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ON A RANDOM WALK BETWEEN A REFLECTING
AND AN ABSORBING BARRIER

By ALESSANDRO BLASI
Universita Degli Studi di Roma

The author shows that the formula given by B. Weesakul [3] for the
absorption probability in a random walk between a reflecting and an ab-
sorbing barrier does not hold true in general.

The correct formula in the general case is given.

This paper refers to the problem considered by B. Weesakul [3]. In earlier
papers, D. Fiirst [1], [2] considered the same problem from a different point of
view, by approximating the continuous case by the discrete. A comparison of
these results leads to the necessity of a correction in [3], as recognized by Dr.
Weesakul in a personal communication. Using the same notation and formula
numbering as in [3], we note that:

The term, ¢4, ,, must be added to formula (5), where 4, is the Kronecker
delta. This missing term does not affect the calculation of g(t/u) since (15)
remains of the same form, namely

V(0)0,0,,. + U©O) _ U.(6)
V() - o)
In (17) we need U,(6,), but this is equal to U(6,), 0, being a root of ¥(#). The

estimation of the determinant |D| as prescribed by Weesakul does not work for
u = 1; in this case it is easy to see that the correct value for |D| needed in (6) is

D = 0 A7 — 201 — Op(At — 2,072
2q A — 4 .

(15) ¢(0|u) =

Following (18) it is stated in [3] that g% sin (b 4 1)a — p? sin ba has b distinct

roots. A study of the function

f(@) = [sin (b + 1)a]/sin ba
shows however that this is not always the case. Clearly the roots of f(a) = (p/q)*
that give distinct roots of ¥(d) are in [0, 7) and if (p/q)* < 1 + 1/b there are b
distinct roots of this equation, so that formula (18) in Weesakul is correct in
this case. ,

If (p/q)* > 1 + 1/b there are only b — 1 distinct roots a, (v = 2, - - -, b) that
give distinct roots 6, of ¥(f). The remaining root of V(f) is given by 6, =
(2(pq)* cosh &)=, where a, is the unique root of the equation (p/q)t =
(sinh (b ++ 1)a)/sinh ba.
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Actually because of the dependence of the roots of F(6) it is easy to see that

e TTacosa,
b= S g

where m = [(b + 1)/2] (integer part of (b + 1)/2).
The correct formula for g(z/u) in the general case is then:

(| ) = 2p-nghes (e

[¢tsin (b — u + D)o, — ptsin (b — u)a,]sin ozy}

b t—1
+ 2iacostTha, [(6 + 1)gt cos (b + 1)a, — bpt cos ba,]

where
B(a)) = —cos'ta [¢*sin (b — u + 1)a, — ptsin (b — w)ay] sin a,
! ! [(6 + 1)gt cos (b + 1)a, — bpt cos ba,]
if (f_)é <14 1L
q b
= 2u it (2) =1+
b(b 4 1)(2b + 1) q b
— coshi~1 o, 42800 (b — u + D)o, — ptsinh (b — w)a,] sinh e,
N ' [(b + 1)gt cosh (b + 1)a, — bpt cosh ba,]
if (!’_Y >14 L
q b
and
a, = cos“l—l— if <£>§ <1+ 1
2(pq)t0, q b
1 . % 1
—cosh' 1 __ if (ﬁ) >14 1.
2(pg)*0, q b

6, is the smallest root in absolute value of ¥(6).
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