ifve .S v{n(x) = {(y) = 1, 7(y) = {(x) = 0}
is a function of y — x, and therefore
Ziewer, [P(65 D) 4 Py ){n(x) = Ly) = 1, 9(y) = {(x) = 0}
= (2n+ 1" 2, [P0, y) + p(y O)PAn(0) = L(y) = 1, 9(y) = {(0) = 0}
= Zzerguer, [P D) 4 p(ys 0)Pn(x) = C(y) = 1, 9(y) = L(x) = 0}.
The last term above is o(n?) as n — oo by (3.2), and therefore

lim, e e B, [P ) + PO 9000 = €0) = 1,70) = L) = 0}

=272, [P0, y) + p(y; 0)]{n(0) = &(y) = 1, n(y) = {(0) = 0}.
Thus if ve # N &, Lemma 2.4 yields
2y [P(6 ) + PO Dfn(x) = L) = 1, 7() = {(x) = 0} = 0
for each x, and so
(3.3) W@, O:in=Cor p=}=1
by Lemma 2.5.

CoRrOLLARY 3.4. Suppose S=Z%and p(x, y)=p(0, y—x). If p, € (F NF),,
then either p, < p, or py, < py.

Proor. Choose v € (_# n &), by Lemma 2.3 so that it has marginals », and
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t,. By (3.3)and Lemma 2.2, either v{(7, {): n < {} = lorv{(n,0):n =} =1,
and therefore either y, < p, or g, < p,.

Proor oF THEOREM 1.1. Since v, is translation invariant and ergodic, v, € .
Also v, e 7, so that v, e (¥ n &), By Corollary 3.4, if pe(# n &), and
p € [0, 1], then either 4 < v, or ¢ > v,. Therefore if pe (7 n &), there is a
po€[0, 1] so that > v, for p < p, and ¢ < v, for p > p,. Since § fdv, is con-
tinuous and monotone in p for any monotone f ¢ C(X), and since such functions
span C(X), it then follows that ¢ = v, . Therefore (¥ n &), = {v,, 0 = p < 1}.

The next result is the substitute for Lemma 3.1 which is needed in proving
Theorem 1.2. The main difference in the proof is that the boundary terms in
Lemma 2.4 require a more careful analysis.

LemMaA 3.5. Suppose S = Z*, p(x,y) = p(0, y — x), X5, |x|p(0, x) < oo, and
>,.xp(0,x) =0. Ifve 7, thenv{(n,{):p<Lorp={ = 1.

ProoF. Take v e _Z and consider the limit of Cesdro averages on n of both
sides of the identity in Lemma 2.4 with R = R, = [—n, n]. The left hand side is

lim,_, 1

n=1 2Dmy LP(X5 ¥) + P(ys %)]

X v{n(x) = L) = L () = C(x) = O} 1p,(x) + 1g,(¥)]
=2 Zay [P 3) + p(ys 0)0(x) = E(y) = 1, 7(y) = {(x) = 0}
Since };, |x|p(0, x) < oo, the right hand side is equal to

lim, - T {Desncy P ) = L) = 170) # E))

— v{n(x) # &(x), 2(y) = &(y) = 0}]

+ Desncy PO O0(x) = L(x) = 0, 7(y) # C(»)}
(3.6) — v{n(x) = (x), 2(y) = &) = 1}]

+ Dezonsy P Y)V0(x) = C(x) = 1, 9(y) # &(»)}

— v{n(x) # C(x), 7(y) = &(y) = O}]

+ Zoz-nsy P> )){1(x) = &(x) = 0, n(y) # L)}

—ofn(x) = L(x), 7(y) = L) = 1}]}.

By Lemma 2.5, it suffices to prove that this limit is zero. Let v, be the proba-
bility measure obtained from v by shifting it in the following way:

v, )1 (x) = 1, 8(y;) = 1} = w{(0, &) s n(x; + 1) = 1, &(y; + n) = 1} .
Then the first term in (3.6) can be written as
BT Desocy P2 D [10) = L&) = 1,70) # L))

— va{n(x) # §(x), 7(y) = &(y) = O}] -
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Let N, 1 oo be such that

_ . 1

» = lim,_,, ]Vk 2inkiv,
exists. Then ve . # n & so by Lemma 3.1, 5 can be written in the form 5 =
A+ (1 — ), where 0 <A< 1, 0{(,0): p = ¢ =1, and 5,{(n,{): n = &,
n # ¢} = 1. Adding and subtracting 5{n(x) = {(x) = 1, n(y) = {(y) = 0}, we
may write

on(x) = Lx) = 1, 9(y) # )} — o{nx) # &(x), 7(y) = &») = 0}
= 20{n(x) = C(x) = 1, 9(y) # L)}
— afn(x) # &(x), 7(y) = &(y) = 0}
(3-8) + (1 = Dofn(x) = C(x) = 1, 7(y) # S}
— (1 = ofn(x) # &(x), 7(y) = &(») = 0}
= yn(x) = 1, 7(y) = 0} — ,{C(x) = 1, L(y) = 0}
+ (1 = HofC(x) = 1, E(y) = 0}
— (L = Dafn(x) = 1, 7(y) = 0}.
Since {y < £}, {# = {} and {5 = {} are translation invariant sets which are closed
for the process, 5, and 9, # n &, Therefore the marginals of 9, and 5, are in

< n &, and thus exchangeable by Theorem 1.1. From this fact and (3.8), it
follows that the limit of (3.7) along the subsequence N, is equal to

€ Dlazocy P(X5 Y) = € 21,502P(0, 2)
where

¢ = W{n(x) = 1,7(y) = 0} — ,{C(x) = 1, &(y) = 0}
+ (I = DofC(x) = 1, &) = 0} — (1 — oofn(x) = 1, n(y) = 0}

which is independent of x and y for x = y. Similarly, the limit along the se-
quence N, of the second term of (3.6) is equal to ¢ }},,2zp(0, z). Thus since
2..2p(0, z) = 0, the limit along N, of the sum of the first two terms of (3.6) is
zero. Since each subsequence has a further subsequence along which 1/N 37_, v,
converges weakly, it follows that the limit of the sum of the first two terms of
(3.6) along the full sequence is zero. A similar argument shows that the limit
of the sum of the last two terms of (3.6) is also zero, thus completing the proof
of the lemma. ‘

COROLLARY 3.9. Suppose S = Z*, p(x,y) = p(0,y — x), 2. |x|p(0, x) < oo,
and 3, xp(0, x) = 0. If py, py€ 7, then either p; < p, or py, < p.

Proor oF THEOREM 1.2 The proof of this theorem would now proceed exactly
as in the case of Theorem 1.1 if we knew that v, e 7, for p [0, 1]. Since all
we know at this point is that v, e _# for each p, we argue in the following way.
Given pe 7, and p € [0, 1], use Lemma 2.3 to choose v € . with marginals p
and v, respectively. By Lemma 3.5 and the fact that p is extremal, there exist
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mand p,e Fsuchthat p, < p < pyand v, = Ay, + (1 — )y, for 2 = v{(y, {):
n =2 ¢}. If 2 =0or 1, this is immediate. Otherwise, y, and g, are the second
marginals of the measures obtained by conditioning v on {(», {): 7 = {} and its
complement respectively. Suppose that 0 < 2 < 1. Then g, and p, are absolutely
continuous with respect to v,, so

. 1
i {7}: llmnqw7 a1 (x) = p} =1

for i = 1, 2 by the strong law of large numbers. Since p; < ¢ < p, it follows
that

: 1
JZ {721 hmnm7 a1 (%) = p} =1

also. Therefore for a given p e _#,, there is at most one p ¢ [0, 1] for which
0 <2< 1. Thus there isa p,€[0, 1] so that p > v, for p < p,and ¢ < v, for
p > p,, and hence p2 = v, as in the proof of Theorem 1.1. We conclude then
that

S {0 p=s 1} ”,

and therefore that ~, = {v,, 0 < p < 1}.

4. The birth and death chain. Throughout this section, we will assume that
§=1{0,1,2, ...}and that p(x, y) = O for [y — x| > 1. Our first aim is to prove
that v{(n,{): p < Cory ={} =1 for ve . This will be done via a series of
lemmas.

LeMMA 4.1. Assume that inf,.,p(x, x + 1) = 0 or inf,,,p(x + 1,x) = 0. If
ve S, then v(n,0):n < Corn={} = 1.

Proor. Take pe . and let f(y) = > "_,7(x) for some n. Then fe 2(Q), so
§ Qf dp = 0, which yields

(4.2) P 7+ Dg(n) = 1, 7(n + 1) = 0}
= p(n + 1, n)ufn(n + 1) = 1, 9(n) = 0} .
Put R = {0, I, ..., n} in Lemma 2.4, and observe that the right side of the ex-

pression in that lemma is bounded above by
4.3)  p(n,n 4+ Dv{n(n) = 1, p(n + 1) = 0} + »{l(n) = 1,{(n + 1) = 0}]
+ pln+ 1, mvfy(n + 1) = 1, 9(n) = 0} +»{L(n + 1) = 1, {(m) = 0] .

If ve .7, the marginals of v are in _#, and therefore the two terms in (4.3) are
equal by (4.2). By assumption, then, there is a subsequence along which (4.3)
tends to zero, and thus by Lemma 2.4 we have

Ziow [P(6)) + p(ys )){n(x) = C(y) = L p(y) = &(x) =0} = 0.

The required result then follows from Lemma 2.5.
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LeEMMA 4.4. Assume that

(4.5) inf.,p(x, x +1) >0 and inf.,p(x+1,x) >0.
Then
(4.6) smon(x) = Clx + k) # 9(x + k) = L(x)} < o0

fork = 1andve 7.
Proor. Apply Lemma 2.4 with R = {0, 1, ..., n} and let n — co to obtain

Lo [P 9) + P> ) {n(x) = C(y) = L n(y) = £(x) = 0} < 0.

Applying (4.5) to this yields (4.6) with k = 1. The general result follows by
induction on k in the following way. Let E(x, k) = {(7, {): n(x) = {(x + k)
(x + k) = {(x)} and write
v(E(x, k)) = v(E(x, k), p(x + 1) =C(x+ 1) = 1)
+ v(E(x, k), p(x + 1) = {(x + 1) = 0)
+ v(E(x, k), n(x 4+ 1) == {(x + 1)) .

Then w(E(x, k), n(x + 1) # {(x + 1)) = »(E(x, 1)) + w(E(x + 1, k — 1)). Since
ve Z, § Qldv = Owhere F = {p(x) = {(x) = 1} n E(x + 1, k — 1). Evaluat-
ing § Q1, dv and making some simple estimates yields

p(x + 1, X)u(E(x, k), p(x + 1) = {(x + 1) = 1) < 6u(F).
Similarly,
plx, x + Du(E(x, k), p(x + 1) = {(x + 1) = 0)
S 6u(E(x 4+ 1,k — 1), p(x) = {(x) = 0).
Therefore by (4.5), there is a constant L so that
v(E(x, k)) < v(E(x, 1)) + Lv(E(x + 1, k — 1)),

and the induction step is complete.

LemMaA 4.7. Assume that (4.5) holds. Define f, on X x X by

Ja(n, €) = number of sign changes of n9(x) — {(x) in {0,1,...,n}.

Ifve 7, then limy_ o, 1N Z0_, § (fuys — fu) dv = 0.

Proor. Fix k = 1 and note that

§ (forr — fa)dv S ofp(n + 1) # L(n + 1), 9(]) = £()
forall I,n — k<1< n}
+ofnn + ) =L #= () =+ 1)
for some I,n —k <1< n}.
By Lemma 4.4,

lim, ., v{p(n + 1) = {(l) # »(l) = {(n + 1) for some I,n — k =l<n=0.
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For all m, on the other hand,
miktliyfp(n + 1) = {(n + 1), p(l) =¢() forall Ln—k<I<n <1,

n=m
since the above sets are disjoint. Therefore

| ! ‘
lim SuPN—m ]—V- Zﬁ;l S (fn+1 _fn) dy § m )

and the result follows since k is arbitrary.
LEMMA 4.8. Assume that (4.5) holds. If ve _Z, then
Zaov{n(x) =8(x + ) #= plx + 1) = C(x), /o > fo-id = 0.
Proor. f,e 2(Q), so { Qf, dv =0 for ve #£. Writing out this expression,
and neglecting several nonnegative terms, we obtain the following inequality:
2 2550 lp(x, x + 1) + p(x + 1, X)]
X vfn(x) = E0x + 1) # 9(x + 1) = £x), fu > funa)
= p(nn 4 Ipfn(n) = Cn) = 1, foia > f)
+ p(n + 1, np{n(n) = &(n) = 0, fuia > fu}
= 2 S (fn+1 —fn)d"’ :
The Cesaro limit on n of the right hand side is zero by Lemma 4.7, so the result
follows from (4.5).
LEMMA 4.9. Forve 2, v{(n,{):n<lornp={} =1

Proor. By Lemma 4.1, we may assume that (4.5) holds. For 0 < u# < v,
define

D, ={(7,€): n(w) = C(v) # L) = 7(v), fu > fu-1> 7(x) = E(x)
for u < x < v}.

Since ve #and 1, e 2(Q), {Ql,, ,dv = 0. Writing this out, we see that
v(D,,,) = 0 implies that v(D,_, ,) = 0. But y(D,_,,) = 0 for v > 1 by Lemma
4.8, and therefore v(D, ,) = 0 for all 0 < # < v. Using a similar argument to-
gether with an induction on k, it then follows that for v e Fand 0 < u < v,

W, €) 2 7(u) = C(v) # C() = 9(V), fu > fu-rr Zizu [2(x) — E(x)| = k} = 0.

Therefore v{(n, €) : f.(n, {) < 1 forall n} = 1. But thensince {(,{): fo(7,{) =0
for all n} is closed for the process and can be reached with positive probability
from all (y, {) for which lim, _, f,(», {) = 1, it follows that v{(p, {): f,(», ) = 0
for all n} = 1, which is the desired result.

CoRrOLLARY 4.10. If p,, p, € 7, then either p, < p, or p, < py.

ProOF OF THEOREM 1.3. As mentioned in the introduction, part (b) of this
theorem follows from the results and techniques of [11]. For part (c), note that
v™ ¢ 7, for each n since it is the unique invariant measure which concentrates
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on A4,. By the convergence theorem for positive recurrent Markov chains,
#S(t) — v™ for any probability measure g which concentrates on 4,. From
this, it is easily seen that v™ < v*+» for all n. Now take e _#,. By Corollary
4.10, either ¢ < v™ for all finite n, or p > v for all finite n, or there exists
an n for which v < p < v™*9, In the latter case, p concentrates on 4, U 4,
and is therefore equal to v or v+, If p < v™ for all finite n, then p < v®
for all p e (0, o), since v'» is a convex combination of ¥, —co < n < oo}.
Therefore for x e S,
Mn:p(x) = 1} S inf v @fp: 9p(x) = 1} = 1nfp>0T—gg;)(—x) =0,

and hence p = v==. Similarly, if ¢ = v™ for all finite n, g = »**=, which
completes the proof of the theorem in this case. Now consider part (a). Using
the argument from the proof of Theorem 1.2 at the end of Section 3, Corollary
4.10 yields the following: if e . #, and 0 < p < oo, there exist 2¢[0, 1] and
P 5 € F s0 that g, < ¢ < p, and

(4.11) v = Ap + (1 — Dy, .

Since 33, m(x)/[1 + =(x)]* = oo, there exists a sequence x, — oo so that one of
the following happens:

(i) =n(x,) — c for some c € (0, o),
(ii) =(x,) — 0 and };, 7(x,) = oo, oOr
(iii) n(x,) — oo and }}, 1/x(x,) = co.
Since v#’ is a product measure, the strong law of large numbers for independent,

but not identically distributed random variables gives the following in each of
these three cases:

() v fy timy - B 7(x) = b=1,
+ o¢
ii) v lim - an lv(xn) — } — 1

i T = o = o

iii) v {p: lim,,_, Zn=i [l —2(5)] _ _} —1.

i o fr .. Loty )
If 0 < 2 < 1, then p, and g, are absolutely continuous with respect to v, and
therefore whichever of the above three statements holds for v, holds for g,
and p, also. Since p, < p < p,, that statement will hold also for z. Therefore
0 <2< 1in (4.11) for at most one p, so there is a p, € [0, co] so that x4 < v®
for p > p,and g = v for p < p,. It then follows by continuity that x = v¢0,
Thus #, C {1, 0 < p < oo}. The reverse inclusion follows from the fact that
the measures v'*’ are all mutually singular with respect to each other, as can be
seen from statement (i), (ii) or (iii) above.

. 5. The asymmetric simple random walk. Throughout this section, we will
take § = Z*, p(x, x + 1) = p, and p(x, x — 1) = g forall x e Z, where p+ g =1
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and p =+ }. By symmetry, it suffices to consider the case p > 4. Since both y,
and v are invariant in this case, it is easy to see that the direct analog of
Corollaries 3.9 and 4.10 is not true. The correct result is contained in the fol-
lowing lemma. Let f,(7, {) be the number of sign changes of 7(x) — {(x) for
—n<x=n

LeMMA 5.1. Ifve #, then

(@7 Q) fun, ©) <1 forall n=1}=1.

Proor. The argument parallels that in Lemmas 4.4, 4.7, 4.8 and 4.9, with
the exception of the final sentence in the proof of Lemma 4.9. Therefore no
details will be given.

REMARK. It is in this lemma that the requirement that p(x, y) permit transi-
tions only to nearest neighbors enters in a critical way, since it is based on the
fact that an individual transition can only decrease the total number of sign
changes of 7(x) — {(x). If one wants to generalize the results of this section to
the case of a translation invariant transition function on the integers with nonzero
mean, one would probably have to show that

W{(n £ sup, fu(1, ) < o0} = 1
for v € .7, which is presumably the correct generalization of Lemma 5.1 to this
case.

COROLLARY 5.2. If v € F,, then exactly one of the following holds:

@ A Oin=08=1 :

®) {09 Lyl =1

© Y@ O:nzCn=C=1,

d) vB) =1,

(e) vf(n, &) (CmeB}=1,
where B = {(7), {): 3xe Z" such that n(y) < C(y) for all y < x, n(y) < &(y) for
infinitely many y < x, 9(z) = {(z) for all z = x, and 9(z) > {(2) for infinitely many
z = x}. '

Proor. Each of the five sets above is closed for the motion, so that each has
probability zero or one by the argument in Lemma 2.2. If in the definition of
B above, we had replaced the words “infinitely many” by “some”, Lemma 5.1
would say that any v € . must concentrate on the union of the five sets above.
To complete the proof, simply use again the fact that v e A, noting that if the
number of y for which »(y) > {(y) is positive and finite, then it must decrease
as ¢t increases unless 7 = &.

COROLLARY 5.3. Suppose v € #, has marginals pl and 1, réspectively, and that
for some L < co,

(5-4) | Ziem [a{n(y) = 1} — () = )l = L
for all m < n. Then only (a), (b) and (c) can occur in Corollary 5.2.
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PRrROOF. Suppose that (d) in Corollary 5.2 holds. Rewriting (5.4) gives
(5:5)  |Zpn n0) = 0,00 = 1} —vf1(0) = L, Lp) = O}l < L.
Since (d) holds,
(5.6)  lim,._.vf(y) = 1,E(y) = 0} = lim, ., v{7(y) = 0,(y) = 1} = 0.
Therefore by (5.5),

(1) limyn o D asfn) = 0,L0) = 1)

= lim, . - Tjwox{7) = 1,L0) = 0).

Now use Lemma 2.4 with R, = {—n, - - -, n}, and note that (5.6) and (5.7) imply
that the Cesdro limit on n of the right side of the expression in that lemma is
zero. Thus

2w [P(x:3) + PO OPAn(x) = () = 1, 9(y) = &(x) = 0} = 0,
and v{(y,{): » < { or y = {} = 1 by Lemma 2.5, which is a contradiction. An
analogous argument shows that (e) cannot occur either if (5.4) is satisfied.

Proor oF THEOREM 1.4. Take p e .7, and define g, and g, by ¢, = ¢ and g,
is the following translate of p:

minin(x) =1 for 1 <isn}=pfp:nx+1) for 1 Si<n}.
Then both g, and g, € _#,, so by Lemma 2.3, there is a v € _#, which has mar-
ginals ¢, and g, respectively. Since
vem [a{n(y) = 1} — pfn(y) = 1}]

= Di=neln(y) = 1} — pln(y + 1) = 1}]

= plp(m) = 1} — plnp(n + 1) = 1},
(5.4) is satisfied with L = 1. Therefore by Corollary 5.3, v satisfies one of (a),
(b) or (c) of Corollary 5.2. If v satisfies (a), then g, = p,, so that p is translation

invariant, and therefore 4 = v, for some p € [0, 1] by Theorem 1.1. Ify satisfies
(b), then g < p,, so pfy(x) = 1} is increasing in x, and
1= § 2L [6x) — 7(0)] v = 2. [m{n(x) = 1} — mfn(x) = 1}]

| = 1im, . pfy(x) = 1} — lim, _., p{y(x) = 1}
Therefore
(5.8) lim,_, p{p(x) =1} =1 and lim,_,_, pu{p(x) =1} =0.
If v satisfies (c) instead of (b), a similar argument shows that
(5.9) lim,_, #{p(x) =1} =0 and lim, . pg(p(x) =1} =1.
From §{ Qfdy = 0 for f() = X *_, 7(x), it follows that

a = pp{n(x) = 1, 9(x + 1) = 0} — gp{n(x + 1) = 1, 9(x) = 0}
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is independent of x for ze . #. If v satisfies either (b) or (c), (5.8) and (5.9)
imply that & = 0, and therefore that

pe{n(x) = 1, p(x + 1) = 0} = gp{n(x + 1) = 1, p(x) = 0}

for all xe Z'. Rewriting this as

(P — Pefn(x) = 1, 9(x + 1) = 0} = g[p{n(x + 1) = 1} — pfn(x) = 1}],

it follows that (5.9) is impossible and

Tetlpx)=1Lpx+1)=0= -1 < oo,
P—9

since p > q. Therefore

{n: lim,_, n(x) and lim,,_, 7(x) both exist} = 1.

Using (5.8) again, it follows that

M0t Dacon(*) < 00, Faso[l = (¥)] < 00} =1,

and therefore that ¢ = v for some ne Z*. Thus we have shown that

S Cpp 0= p S 1} U U™, —c0o < 1 < o0} .

The reverse inclusion follows from the fact that all the measures on the right
side are mutually singular with respect to each other.

(1

[2]

(3]
[4]

[3]

[6]
(7
[8]
[9]
[10]
[11]

[12]

REFERENCES

DoBruUsHIN, R. L. (1971). Markov processes with a large number of locally interacting
components: existence of a limit process and its ergodicity. Problems of Information
Transmission 7 149-164.

GRIFFEATH, D. (1975). Ergodic theorems for graph interactions. Advances in Appl. Proba-
bility 7 179-194.

HaRrris, T. E. (1974). Contact interactions on a lattice. Ann. Probability 2 969-988.

HoLLEY, R. (1970). A class of interactions in an infinite particle system. Advances in Math.
5 291-309.

HorLEY, R. (1970). Pressure and Helmholtz free energy in a dynamic model of a lattice
gas. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 3 565-578, Univ. of California
Press.

HoLLEy, R. (1971). Free energy in a Markovian model of a lattice spin system. Comm.
Math, Phys. 23 87-99.

HoLLEY, R. (1972). An ergodic theorem for attractive interactions. Z. Wahrscheinlichkeits-
theorie und Verw. Gebiete 24 325-334,

LicGeTT, T. M. (1972). Existence theorems for infinite particle systems. Trans. Amer. Math.
Soc. 165 471-481.

LicGetT, T. M. (1973). A characterization of the invariant measures for an infinite particle
system with interactions. Trans. Amer. Math. Soc. 179 433-453. .

LicGetT, T. M. (1974). A characterization of the invariant measures for an infinite particle
system with interactions, II. Trans. Amer. Math. Soc. 198 201-213.

LicGeTrT, T. M. (1974). Convergence to total occupancy in an infinite particle system with
interactions. Ann. Probability 2 989-998.

LicGerT, T. M. (1975). Ergodic theorems for the asymmetric simple exclusion process.
Trans. Amer. Math. Soc. 213 237-261,



356 THOMAS M. LIGGETT

[13] MEYER, P. (1966). Probability and Potentials. Blaisdell, Waltham, Mass.

[14] SpiTzER, F. (1970). Interaction of Markov processes. .4dvances in Math. 5 246-290.

[15] SprTzER, F. (1974). Recurrent random walk of an infinite particle system. Trans. Amer.
Math. Soc. 198 191-199.

[16] VAsersHTEIN, L. N. (1969). Markov processes over denumerable products of spaces, de-
scribing large systems of automata. Problems of Information Transmission 5 47-52.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
Los ANGELES, CALIFORNIA 90024



