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A REPRESENTATION THEOREM ON STATIONARY
GAUSSIAN PROCESSES AND SOME
LOCAL PROPERTIES!

By RUBEN KLEIN
Instituto de Matematica Pura e Aplicada

Let X(t, 0), a < t < b, w € Q be a real continuous stationary Gaussian
process with mean 0 and covariance R. We prove that there exist analytic
functions fn defined on [a, b] and independent random variables X, N(0, 1),
n=0,1,2, ..., such that the series X;_, fu(t)X» converges uniformly to
X(¢) with probablhty 1. Among other applications of this representation
theorem, we show that if the second spectral moment is infinite and
o (RO) — R(")~*dt < oo for some 0 < 3§ <b—a, then for any given
ueR, Plo| X,~Yu) is infinite} > 0.

1. Introduction. Let X(1, w),a <t < b, w € Q, be a real continuous Gaussian
process with mean EX(r) =0 and covariance R(s, t) = E(X(s)X(¢)). It is known
(see, for instance, Dudley (1973), Theorem 0.3) that for every orthonormal basis
{X,} of the linear span of {X(¢)|t € [a, b]} C LR, P), the series }; (X(t), X,)X,
converges uniformly to X(f) with probability 1. In particular, the Karhunen-
Loéve expansion of a Gaussian process is just a special case of this orthogonal
series.

For stationary processes, we show another special case of this orthogonal
series where the functions f,(r) = (X(¢), X,) are analytic. The way to do this is
to exploit the congruence between L*(X(t)|t € [a, b]) and the reproducing kernel
Hilbert space H(R).

With this representation we prove some local properties of real continuous
Gaussian stationary processes with mean 0, covariance R(%), spectral measure
¢ and second spectral moment 1, = {>,, 2*dp(d) = co. In particular we show
that all four Dini derivates are infinite almost everywhere with probability 1.
This implies the nondifferentiability almost everywhere with probability 1 shown
by Geman and Horowitz (1973).

Next, we apply this representation and these local properties to the following
problem in level crossings.

Let u be any real number and define C(u) = #{r| X(f) = u}, where # denotes
“cardinality of,” and is interpreted as co when the set is infinite. C(u) is a ran-
dom variable and it is known that EC(z) < oo if and only if 2, < co. (See, for
instance, Cramér-Leadbetter ((1967), page 195). Dudley ((1973), Section 8.2)
asks if it can happen that C(x) < oo almost surely and EC(x) = oo.
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We answer this question with “no” for processes satisfying the following con-
dition: there exists 0 < d < b — a such that {3 (R(0) — R(7))~} dr < oo.

Kahane (1968), page 146), Orey (1970), Berman (1972) approached this prob-
lem by considering the Hausdorff dimension of the set {r: X,(f) = u}. Kahane
studied Gaussian-Fourier series satisfying the above condition and showed that
in certain cases, dim {¢: X,(f) = u} > 0 for a u-set of positive measure, with a
positive probability. Orey and Berman showed that for some ergodic stationary
Gaussian processes X(f), t = 0, with ¢*() = E|X(f) — X(0)|* ~ C|t|* for some
constant C and some a; 0 < a < 2, dim{r: X () = u} = 1 — «/2 for all u, al-
most surely.

We only use this condition to assure the almost sure absolute continutity of
the occupation time distribution (defined in Section 4) of a certain process de-
pending on X(r). If Orey’s conjecture is true for processes with differentiable
mean (in fact, C> mean is enough), then this condition is not needed and the
proof works for all stationary Gaussian process with 1, = co.

2. The representation theorem.

THEOREM 1. Let X(t,w), a<t< b, we Q, be a real continuous stationary
Gaussian process with mean 0 and covariance R(h). Then there exist analytic functions
f. defined on [a, b] and independent random variables X, N0, 1), n =0,1,2, ...,
such that the series Y,3_, f,(1)X, converges uniformly to X(t) with probability 1.

Proor. By Krein’s theorem, there exists a bounded symmetric positive meas-
ure ¢ on R (in general, not unique) such that R(k) = (=, e dpu(x), 0 < h <
b — a. In particular, R(#) can be extended to IR still as a continuous covariance
function of a stationary Gaussian process defined on RR.

R being real, we have

R(s, 1) = R((s — 1)) = (=, [cos (sx) + sin(sx)][cos (tx) + sin (tx)] du(x) ,
—0 < 55t < 0.

By Theorem 4D (Parzen (1959)), the reproducing kernel Hilbert space H(R)
can be represented by the space of functions g, defined on R, of the form
g(t) = (g g*(x)[cos (x) + sin (tx)] du(x) for some (necessarily unique) function
g* in the Hilbert subspace L*(cos (tx) + sin (tx); t € R) of LYR, <5, ;) spanned
by the functions {cos (tx) + sin (tx); t € R}. The norm of g is given by ||g||* =
S [T (O dpe()-

As L*(cos (tx) + sin (1x); t € R) = LR, <7, p) and the functions g*(x) € LR,
%, p) of compact support are dense in L¥ R, <7, ), so the set {g € H(R)|g* has
compact support} is dense in H(R). And, every function in this set is analytic.

By Theorem 6C (Parzen (1959), the reproducing kernel Hilbert space of R,
restricted to the interval [a, b] X [a, b], consists of all functions. # defined on
[a, b] which are restrictions of functions g belonging to H(R). Furthermore
[|/7]] < ||gl| (the norms taken in their respective spaces).

Denoting also by H(R), the reproducing kernel Hilbert space of R restricted
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to [a, ] X [a, b], it follows, then, that the set {g € H(R)|g is analytic} is dense
in H(R).

H(R) is a separable Hilbert space since the process is continuous in quadratic
mean (Parzen (1959), Theorem 2C). So, there exists an orthonormal basis of
analytic functions f, of H(R).

As H(R) is congruent to L*X(); t€[a, b)), X(f) = X%, f2()X, in LY X(7),
t€[a, b]). Therefore, by a theorem (see Dudley (1973), Theorem 0.3), the result
follows.

REMARK 1. With the same hypothesis as in the theorem, but with r ¢ R, the
same argument shows the existence of analytic functions f, defined on R and
independent random variables X, with law N(0, 1), belonging to LX(X(¢); t € R),
n=0,1,2, ... such that X(r) = Tz, ()X, in L¥(X(¢); t e R).

3. Some differentiability properties.

LEmMMA (Zero-one law). Let X,, n=0,1,2, ..., be N0, 1) independent ran-
dom variables. Let f,, n =0, 1,2, ..., be differentiable real functions defined on
[a, b] such that for every t e [a, b], T, f,%(1) < co. Suppose X(1) = 2o fu(DX,
is continuous with probability 1. Then for fixed t,

Plo: limsup, ,[X(r + k) — X(1)]/h = +o0} =0 or 1.
PRrOOF.
Plo: limsup, [ X(t 4+ &) — X(1)]/h = + o]
= Plo: limsup, ;o D5 X,[fo(r + k) — (1] = + oo}
= Plo: limsup, , Zx_; X,[fu(t + k) — f()]/h = + 0}

since the f,’s are differentiable.
So the event (o : limsup, |, Yo, X,[fu(t + k) — f,(1)]/h = +oo}isa tail event.
So by Kolmogorov’s zero-one law, its probability is 0 or 1.

THEOREM 2. Let X(t,w), a <t < b, weQ, be a real, continuous, stationary
Gaussian process with mean O and covariance R(h). Then if the second spectral mo-
ment A, is infinite, for fixed t, P{w: limsup, ,[X(t + k) — X(£)]/h = +oo0} = 1.

Proor. By the zero-one law, it’s enough to prove that
Plo: limsup, [X( + &) — X(H)]/h < 0} < 1.
Fix 8 > 0 and consider the events -
A, (B) ={o: —oco < X(t + h) — X(1) < Bh if 0 < h < 1/n}.
The 4,(B)’s form an increasing sequence and A(8) = U, A,(B) contains {w:
lim sup, , [X(t 4+ k) — X(1))/h < B/2). ‘
P(A4.(8)) = Plo: —oo < X(1 + 1/n) — X(1) < B/n}
= ©(B/n[2(R(0) — R(1/m)1¥)
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since X(¢ + 1/n) — X(¢) is N(O, 2(R(0) — R(1/n))) where
D(x) = 27)~t {7, exp(—x*/2) dx;
which implies P(4(B))=lim, ., P(4,(8)) < }since 4,=1im,_,2[ R(0) — R()]/h*=oo.
As this is true for every 8 > 0, we get the result.
Let us denote D*X,(f) = lim sup, .= [X,(t + &) — X, (?)]/h and D, X, (1) =
lim inf, g [X,(t + k) — X, (¢)]/A.

COROLLARY. With X(t) as in Theorem 2, for each t fixed,
*) D*X, (1) = DX, (t) = =D, X, (t) = —D_X,(f) = 400 a.s.

Proor. By symmetry of the process, we can apply Theorem 2 to — X(#), X(—1)
and — X(—1) obtaining the result.

REMARK 2. Since the Dini derivates DX (f), D~X,(r), D, X,(f) and D_X,(¢)
are jointly measurable (due to the continuity in ¢ of X(#, w)), it follows from
Fubini’s theorem and the corollary, that with probability one, (*) holds for -
a.e. t€[a, b]. In particular, X(¢, w) is nondifferentiable a.e. a.s.

4. On level crossings. Let f(f), a < t < b, be a real-valued measurable func-
tion.

DEFINITION. [ is said to be T, if f~*(u) is a finite set for almost every u € R.

DEFINITION. € [a, b]is an oscillation point of f if for every ¢ > 0, there exist
1, t,€ (t — ¢, 1) such that f(#,) > f(f) > f(t,) or there exist t,, t, € (¢, t 4 ¢) such
that f(t;) > /(1) > f(1)).

Let 2 be Lebesgue measure on R. For every measurable set E C R, define
v(E) = A(f~}(E)). As it is easily verified, v is a measure on R. v is called the
occupation time distribution (O.T.D.) of f. If v is absolutely continuous with respect
to A, we write v & 4.

Let A(f) = {te[a, b]| D*f(1) = =D, f(t) = +oo or Df(t) = —D_f{t) =
+o0}. Let B = f(A(f)). We remark that every t € A(f) is an oscillation point
of f.

LEMMA. Let f(1), a < t < b, be a real-valued continuous function. Suppose f is
not T, and A(A(f)) = b — a. Then A(B) > 0.

Proor. Let E = {ue R| f~*(u) is infinite}, 4 = {re[a, b]|t is an oscillation
point of f}, M = {t € [a, b]|tis a point of relative maximum (minimum) and an
accumulation point of points of relative maximum (minimum) with the same
value of f} and N = {r € [a, b]|at least one Dini derivate is finite}.

As A(f) = (A(f) N N) U (4(f) 0 N9, A~ A(f) = {ted|1g A(f)} C A n
N c N. By the Denjoy relations (Saks (1964), page 271), A(A(f) n N) = 0, so
b—az= AN°) = 2(A(f) N N°) = 2(A(f)) = b — a. Thus, by Theorem (4.6)
(Saks (1964), page 271), A(f(N)) = 0 which implies A(f(4 ~ A(f))) = 0.

AE ~ B) < A(f(A ~ A(f)) + A(f(M)) = 0 since f is continuous and E =
f(4 U M) = f(4) U f(M).
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As B C E, A(B) = 2(E) > 0since fis not T.

THEOREM 4. Let X(t, w), a <t £ b, w € Q, be a real continuous Gaussian pro-
cess with mean O and covariance R(s,t). Suppose X(t) can be represented almost
surely as X(t) = f(t)X, + Y(t) where f(t) is differentiable and strictly positive on
[a, b], X, is N(O, 1) and X, is independent of the family {Y(¢); t € [a, b]}. Suppose
also that A(A(X,)) = b — a almost surely. Then if R(t, ) > O for t > a and

i §2 [R(s, )R(t, 1) — R(s, 1y ds di < oo,
for any given u € R, X~'(u) is infinite with positive probability.

ProoF. Let # ¢ R and define Z(¢) = (v — X(¢))/f(r). Z(¢) is a real continuous
Gaussian process with mean m(f) = u/f(t) and covariance (s, ) = R(s, #)/f(s)f(?)-
Furthermore, 7(¢, t) > 0 for t > a and

$a Sa [n(s, s)n(t, 1) — n(s, 0" * dsdt < oo .

Then by Theorem 2 of Orey (1970), Z, has an absolutely continuous O.T.D.
with respect to Lebesgue measure.

It follows easily from the definition of a T)-function and the fact that Z, is
continuous that Z, is not T, a.s. since 4(Z,) = A(X,) = H(A(Z,)) =b—a >0
a.s.

Let g,(t) = (u — Y(¢, ))/f(t) = Z(t, 0) + Xy(w). g,(f) is not T, a.s. and
A(A(g,)) = b — aa.s.

We can consider the probability space Q as being a product space Q, x Q,
where X is defined on Q,, Xy(w,, ,) = Xy(w,), Y(?) is defined on Q, for every ¢,
Y(t, y w;) = Y(t, w;) and P = P, x P,, since X, is independent of the family
{Y(?); te[a, b]}.

Let B(w,) = ¢.,,(A(9.,))- By the lemma, 2(B(w,)) > 0 a.s. o,.

Let Q, = {0 = (0, ®,) | X, (1) is infinite}. Q, is a measurable set (Cramér-
Leadbetter (1967), page 195). We want to show

P(Q,) = Snl SQO 1(m=(m0,m1)lX;1(u)iS intinite) APo(@) dPy(@;) > 0 .

For fixed o,, {®,| X, € B(@,)} C {w,| X7, 4, (%) is infinite} since Xy(w) € B(w,) =
there exists ¢ € A(g,,) such that Xy (o) = g, (7). So u = f(H)Xy(w,) + Y(t, ®,) =
X(1, 0y, @,). Butte A(g,)=1te AY,)=1t¢e AXu)) = X@,.)(¥) is infinite.

So P(Q,) = (q, Pi(X, € B())) dP\(@,) > 0 since Py(X, € B(w,)) > 0 a.s. v, be-
cause X, is N(0, 1) and A(B(w,)) > 0 a.s. w,.

We now apply this to the stationary case.

THEOREM 5. Let X(t,w), a <t < b, weQ be a real continuous stationary
Gaussian process with mean 0, covariance R(h) and second spectral moment infinite,
and suppose there exists 0 < 0 < b — a such that |} (R(0) — R(1))"tdt < oo. Then
for any given u € R, P{w|X,~(u) is infinite} > 0.

Proor. Let [c,d] besuchthat0 < d —c <9, R0) + R(f) >0for 0 <1 <
d — c and the function f; given by Theorem 1 is strictly positive on [¢, d]. There
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is no loss of generality in considering f, strictly positive on some [c, d] C [a, b]
since if f, is strictly negative on [a, b], we can always replace it by —f; and X,
by —X,.

It follows that {? {¢ (R(0)> — R(s — #)*)" dsdt < co. Soin view of Theorems
1, 2 and Remark 2, we can apply Theorem 4 for X(f), ¢ < t < d. So Plw: X, (u)
is infinite} > 0.
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