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A STRONG CONVERGENCE THEOREM FOR BANACH
SPACE VALUED RANDOM VARIABLES!

By J. KUELBs
University of Wisconsin

We prove a strong convergence theorem for Banach space valued
random variables. One corollary of this result establishes necessary and
sufficient conditions for the law of the iterated logarithm (LIL) in the
Banach space setting. We also prove an exact generalization of the
Hartman-Wintner law of the iterated logarithm provided the random vari-
ables involved take values in a real separable Hilbert space or some other
Banach space with smooth norm.

1. Introduction. Let B denote a real separable Banach space with norm || ||,
and throughout assume X, X,, --- are i.i.d. B-valued random variables such
that EX, = 0 and E||X,||* < co. Asusual S, = X, + --- + X, forn > 1, and
we write L x to denote log x for x > e and 1 otherwise. The function L (L x) is
written LL x, and B* denotes the topological dual of B with norm |[|«|| ..

If (M, d) is a metric space and 4 & M we define the distance from x € M to 4
by d(x, A) = inf, , d(x, y). If {x,} is a sequence of points in M, then C({x,})
denotes the cluster set of {x,}. That is, C({x,}) is all possible limit points of the
sequence {x,}. We also will sometimes use the notation {x,} »— A4 if both
lim, d(x,, A) = 0 and C({x,}) = 4.

We prove a strong convergence theorem for B-valued random variables which
is related to the law of the iterated logarithm. To motivate such a result we
recall the Hartman-Wintner LIL [10] as given by Strassen [27].

THEOREM A (Hartman-Wintner, Strassen). If X, X,, - -- arei.i.d. real valued
random variables such that EX, = 0 and EX,* = o* > 0, then ‘

1.1y P{w: 1imnd<a%_%,[—a,a]>=o}=1
and
(1.2) Plo: c({%}) =[~o0} =1.

Now let X, X,, - - - bei.i.d. B-valued random variables such that E[|X,|[* < oo
and E(X;) = 0. Inview of (1.1) and (1.2) one might expect that there is a fixed
bounded symmetric set K in B such that

(1.3) P{w: Iim”d((zn’l‘fi’)n)i >= o} =1,
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and

(1.4) P{w: C«(i%,(f—)n)&}):]{}:l’

A result of this generality is, however, not true as can easily be seen from an
example of R. Dudley and V. Strassen [5]. Their example was constructed to
show the classical form of the central limit theorem was not valid in the Banach
space C[0, 1], but applies equally well to the law of the iterated logarithm.
More precisely, they show that there exist i.i.d. C[0, 1]-valued random variables
X,, X,, - - - satisfying || X,||.. < 1, E(X,) = 0, and such that

(1.5) lim inf, P {w: maX,g,<, S”(t; @) > n*} =1,
n

Now (1.5) implies S,/(2n LL n)? is unbounded in probability and hence (1.3) is
impossible for any bounded subset K of C[0, 1].

The limit set K in (1.3) and (1.4) is uniquely determined by the covariance
function

T(f. 9) = E(f(X)9(X)) f.9eB*,

and, in fact, is always the unit ball of a Hilbert space determined by T.

In Section 2 we examine K in detail, and one thing we prove is that K is
necessarily compact in B whenever E||X)||* < co. In fact, K is compact even if
the covariance function T(f, g) is only weak-star sequentially continuous on
B* x B*, but we do not use that fact here. It is important, however, to realize
that the compactness of K is forced on us even though our original formulation
in (1.3) and (1.4) only anticipated that K be bounded in B.

Since the random variables in the example of Dudley and Strassen mentioned
above are uniformly bounded with probability one necessary and sufficient con-
ditions for the LIL in the Banach space setting must involve conditions other
than the classical moment conditions. The precise formulation of these con-
ditions is given in the following corollary whose proof will follow easily from
the general convergence result obtained in Theorem 3.1. Before stating the
corollary we point out that the limit set K constructed from the covariance
function in Section 2 satisfies the corollary. Some explicit examples of K will
also be given in Section 2.

CoroLLARY 3.1 (N.A.S.C. for the LIL in the Banach space setting). Let
X, X,, - - bei.i.d. B-valued such that E(X,) = 0 and E||X,||* < co. Then
I. There exists a compact, symmetric, convex K B such that

(1.6) P{w:C({%:n@l})%K}:O.

II. In addition, there exists a compact, symmetric, convex set K satisfying (1.6)
such that

1.7 P{w: lim,‘d<(25—'£(‘£)n—)%,K)=0} =1
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and
(1.8) P{w:c({in(‘_"_)_:nglp_—_x}:l,
(2n LL n)t
iff
(1.9) P{w: {M tn> l} is conditionally compact in B} =1.
(2nLL n)t
REMARK. The event in (1.9) is a tail event for the sequence X, Xj, - .- so it

has probability zero or one. Hence the LIL holds with limit set K or not at all.
Furthermore, as mentioned previously, the limit set K can be uniquely deter-
mined by the covariance function of the common distribution, and since K is
compact (1.7) obviously implies (1.9). The point of the corollary is that (1.7)
and (1.9) are actually equivalent in the present situation. The additional inter-
esting fact is that (1.8) always holds in this setup provided (1.7) or (1.9) hold.
This is of interest because it is (1.8) which is usually the most cumbersome step
to verify in proving this type of result.

Since the LIL in an arbitrary Banach space involves something other than the
moment conditions of Theorem A it is of interest to see if there are infinite
dimensional Banach spaces in which the classical moment assumptions alone are
sufficient. Theorem 4.1 is in this direction, and has as a corollary an exact
generalization of Theorem A provided the {X,} take values in a real separable
Hilbert space or some other Banach space with smooth norm.

As usual D[0, 1] denotes the space of real valued functions on [0, 1] which
are right continuous on [0, 1] and have left limits on (0, 1]. The cylinder sets
of D[0, 1]induced by the maps x — x() induce a sigma algebra which we denote
by & and it follows in a straightforward manner that the map (x, y) > x + y
from (D[0, 1] x D[0, 1], £ x <) into (D[0, 1], &) is measurable.

For each x € D[0, 1] we define the norm

(1.10) Xl = SUPygsz1 X(D)]

and use C[0, 1] to denote the subset of D[0, 1] consisting of continuous functions
on [0, 1]. It is obvious that ||x||, is finite for each x € D[0, 1].

The next result deals with the law of the iterated logarithm for sums of i.i.d.
(D[0, 1], ) valued random variables with convergence and clustering computed
in the sup-norm. Originally the proof of this result involved an application of
Corollary 3.1 to a related sequence of random variables with values in C[0, 1],
but at the suggestion of Professor M. J. Wichura and J. Crawford we now pro-
ceed in a slightly different manner. First we establish some terminology.

A sequence {x,} of elements of D[0, 1] is said to be asymptotically equicon-
tinuous if '

lim, |, lim sup, w,(x,) = 0,

where w,(x) = sup,_, <, |x(f) — x(s)| is the usual modulus of continuity.
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If T = {¢t, ---, t.} is a finite subset of [0, 1] containing both zero and one and
x e D[0, 1], then we define A,(x) to be the continuous polygonal function such
that
A (x)(1) = x(¢;) if t=1 j=0,..u,r
and linear elsewhere. '
The following lemma is easily proved so the details are omitted. A similar
result also appears in [23].

LemMA 1.1. Let {Y,: n = 1} be (D[0, 1], &) valued random variables and sup-
pose{T,: m = 1} are increasing finite subsets of [0, 1] each of which contain zero and
one, and such that \J ,5, T, is dense in [0, 1]. If K is a compact subset of C[0, 1],
then

(1.11) Plw: Y, (0) >—K) =1
iff
(i) Po: (You(@)(Dier, == K(Tn) = {(x())ter, : x€K}) =1

for each m, and any (or all) of the following hold:

(iia) P(w; {Y,(w)} is uniformly bounded and asymptotically
(1.12) equicontinuous) = 1,

(iib) P(w:{Y,(w)} isasymptotically equicontinuous) =1,

(iic) P(w:limsup, limsup, ||Y,(0) — Ay Y, (0)]|. =0)=1.

In the LIL for D[0, 1] valued random variables the limit set is uniquely
determined by the covariance function. To be precise let {X(r): 0 < ¢t < 1} be
a stochastic process with mean function identically zero and continuous covari-
ance function R(s, ) = E(X(s)X(f)) defined on [0, 1] x [0, 1]. Then, since R(s, f)
is symmetric, continuous, and nonnegative definite, by Mercer’s theorem ([25],
page 245) it has the eigenfunction expansion }], 4,9,(s)¢,(f) which converges
uniformly on [0, 1] x [0, 1], the eigenfunctions {¢,(f)} are continuous ortho-
normal elements of L’[0, 1], and the eigenvalues 4, are positive numbers such
that 37, 4, < oco.

Let H, denote the set of elements in L¥0, 1] which are in the closure of the
span of {¢,: n = 1} and such that

(1.13) Zn()"—2¢"'—)3<°°’

n

where, of course, (x, y)= {3 x(¢)y(t) dt. Hyis a Hilbert space in the inner product
x, n ) n
(x’.y)HR = Zn “““—‘—————‘( 4 ;("y 4 ) s
and a, = 4,}¢, (n = 1) is a complete orthonormal set in H.

If K is the unit ball of H, (in the H, norm), then since R(s, f) is continuous
it is fairly easy to see that K, is a compact subset of C[0, 1] in the sup-norm,
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and we shall see that K, is the limit set of interest. Here, of course, we identify
equivalence classes of H, with their continuous representative.

The Hilbert space H,, is commonly called the reproducing kernel Hilbert space
(RKHS) of the kernel R and in [22], pages 84-85, H,, is identified with its more
usual definition as given, for example, in [1], page 344, and [22], page 84.

The LIL for D[0, 1] valued random variables is the following:

THEOREM 4.2. Let X, X,, - - be i.i.d. (D[0, 1], &) valued random variables
with EX\(f) = 0 (0 < r < 1) and such that the covariance function

R(s, 1) = E(X(5)X,(1)
is continuous on [0, 1] x [0, 1]. If K, is the unit ball of the RKHS H, then

(1.14) P(w: H,(0) = @%ﬁﬁ KR> =1

iff one (or both) of the following hold:
(1.15) () Plw:{H,(w)} is asymptotically equicontinuous) = 1,
(ii) P(w: limsup, limsup, ||H,(0) — A; (H,(®))||e=0)=1.
As fairly immediate corollaries of Theorem 4.2 we have:

CoROLLARY 4.1. Let X, X,, - - - be independent identically distributed (D[0, 1],
) valued random variables such that each {X(1):0<t< 1} isa martingale.
Further, assume there exists a & > 0 such that

(1.16) EX()) =0 and EX () < oo 0,
and the covariance function

R(s, 1) = E(X(5)X,(1))
is continuous on [0, 1] x [0, 1]. If K, denotes the unit ball of the RKHS H,, then

(1.17) P{w: 1im,,d((25;f:)n)§ : KR> - 0} ~1,
and, in fact,
(1.18) P{w:C<(%g%%ﬁ:ngl):KRf:1,

where convergence and clustering are computed with respect to the sup-norm.

COROLLARY 4.2. If the processes X,(t) are independent increment processes, then
(1.17) and (1.18) hold with only a second moment condition in (1.16) rather than the
(2 4 0)th moment.

CoroLLARY 4.3 (H. Finkelstein, [7]). Let U,, U,, - - - be independent random
variables uniformly distributed on [0, 1], and let F,(1) be the empirical distribution
function at stage n. If K, denotes the unit ball of the RKHS H, where

(1.19) R(s, f) = min (s, 1) — st,
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then :
(1.20) - P<w: M1 o) = 1)
(2n LL n)}

The proof of Corollary 4.3 given here is due to M. J. Wichura, and I am also
indebted to J. Crawford for comments in this area. Crawford’s formulation of
such results consists of part of [3].

Another application of Theorem 3.1 is Corollary 3.2 which is related to the
work of [20]. Theorem 4.3 and Corollary 4.4 are applications of Corollary 3.2
and contain the main result of [20].

In Theorem 4.4 we provide another example of a situation where Corollary
3.1 can be applied. This result is a generalization of Theorem 2.1 in [19], and
since the details of its proof are in the same spirit as those of the proof of Theo-
rem 2.1 they are omitted. Theorem 4.4 is also interesting in that its hypotheses
are exactly those used to establish the central limit theorem in this setting.

It is a pleasure to acknowledge a number of constructive remarks provided
by the referee as well as the previously mentioned comments of M. J. Wichura
and J. Crawford.

The paper [28] is another direction of possible generalization of Strassen’s
fundamental results.

—)—)KR>: 1.

2. Construction of the limit set K. The limit set K in our limit theorems for
B-valued random variables depends on the covariance function of the random
variables involved, and is intimately related to the mean-zero Gaussian measure
on B with the given covariance function provided this measure exists.

A measure ¢ on B is called a mean-zero Gaussian measure if every f'e B* has
a mean-zero Gaussian distribution with variance [ f(x)]* du(x).

If ¢ is a measure on B (not necessarily Gaussian) such that { ; x du(x) = 0 and
{2 ||x]|* du(x) < oo, then the bilinear function T defined on B* x B* by

I(f, 9) = {5 f1)9(x) dp(x) frgeB*

is called the covariance function of .

If 4 is a mean-zero Gaussian measure then it is well known that { ; ||x||* du(x) <
oo, and that g is uniquely determined by its covariance function. However, a
mean-zero Gaussian measure p is determined by a unique subspace H, of B
which has a Hilbert space structure. We describe this relationship by saying x
is generated by H,, and mention that the pair (B, H,) is an abstract Wiener space
in the sense of [9]. ‘

One method of finding this Hilbert space is given in the next lemma which
applies to non-Gaussian measures as well. It also provides a construction of the
limit set K used in our results, and the relationship to Gaussian measures is given
in part (vi) of the lemma. As we shall see, the limit set K is always the unit ball
of this Hilbert space. Finally, I emphasize that most of Lemma 2.1 is known
in one form or another, but to avoid sending the reader to various references
the crucial facts regarding K are collected here.
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LEmMMA 2.1. Let pu denote a Borel probability measure on B (not necessarily
Gaussian) such that § ; ||x||* du(x) < oo and § ; x du(x) = 0. Let S denote the linear
operator from B* to B defined by the Bochner integral

@.1) Sf = 15 1f(x) de(x) feB*.

Let H, denote the completion of the range of S with respect to the norm obtained
from the inner product

(2.2) (S, 89), = §5 f(0)9(x) dp(x) -

Then: (i) H, can be realized as a subset of B and the identity map i: H, — B is
continuous. In fact, for x e H,

(2:3) Xl = (S [YI1* dp(o))* I -

(ii) Ife: B* — H,* is the linear map obtained by restricting an element in B* to
the subspace H, of B and if we identify H,* and H, in the usual way then

e=32S.

(iii) Let {f,: k = 1} be a weak-star dense subset of the unit ball of B*. Let
{a,: k = 1} be an orthonormal sequence obtained from the sequence { f,} by the usual
Gram-Schmidt orthogonalization method with respect to the inner product given by
the right side of (2.2). The each a, € B*, and {Sa,: k = 1} is a C.O.N.S. in
H e B. Further, the linear operators

(2.4) I, (x) = 2, a(x)Sa, and On(x) = x — II(x) N=1

are continuous from B into B where by a,(x) we mean the linear functional a, applied
to x. Il and Q,, when restricted to H,, are orthogonal projections onto their ranges.

(iv) If K is the unit ball of H,, then K is a compact symmetric convex set in B.
Further, for each f e B* we have

(2.5) sup,ex f(x) = {§5 [/ de()} -

(v) If p and v are two measures on B satisfying the basic hypothesis of the lemma
and having common covariance function, then H, = H,.

(vi) If p is a mean-zero Gaussian measure on B, then {, ||x||* du(x) < oo and H,,
is the generating Hilbert space for p.

Proor. Take fe B*. Then {,||y||*du(y) < oo implies the Bochner integral
defining Sf = {, yf(y) du(y) exists and Sfe B. Further,

(2.6) A1l = (Vo 1711 dpe(HIS e -

and hence the map i : S(B*) — B is continuous. Now (2.6) also implies the com-
pletion of S(B*) with respect to the norm given by the inner product in (2.2)
can be realized as a subspace of B, and that the map i: H, — B is continuous
as indicated. Further, (2.3) follows from (2.6) since S(B*) is dense in H, with
respect to the norm ||+||,. Hence (i) holds.
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Lete: B* —» H,* = H, as in (ii). Take fe B*. Then for g ¢ B* we have
f(89) = {5 f(x)9(x) dp(x) = (Sf, S9),. »

and hence e(f) = Sf when acting on the elements in SB*. Since SB* is dense in
H, we have e(f) = Sf provided we identify H, and H, * in the canonical way.
The assertions of (iii) are obvious since each «a, is a finite linear combination
of the f;’s. To see that {Sa,: k = 1} is complete in H,, simply observe that the
f;’s separate points of B (and hence in H,). That is, if a,(y) = 0 for every k
and some y e H,, then by undoing the Gram-Schmidt procedure we thus have
f;(y) = 0 for every j. Since the f;’s separate points we have y = 0 as required.
Perhaps it should be pointed out that when we undo the Gram-Schmidt pro-
cedure we omit all f;’s which are linear combinations of previous f; (i < j) and
those such that § ;[ f;(x)]*du(x) = 0. However, if f; is a finite linear combina-
tion of f; (i < j) and f,(y) = O for i < jthen f;(y) = O as asserted. On the other
hand, if §; [ f;(x)]* du(x) = O, then S(f;) = e(f;) = 0 and hence f;(y) = 0 again.
To verify (2.5) note that

SUP,.cx f(X) = SUPsyex S(SG) = SUPsyex §5 f(X)9(x) dpx()
= (§2 f7(x) dp(x))t
since Sg e K implies ({5 9%x) du(x))! < 1. Now set g = f/(§, f*(x) dp(x))t and
(2.5) holds.

To finish the proof of (iv) we show K is compact in B by first showing K is
closed in B and then verifying that every subsequence {y,} £ K has a convergent
subsequence in B.

Take {y,} < B and assume ||y, — y|| — 0 for y € B. Since K is compact in the
weak topology induced by H,* we have a subsequence {y, } such that y,. con-
verges weakly to z and ze K. Thus { Ya;} converges weakly to z in the weak
topology on B induced by B* as i: H, — B is continuous by (i). Since B* sepa-
rates points of B we have y = z 50 y € K and K is closed.

Since SB* n K is dense in K it now suffices to prove that if {y,} £ SB* n K
then {y,} has a convergent subsequence.

Let U denote the unit ball of B* with the weak-star topology. Since B is
separable we have that U is a compact metric space in the weak-star topology.
For x e B, fe B* let 0x(f) = f(x). Then 6: B— C(U) is an isometry from B
into the Banach space C(U) with the supremum norm. Thus to show {y,} has
a B-convergent subsequence we need only show that {fy,} is an equicontinuous
and uniformly bounded sequence in C(U) (apply Ascoli’s theorem).

Let f, g e U. Then since {y,} £ K n SB* we have y, = Sr, for r, ¢ B* and
such that {, r,%(x) du(x) < 1. Hence

(2.7) = {5 (f — 9)(X)ra(x) dp(x)]
= {§:1(f — )T du=)} -
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Now

Vs [(f — )P dp(x) = IS — 9l s [IX]]* ()
so setting ¢ = 0 we have from (2.7) that

sUpseu |0ya(N)l = (§2 |1xI" dpe(x))? -

Thus {6y, : n = 1} is uniformly bounded on U and it remains to prove {fy,:
n = 1} is equicontinuous on U.
Recall that the weak star topology on U is equivalent to that given by the
metric
L 1f(x) — 9(x)]
df, 9) = D55 2 z
T2 () — 9(x)]

where {x,, x,, - - -} is dense in B.

Fix ¢ such that 0 < ¢ < 1. In view of (2.7) to establish equicontinuity of
{0y,: n = 1}, we need only show that there exists a § > 0 such that d(f, g) < ¢
implies

V5 [(f = 90 dp(x) <.

Our first step is to choose a compact set C in B such that

Vo-c [IX[[* dp(x) <'ef2.

Then we observe that since weak-star convergence of elements in U is equiva-
lent to uniform convergence on compact subsets of B we have a ¢ > 0 such that
d(f, g) < 0 implies

Vo [(f = )P dp(x) < ¢f2.
Combining these two inequalities we have for f, g € U and d(f, g) < 0 that

15 [(f — DE)Pdu(x) < ef2 +¢2=c¢.

Thus K is compact as asserted.
If 4 and v have the same covariance function, then for every fe B* we have

V5 Xf(x) dp(x) = (5 xXf(x) du(x) .

This follows since applying g € B* to both sides we get 7(f, g), the common co-
variance function of x and v. Since such elements are dense in H,(H,) and the
norms induced by # and v are identical on these elements H, = H, as asserted.

The verification of (vi) follows from well-known results on Gaussian measures.
See, for example, Theorem 3 of [15] and Lemma 2 of [14] for details as well as
further references. ‘

We conclude our discussion of the limit set K with some examples. In each
case the details are left to the reader.

ExamrLes. (1) If B = R™ with the usual Euclidean norm ||.|| and # is as in
Lemma 2.1, then :

K = (Zx): xe R, || < 1)
={Z%aR3E )1 Si S n}: ZriaccR3E, j) £ 1)
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where X is the linear transformation associated with the covariance matrix deter-
mined by ¢, and R(i, j) = (; x,x; dpu(x).

(2 If B=1,(1 £ p < ), and p is a measure on [, satisfying the conditions
of Lemma 2.1 and such that the coordinate mappings are uncorrelated, then

K ={{x}el,: T (/o) = 1},
where .7 = §, x,’ dy(x).
(3) If B = C[0, 1] and ¢ denotes Wiener measure (the distribution induced
by Brownian motion) then

K ={feC[0,1]: f{t) = {5 9(s)ds and {3g%s)ds < 1}.
(4) If B = C[0, 1]and x denotes the distribution of the Brownian bridge, then
K ={feC[0,1]: f(r) = §t9(s) ds, {3 g*s)ds < 1, and {}g(s)ds = 0}.

In example (3) ((4)) the set K is precisely the set K, where R(s, #) = min (s, ¢)
(R(s, ) = min (s, £) — st). Ingeneral, if 4 is any probability measure on C[0, 1]
satisfying Lemma 2.1, then

R(s, 1) = §oro, X(5)x(2) dp()

is continuous on [0, 1] x [0, 1]and the set K constructed in Lemma 2.1 is equal
to the set K.

3. A basic convergence result and some corollaries. We first give a general
result which will have corollaries dealing with sums of independent identically
distributed B-valued random variables as well as with other stochastic processes.
In the applications of Theorem 3.1 which we have in mind the Y,’s should be
viewed as approximately Gaussian with approximately a fixed covariance struc-
ture, and the ¢,’s are positive constants taken to provide the necessary conver-
gence.

THEOREM 3.1. Let K denote the unit ball of the Hilbert space H, & B where p
is a mean-zero measure on B such that \, ||x||*du(x) < co. Let{Y,:n =1} bea
sequence of B-valued random variables such that for some sequence of positive con-
stants {$,} we have

(3.1) P{w: lim supu‘(%)—) < sup,e,,f(x)} —1 feB*.
Then:

I. We have .
(3.2) P{w: c<{%})g1<} —0,

and hence P{w: {Y,(w)/¢,: n = 1} is conditionally compact in B} = 1 iff

(3.3) P{w:lim”d<%@,1<>=o}=1.

n

Here d(x, K) = inf . ||x — y||.
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II. If Plw: limsup, f(Y,(0)/$,) = sup,.x f(x)} = 1 for f in B* and if

3.4) P {(o: {%ﬂ nz= 1} is conditionally compact in B} =1,

then H, infinite dimensional implies
(3.5) P{wzc<{%§‘.”l:ngl}>=1<}=1.

Proof. Let K(w) = C{Y (w)/¢,: n = 1}) for w e Q. If K(w) = ¢, then, of
course, ¢ = K(w) £ K. Now B — K is open and B is separable so

B—K=UmN,
where each N, is a closed sphere in B. Then
(0: K@) & K} = Uzei (01 K(0) 0 N, # ¢},
and hence if P* denotes the outer measure induced by P
P*(w: K(w) & K) < 57, P*(0: K(w) 1 N, # ).

If P¥*(w: K(w) &£ K) > 0, then P*(w: K(w) N N, # ¢) > 0 for some r and this
will produce a contradiction.
To verify this last assertion choose g € B* such that

(3.6) SUP,ex 9(X) =< 12 = infz”,r 9(x) .
Then
{0: K@) 0 N, # ¢} < {w: lim sup,,g(%(:o—)) > n} ,

s0 P*(w: K(w) N N, # ¢) > 0 implies

P(w: limsupng<z%(ni)> = r,) >0.

This contradicts (3.1) since (3.6) holds for g. Thus we have
P¥ow: K(w) £ K)=0,
and since we assume our probability space to be complete this gives (3.2).
If (3.4) holds, then (3.2) implies (3.3), and the proof of (I) is complete.
Now we establish (II). To do so we need the linear operators II, and Q,
defined in (2.4) with {Sa,: k > 1} a C.O.N.S. in H, such that each a, € B*.
Fix e > 0. First we shown there exists N, such that N > N, implies
3.7 OyK < {xeB: ||x]| < ¢}.
If (3.7) does not hold, then we have a sequence {x;} such that

x;€Q; K and [1%] = ¢ j=12,...
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Now Q,;K C K for all j = 1 and K compact implies there exists a subsequence

j' such that
lim,,__ x., =2z

g e Ty

in B. Thus ||z|]| = ¢ and since {x;: j = N} S Q,K for N=1,2, --- (Q,K 2

Q,K 2 - .) with each Q, K compact we have z € (N, QyK. This is impossible

since My Oy K = {0} and ||z|]| = ¢ > 0. Hence (3.7) holds as indicated.
Therefore for N = N, we have

(3.8) {a): lim sup,,d(QN (%‘% QNK> < e}

o ()] <}

Since (3.4) holds we have, as mentioned previously, that (3.3) holds. Since Q,
maps B into B continuously we have

(3.9) P {w: lim sup,,d(QN (%“ﬂ QNK) - o} -1,
and hence for N = N, (3.8) implies
(3.10) P{w: lim sup,,HQN (Y_';g‘”_))l‘ < 2e} —1.

Choose 4 € K and take N = N, such that ||Q, /|| < e. Then for an w-set of
probability one we have

o0 [ o (52 ) o (44) 1 e

[ (52 ) >

k

c {a) : lim sup,

for all k sufficiently large (the largeness of k depends, of course, on ).
Since K is separable (3.5) follows from (3.11) if

(3.12) P{w: ”IIN (%“’_) — h)\‘ < ¢ for infinitely many k} _

for any ¢ > 0.
Now II, B = II, H, and all norms on a finite dimensional space are equivalent
so (3.12) holds if

(3.13) P{w: Hl’[w<%— h>

for each ¢ > 0.
To show (3.13) we first prove that for every ge II,,,K such that ||g||, = 1

we have
()

<¢ i.0.in k}:l
”

(3.14) P(w:

< e i.0.in k):l

7
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for each ¢ > 0. Then (3.13) follows from (3.14) by taking g = Il 4 + cay,,
where c is such that ||g||, = 1. That is,

! + 'aN+l (Lk(w—)> —C

# b

s (542) =l 1 (242 - s

P # P

so the event in (3.13) contains the event in (3.14).
Therefore (3.14) is to be established to complete the proof. Take geII,,, K

such that ||g||, = 1. Then g = }}¥*! a\(9)S, where Y ¥+ a,%(g) = 1. Futher-

more, g = Sf, where f, = Y4 a,(g9)e, is in B*. Thus if (3.14) does not hold

there exists a § > 0 such that

(3.15) P{w:limsup,,ﬁ,(zf%w_))g 1 _a} >0.
That is,
310 A4 51t i, (140) = (R (500, ).

and hence fy(Y,()/¢,) denotes the length of II,,,(Y,(»)/¢,) in the direction g
(computed in H,). Letting

A {a): limkd(z’g_wl, K> =0 and lim inf,_,

k

m e |z

we have that P(4) > 0 if (3.14) fails. Therefore for each w € A there exists a
9 > 0 (depending only on N and ¢) such that lim sup, f(Y,(0)/d,) < (9, 9), —
=1 — 4. Thus P(4) > 0implies (3.15). Now (3.15) contradicts the condition

P {w: lim sup, f, <L’;§w_)> = sup,,exfo(x)} =1

since sup,.x fo(X) = sup,.x (%, 9), = 1. Thus (3.14) holds and the proof is
complete.

Proor oF CoroLLARY 3.1. If H, is infinite dimentional, then Corollary 3.1 of
Section 1 is an immediate corollary of Theorem 3.1.

To see this recall that K is compact so (1.4) implies (1.6). For the remainder
let Y, = S,/n* and ¢, = (2LL n)! in Theorem 3.1. Then by the Hartman-
Wintner result applied to the i.i.d. real valued random variables

f(X), f(Xy), - -

we have
Plo: timsup, £ (Z52)) = (L, LANP iy} = 1
for each fe B* where ¢ = #7(X,). By Lemma 2.1 (iv) we have
8 LD de()} = sup.ex f(x)

and hence the conditions of Theorem 3.1 hold proving the corollary.
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If dim H, < oo then Corollary 3.1 follows from a result of H. Finkelstein
[7]. That is, if dim H, < oo, then P(S, € H,) = 1 for every n and we can work
with the H, norm instead of the B-norm on H, because all locally convex
HausdorfF topologies compatible with the vector space structure are equivalent
on finite dimensional vector spaces.

For an example where the normalizing constants ¢, appearing in Theorem 3.1
are something other than (2 LL n)* we turn to a generalization of some of the
recent work of T. L. Lai [20].

CoROLLARY 3.2 Let {Y,: n = 1} be a sequence of B-valued random variables and
assume p is a mean-zero Gaussian measure on B generated by H,. Let Qy (N = 1)
be the maps defined in (2.4) and suppose K is the unit ball of H,. Furthermore,
assume there exists a sequence of positive constants {a,} such that Y, a, < oo, and
for all 2 large, and given integer N, there exists a constant C(N) satisfying
(3.17) Plo: |0y Yi(@)|l = 4} = C(N)p(x: ||Qn x| > 24/2) + a

uniformly in k = 1,2, .... If for every ¢ > 0 and fe B* there exists a positive
constant c(f, €) such that

(3.18)  Plo: |[(Y(@)] = (1 4 )4 sup,.x f(x)}
s o(fs Nae + ey 1S > (1 + ¢/2)Asup.cx )]}
for all A large and uniformly ink = 1,2, ..., then

(3.19) - Plostim, | 2@ k|| =0} = 1.

ReMARk. If, in addition to the assumptions in Corollary 3.2, we have P{w:
lim sup, f(Y,(®)/$,) = sup,.x f(x)} = 1 forall fe B*, H, is infinite dimensional,
and ¢, = (2 L n)}, then

(3.20) P(w:C((;/'ifa;))&:ngQ:K):l.

For applications of Corollary 3.2 and conditions sufficient for (3.20) we refer
the reader to Section 4.

ProoF oF CorROLLARY 3.2. Using Theorem 3.1 we need only verify that (3.1)
and (3.4) hold with ¢, = (2L n)t. |

To establish (3.4) we first observe that given ¢ > 0 and II, defined as in (2.4)
we have

. (3.21) P((Z I}:kk)* ¢K* i.0.in k) < P((fﬁi’;é ¢ K i.0. in k)

(| g

€ . .
_.— i.0.in k).

Here K* = {ye B: ||y — K|| < ¢}, and since K is compact and ¢ > 0 is arbitrary
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to prove (3.4) it suffices to show that

(3.22) P{(z—{kk—)égm i.0. in k} —0.

Now (3.22) follows from (3.21) and the Borel-Cantelli lemma if we show there
exists an N such that

H Y €/2 —_
(3.23) P<(2Lk)* ¢ K i.0. in k)_o
and
(3.24) 24 PUICy Yall > (LK) < oo .

Choose any integer N and ¢ > 0. Then there exists a 6 > 0 such that
(3.25) P(ngw i.0. in k>
(2L k)t
< P Y|, = (1 + $)RLK) io.in k).
The existence of such a ¢ > 0 follows since K is the unit ball of H,, II,: B —
Il, H,, and norms on finite dimensional spaces are equivalent. Now if the right-

hand side of (3.25) is positive there exists a continuous linear functional f on
II,, B such that the norm of fon I, H, is 1 and

(3.26) P(|f1,Y,)] = (1 + 6/2)(2L k)t i.0.in k) > 0.
Now extend f to be linear on all of B by the defining equation f(x) = f(IL, x).
Then f extended satisfies ||f||, = 1 so sup,., f(x) = 1. Hence by (3.18)
(3:27)  P(AY) = (1 + §/2)2 L k)Y
< C(fs 02){a + p(y: 1f )] > (1 + 9/4)(2 L k)h} .

Since f has a mean-zero Gaussian distribution with variance one on B with
respect to measure p# we easily have

(3:28) Ze ey 1S > (1 +9/4)2 LK) < oo
Thus (3.27), (3.28), X, a, < oo, and f(II, x) = f(x) on B imply that
(3:29) ZeP(o: |fAyY(@) 2 (1 + 3/2)2L k) < oo

Using the Borel-Cantelli lemma (3.29) implies (3.26) is a contradiction, and
hence the right-hand side of (3.25) is zero. This implies (3.23) and it remains
to establish (3.24).

Using (3.17) and ), a, < oo it suffices to prove that there exists an integer
N such that

(3.30) T px: [1Qxl] > (42 L AY) < oo

Fix 8 > 1 and choose 2 so that 22(¢/4)* = 8. Since ||Qyx|| — O with p-prob-
abiiity one [12] we have by [21] that there exists an N, such that N > N, implies

(3.31) i exp{A]|QX|[(dx) < oo .
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For fixed N > N, and 2 we then obtain

(3.32) mx: [|Qux|| 2 (/4)2 L k)}) = € exp{—24(e/4)* L k}
<C
=5
where C is a positive constant. Hence (3.30) holds and the corollary is proved.

4. Applications of the general results. Some situations where Theorem 3.1
and Corollaries 3.1 and 3.2 easily apply are examined here. We first consider
sums of i.i.d. random variables and applications of Corollary 3.1.

For the next theorem we need the notation and terminology of [16]and [17].

The norm on B is twice directionally differentiable on B — {0} if for x, y € B,
x + ty #+ 0, we have

d
7 l[x 4+ ty|]] = D(x 4 ty)(p) >

where D: B — {0} — B* is measurable from the Borel subsets of B generated by
the norm topology to the Borel subsets of B* generated by the weak-star to-
pology, and

d?
(4'0) ﬁ”x + ty” = D§+¢y(}’,)’) s

where D,? is a bounded bilinear form on B x B. We call D,? the second direc-
tional derivative of the norm, and without loss of generality we can assume D,?
is a symmetric bilinear form. That is, if T, is a bilinear form which satisfies
(4.0) then A,(y, z) = [T.(y, 2) + T.(z, y)]/2 also satisfies (4.0) and A, is sym-
metric. Hence in all that follows we assume D,? is a symmetric bilinear form.
Of course, if the norm is actually twice Frechet differentiable on B with second
derivative at x given by A,, then it is well known that A, is a symmetric bilinear
form on B x B and in this case D,’ would be equal to A, since symmetric bi-
linear forms are uniquely determined on the diagonal of B x B.

If D,*(y, y) is continuous in x (x + 0) and for all » > 0 and x, 4 € B such that
[|x|| = r and ||4]| < r/2 we have

|D%sn(h, B) — Dk, B)| < C,||A|[**

for some fixed @ > 0 and some constant C, we say the second directional derivative
is Lip (a) away from zero.
We now can state Theorem 4.1.

THEOREM 4.1. Let B denote a real separable Banach space with norm . Let
||+|| be twice directionally differentiable on B — {0} with the second directional deriv-
ative D,* being Lip (1) away from zero and such that

4.1) SUP =1 ||1P.7]] < o0 .
Let X,, X,, - - - be i.i.d. B-valued random variables such that

(4.2) EX)=0 and E|X|< oo,
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and set S, = X, + --- + X, (n=1). Let
(4.3) I(f, 9) = E(f(X)9(X1)) f,9eB*

denote the common covariance function and assume Z(S,/n*) converges weakly to a
measure p. For each integer n let

Y, =X, iff ||X|| £ nt
=0 otherwise

and define the covariance functions
(4.4) T.(f, 9) = E(f(Y, — E(Y,))9(Y, — E(Y.))) fr9eB*.

Then, p is a mean zero Gaussian measure on B with covariance function T. Further,
ifeach T, is the covariance function of a mean-zero Gaussian measure p, on B such
that {p1,} converges weakly to y, then (1.3) and (1.4) hold with K the unit ball of H,.

REMARK. It was shown in [17] that real separable Hilbert spaces as well as
the L? spaces (3 < p < oo) satisfy the smoothness conditions required of the
norm in Theorem 4.1. In addition, it is known that in these spaces the classical
central limit theorem holds for i.i.d. random variables under the conditions given
in (4.2). Hence for such spaces the assumptions in Theorem 4.1 reduce to the
X,’s being i.i.d. random variables satisfying (4.2), and that the Gaussian mea-
sures {s,} converge weakly to the Gaussian measure . In case the space Bisa
real separable Hilbert space or a sequence space of the type /7 (3 < p < co) then
by [13], Corollary 5.2) we always have {¢,} converging weakly to x so our as-
sumptions are precisely the classical ones in these spaces. In[17]a result similar
to Theorem 4.1 was proved, but a slightly stronger moment assumption was
used. Finally we note that the trunaction argument employed in the proof of
Theorem 4.1 leans heavily on some of the ideas in [11].

ProoF oF THEOREM 4.1. First of all observe that x4 must be a mean-zero
Gaussian measure with covariance function 7T since its finite dimensional distri-
butions are of this form.

As a result of Corollary 3.1 and Lemma 2.1(v) we need only verify (1.9).
Since K is compact in B by Lemma 2.1 we need only prove that for eache > 0

S, .o

4.5 Pl Dr ek io.in n}=0.
(4-3) @nLlLay ©0 MO

Arguing as in [16] we have (4.5) holding if
(4.6) 2 P(B)) < o,
where

S

4.7 B, = {(an L;, T ¢Ke forsome n:n, <ng< nm} ;

n, = [B7] denotes the greatest integer < 7, and 8 > 1. Further, we have as in
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[16] that for any fixed ¢ > O there exists a 8 > 1 sufficiently close to one and a
0 > 0 such that for all r sufficiently large

(4.8) P(B,) < 2P (% ¢ @LLn)K?).

r+1

Let II, and Q, be defined as in (2.4). Then for each integer N we have

4.9y P <7S_% ¢(2LL nr)iK‘> <P (HN <TSL+)1*—> ¢(2LL n,)éHN(Kr)>

r+1 Rt
rfon ()l = & eren)

where y > O issuch that if K7 = {xe H,: ||x — K|, < r} then IT,(K7) < II,(K*?).
The existence of such a y > 0 is obvious since II, B is finite-dimensional and
hence all norms are equivalent on II, B (y may depend on N but this will be no
problem). Further,

(4.10) OuK' ={xellyH,: ||x||, <147}

Now (4.6) follows from (4.8), (4.9) and (4.10) provided there exists an N such
that

(4.11) Z,P(.% >%(2LLn,)*><oo
and
.12) =, p(||m, ((‘:—?—) z(+ D@Ll

We will establish (4.11) as the argument for (4.12) is entirely similar.
Recall 6 > 0 is fixed and next we will choose N. Define for each j, n > 1
(4.13) X=X, if || <
=0 otherwise.
Then the truncated random variables {X; ,: j > 1} are independent and identi-

cally distributed, and have common covariance function 7', as given in (4.4),
Let

(414) a, = E(Xj_,n) = S(llzllsn’}) Xv(dX) n = 1, 2, .o

where v is the common distribution of X,’s. Let{f;:j = 1} be a weak-star dense
subset of the unit ball of B* such that ||x|| = sup (f;(x)) and fix s such that 0 <
s < ((0*log 3)/192p)t. Since lim,_., ||Qx|| = 0 with p-probability one [12] we
next fix N sufficiently large so that

(4.15) pxeB:|0yxl <5 2§

Since {g,: n = 1} converges weakly to the measure p and pu(xe B: ||Q,x|| < )
is a continuous function of s ([8], Corollary 5.1), we have for all sufficiently
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large n that
(4.16) pa(xe B [|Qyx]| < 5) 2 %

Now ||x|| = sup, |f;(x)| for every x € B and hence by equation (4.8) of [21] we
have

2 2
4.17 L(x€B: 2t£x{_f_t_lo 3}3x{_‘3t}
(417) p(xe B:IQux| Z 1) < exp D log3f < exp { ]
forn=1,2,...and t = 0.
Assuming N is fixed so that (4.15) and hence (4.17) holds we let
(4.18) S) =Xt o+ X, nx1.

Then we have

(4.19) P(’. Q:_f > t) < P(HQN i:' > r) + nP(|X,|| > ni)
< P(||loy (35| 2 ¢ = wiioyal))

+ nP(||X)]| > nt)
where a, s as in (4.14). Further, since {, xv(dx) = E(X,) = 0 we have a, =
— §{iizii>at) Xv(dx) and hence
(4.20) lim sup,, n¥||a,|| < lim sup, n? §. 504 ||%]|0(dx)
< lim sup, § 544, [|X]|*v(dx) = 0

as §||x|[*v(dx) < co. Since Q, is continuous and linear from B into B thus we
have lim, n*Q, @, = 0 and for all but finitely many n we have

(4.21) P(‘% = t)gP(”QN (M)"gﬂ)+np(||,\f1” > nt)
nt nt 4

uniformly in + > 1. Applying ([16], Theorem 2.1) we obtain

@22) P(| 23] = 0) < u,(xe B0y 2 5)+ S np(i] > ),

where

(4.23) C. = CE||Qy(Xy,, — a,)I]

for an absolute constant C which is independent of r > 1. Now

(4.24) ElQn(Xyn — )l < HE|Qy X, ,lI* + ||Qy ||}

= ACHE|IXP + lleall} s

where C’ is independent of n. Combining (4.22), (4.23), (4.24) and (4.17) we
obtain for all # > 1 and all but finitely many n that

—2p81 4c’
= 1) < 2exp {220+ 20 4 e

+ nP(||X)]| > nt).

(4.25) P<“%§ﬁ
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Using (4.25) and setting ¢t = (d/2)(2 LL n,)* we have (4.11) if

(4.26) S P(IX]| > n,2) > oo
and

3
@27 5, Bl

r

since all other terms form a convergent series (recall n, = ["] where 8 > 1).

To verify (4.26) and (4.27) we first note that P{||X,|| > k!} is decreasing in k
and that

L POIX > KY) = Zp PIX > k) < E|IX* < oo

Thus for some positive constant p

00 > Yz P(IX]] > k) = 27, Biza,_ 0 PO1X] > )
= X (n, — )P X > nt)
20 5, nPIX]| > n)
since n, — n,_, = [B"] — [B*] ~ [A"](1 — 1/B). Hence (4.26) holds.
Letting a, = E||X, ,||* we see
a, £ Nia KP(k — 1 < ||X|P < k),
and hence

Eranta, < Yn o T KPP — 1 <X £ k)
S Dea kP — 1< |IX|P < k) - Eeen?
= O(Zz1 kP(k — 1 < ||X|[|* = )
= E||X|||* < o .
Since a, is increasing in n we have for some p > 0 that

a a1 G
co > an1—; = v j;nr+1.i;
n J

a
= 2 (e —ny) ;r
niia

=020 :—j;
since (n,,, — n,)fnd,, = (1nt)(1 = nfr,) ~ (/b )(1 — 1/6). Hence (4.27)
holds and (4.11) is established.
Since N is fixed we can prove (4.12) using classical Berry-Esseen estimates and
the truncation argument provided above. Hence the theorem is proved.

ProoF oF THEOREM 4.2. Since K, is a compact subset of C[0, 1], then (1.14)
clearly implies (1.15).

Hence assume (1.15i) or (1.15ii) hold. In view of Lemma 1.1 we have (1.14)
if (1.12i) holds with K = K, and any finite subset T of [0, 1].
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Using (1.13) example (1) of Section 2, and the law of the iterated logarithm
for random variables taking values in a finite dimensional space we have (1.121)
if, given

KR = {chn¢n: Z’ncnz/ln é 1} ’
then the set K (T) = {(x(?)),cr: X € K} is just the set Ky = {Z}(x): xe R", [|x]| =
1) for T = (1, -, 1,) and I = (g,,), 0,5 = E(X(t)X(1;)) = R(t,, 1)

First we show K (T) € K;. To do so we first make precise some notation.
Let » denote the norm for H, and let R, denote the restriction of the kernel
RtoT x T. Let Hy_ be the RKHS of the kernel R, i.e.,

Hp ={{X3c;R(t,t): 1 <isn}i(e,---,¢,)€ R"}

with norm

{31 ¢ Rt 1) 2 1 < i < n{lug, = (L1721 €:¢5 R4 1))
If x e Hy, then by [1], page 351, we have the vector (x(t,), - - -, x(1,)) = Xr
such that
%2/l = IDE{[[fllug: f€ Hr fr = X1} -

Hence x € K, implies [1%7]]1p, = 150

Ki(T) S Kg, = K; (by example (1)) .

On the other hand, if x € K, then x = (x,, - - -, x,) where
X, = 1r_,¢;R(t;, 1) i=1,.--,n,
and ||x||3, = ZfiaccR(, ) < 1 If |
g(s) = 23n_,¢c; R(s, 1) 0ss<1,

then g, = xand g e K since ||g||}, = X7,-1¢:¢; R(#;, 1;) < 1. Hence the theo-
rem is proved.

PrOOF OF COROLLARIES 4.1 AND 4.2. Let T, = {i/2": 0 < i < 27} and define
A, = A, for r = 1. The corollaries hold if we establish (1.15ii) or, equiva-
lently, if for every ¢ > 0 we prove there exists r(c) such that r = r(¢) and A =
A, implies

(4.28) P{||H, — A(H,)||o = ¢ i.0.in n} =0.
To prove (4.28) we first prove that for any ¢ > 0
(4.29) lim, P{||S, — A(S,)||l- = e(2nLL n)t} = 0.
Now (4.29) follows since for A = A, and D; = [(j — 1)/27, j/2"] we have
P{IS, — A(S)ll > ¢(2n LL ny})

S — S, (j - 1)' > < @nlL n)é}

5
2}} =9 ((LIT n)é> ’

= ?llP{suP,eD,.

S.(j127) = Su((j = 1)/2)
(¢/2)(2n LL n)?

< z7.28]




A STRONG CONVERGENCE THEOREM 765

where the last inequality is a result of the maximal inequality ([4], page 353)
applied to the submartingale |S, (1) — S, ((j — D2D)(j — 1)/2" < t £ j[27).

Now we prove (4.28) provided A = A, where r is sufficiently large so that
r = r(¢) implies

(4.30) ot = E<<X1 (J_) —X (!: 1»2) < <i)2 1
2" 2" 96/ (1 + ¢)?
forj=1,...,27. Thatlim,  sup; ¢}, = O follows immediately from the con-
tinuity of R(s, f) on [0, 1] x [0, 1]. Henceforth we set A = A, where r = r(e)
and (4.30) is satisfied.
Let 4, = {||S,/(2n LL n)* — A(S,)/(2nLL n)t||, = ¢} forn = 1,2, -... Then
lim sup, 4, < limsup, B, where

o=l ~
(2n, LL )} (2m, LL n,)?

= ¢ for some n(n, < n < n,m)}

£

and n, = [B*] with 1 < 8 < 2. Now by the same proof as given in [2], page
45, for real valued random variables

1
@3 PBYS 1 P(IISs,, — Ay )le Z 5 @uLL),

whered = sup, <., . P{I(/ — A)S,,,, — (T — MN)S,|l» > (¢/2)(2n, LL n,)}). By
(4.29) d < § for k sufficiently large and hence for large k

(4.32)  P(B,) <2P||S, . — A, )l > _; (2n, LL nk)&>

1

=2 B P {suPicn, [ Suy () = Supy, (I5)| > 5 @ LL )

where D; = [(j — 1)/25,j/21 (j = 1, -+, 2.
In case the {X(7)} are independent increment processes we have for large k
(by the same argument used in (4.31)) that

— 1
Supnal) = S, (L5)| > 5 @nLLmy)

(4.33) < ZP( Surs (%) — S..., (Lz—_1>| > & @nLL n,‘);>

< 27 {[SenlU) = Sonli = D) ¢ (2mLL )
a (Migr - 05 ) 8 \ myy0%
{ S = 30U = D (14 gL mt}
(M110% )t

provided (¢/8)(n,/n,,,0% ,)* > 1 + ¢. Now this last inequality results from (4.30)
since n,/n,,, = %.

Now (4.28) follows if ], P(B,) < oo and these probabilities sum by applying
(4.33) and the truncation method applied in the proof of Theorem 4.1. Here

P (suptwj
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things are much easier as S,  (j/2") — S, ((j — 1)/27) = ZE[X(/27) —
X,((j — 1)/27)] and the random variables summed are real valued, mean zero,
and have variance ¢%,. Hence the classical Berry-Esseen estimates [6] apply
when we execute the truncation technique in this setup. Thus (4.28) holds if the
processes are independent increment processes and therefore Corollary 4.2 is
proved.

If we have (2 + J) moments and the {X,(f): k = 1} are martingales we have
by the maximal inequality for submartingales ([4], page 353) that

P {suptepj S t) = Su.. (1_2__1>] > (@nLL nk)é}
4(n,, ) (S (U127) = Sap (G = D27))"\E '
(4:34) = ¢(2n, LL n,)} E( Mers ) P!

IA

E(an LL n,.;)i i ( k"'s) - ( ( k.l.E) ’

where

| -
Ay ={ |80 (£) = Soves (15| > £ @uLLm)]

Let Y, = X,(j/2") — X((j — D/2")(a = 1,2, -..). Then the Y, ’sarei.i.d. with
mean zero and E(Y,%) = o, < (¢/96)*(1/(1 + ¢)?). Hence for large k
\

>_§_<2n,c LL n,‘>*>\
\

4.35)  P(4,,.) = p( Vit oot Yo
(M4107,0)} 4
:P<1 Yi+ oo+ Y,
(nk+10§'.1‘)* \
since (4.30) and n,/n,, = § imply (¢/4)(n,/n, 0% )t = 4(1 + ¢). Sincé‘ the ¥’

have (2 4 ) moments, (4.35) and the Berry-Esseen estimates [6] imply that

2
Ney105,,

> 4(1 + o2 LL nm)\

(4.36) P(A,;) < P(;U{ > 4(1 + &2 LL n,,)i) + 0< L )

nk5/2
where U is a normal random variable with mean zero and variance 1. Thus
1

P(A4,;.) = 0T 9CLLm) e-81+022LLLY) 4 O (#)
(4.37) < nk)llmw +.0 (,,:.s/z>
<0( ).
k* log B
Thus by (4.32), (4.34) and (4.37) we have
2 P(B) < oo

Hence (4.28) holds in the martingale case, and Corollary 4.1 is proved.

PrOOF OF COROLLARY 4.3. Let X (t, ) = 1 4(U(w)) — t for k = 1. Then
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n(F,(t, ) — t) = 2 2., Xi(t, w) and the covariance structure of each X, is given
by (1.19). Furthermore, it is shown in (J. Kiefer, Zf W 24 1972) that X,(7)/(1 — ¢)
is a martingale in 7, 0 < ¢ < 1, so an easy application of Corollary 4.1 gives

(4.38) P(w: {%ﬁ_ n> 1}

asymptotically equicontinuous on [0, 1 — 5]) =1

forany 6 > 0. Symmetry considerations immediately give that (4.38) also holds
on the set [4, 1], and hence Theorem 4.2 yields (1.14) to complete the proof.

We now turn to applications of Corollary 3.2.

Let x, and p, be probability measures on the Borel subsets of the metric space
(M, d). Let & denote the closed sets of (M, d), and define for each ¢ > 0 and
subset 4 of M the set 4° = {ye M: d(y, A) < ¢} where, of course, d(y, 4) =
inf,.,d(y, x). Let e, =inf{e >0: yu(F) < po(F) + ¢ VFe &} and ¢, =
inf{e > 0: u(F) < py(F*) + ¢ V Fe ©’}. Define L(y,, #t;) = max (e, ¢5). Then
L is the Prokhorov metric on the class of all Borel probability measures on M
and weak convergence for these measures is equivalent to L-convergence [24]
provided (M, d) is complete and separable.

If X is a B-valued random variable, then the probability distribution X induces
on B is denoted by -Z1(X).

THEOREM 4.3. Let {Y,: k = 1} be a sequence of B-valued random variables and
assume p is a mean-zero Gaussian measure on B generated by H,. Let K denote the
unit ball of H,. If

(4.39) LAY, 1) = by

where 3, b, < oo and L is the Prokhorov metric for measures on (B, ||+||), then
(3.19) holds. If the Y,’s are independent random variables as well, then (3.20) holds.

CoroLLARY 4.4. Let{Y,: k> 1}, p, H,and K be asin Theorem4.3. If £(Y,) =
p forall k = 1 then (3.19) holds. If we also have

(4.40) My, moee E(E(S(Y2) | 0)F) = O

for every fe B* where &, = F(Y,: k < m), then (3.20) holds.
REMARK. Corollary 4.4 is due to T. L. Lai in [20].

ProoF oF THEOREM 4.3. It follows immediately from the definition of the
Prokhorov metric L and (4.39) that for all large 2 and given integer N we have
(3.17) with C(N) =1 and a, = b,. Recall here that Q,: B — B continuously
so {x: ||Qyx|| = 4}is a closed subset of B. Similary, if fe B* then {y: |f(y)| =
(1 + €)Asup,. f(x)} is a closed set in B so (3.18) also follows from (4.39) with
C(f,¢) = 1 and a, = b,. Thus (3.19) holds as asserted. To prove (3.20) when
the Y,’s are independent we first show that

(4.41) P(w: limsup, f(Y,/(2L n)}) = sup,.x f(x)) = 1 feB*.
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Let fe B* and fix ¢ > 0. Since L(-<(Y}), 1) = b, we have for all large & that
(4.42)  P(f(Yy) 2 (1 — )2 LK)} sup,cx f(x)) + by
2 u(x:if(9 2 (1= 5) QLA sup, /()

Now f{(x) has a Gaussian distribution with mean zero and variance § ; f*(y)u(dy) =
sup, . x f(y) so we have

(@43 Ten(x:f9 2 (1— 2) QLAY sup.cc fi9)

2 2
_ —s%/2 Jo _
= Dk Sz—z/znsz)be #ds = oo .

(27)!
Combining (4.42) and (4.43) and using the fact that }}, b, < co we have
(4.44) Ze P(f(Y) 2 (1 — )2 L k) sup,cx f(x)) = oo .

Since the events involved in (4.44) are independent we have by the Borel-Cantelli
lemma that

P(f(Y,) = (1 — ¢)QL k)t sup,x f(x) i.0.in k) =1.

Hence (4.41) is verified and (3.20) holds provided H, is infinite dimensional.
This completes the proof of the theorem since (4.39), with };, b, < oo, and fairly
standard computations give (3.20) when dim H, < co.

ProOOF OF COROLLARY 4.4. That (3.19) holds in this situation is obvious since
we have L(<£(Y,), p) = 0fork = 1,2, - ... We next use (4.40) to prove (4.41)
for all fe B*.

Fix fe B*. If sup,.x f(x) = O, then since K is symmetric we have f(x) = 0
for all x ¢ K, and hence '

E(f}(Ya)) = Vs f*(0)e(dy) = sup,ex f*(x) = 0.
Thus (4.41) follows immediately if sup,., f(x) = 0. If sup,., f(x) > O define
x,= JY) g,
sup, e ¢ f(¥)
Fixe > 0, ¢ < 4. Choose an integer 2 > 1 and by (4.40) an integer n, such that
n = n, implies ‘ ’

E(E(Xlnlfl(n—l))z) é '% .

LetU, = E(X;,| 5 ym-n)andV, = X,;, — U, forn = n,. Then E(U,) = E(V,) =
E(X,) = 0 and since n = n,, E(U,”) £ ¢/2and E(V,) =2 1 — ¢/2as U, and V, are
independent Gaussian random variables with E(X},) = 1. Let

X
c,={ X S 1_4
" {(2LG)é > 6}
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b = {(—2|LU;|n)i > 6}

v
Fo={ Vo S1_ 2,
" {(2LG)é > 5}

Then C, 2 F, n E,° and P(C, i.0.) = P(F, n E,’i.0.). Now P(E,° for all large
n) = lsince P(E, i.0.) = 0. Thatis, ;, P(E,) < oo as U, is Gaussian with mean
zero and variance less than or equal to ¢/2, and hence by the Borel-Cantelli
lemma P(E, i.0.) = 0. Now P(F, i.0.) =1 iff 3, P(F,) = oo as the random
variables {V, : n = n,} are independent and hence the events F, are independent.
That is, the V,’s are Gaussian with mean zero so they are easily seen to be
independent by checking they are orthogonal. Further,

P(F,) = P( Ve

1
m >1 - 26) AT Ero e Y a-20aL imi e EV D dy

T @rE(V,)
S
= @y

L —32/2
S(l—r)(len)ée ds

where 1 — 7 = (1 — 2¢)/(1 — ¢/2)* and we are using the fact that
EV)=1— 2
vzl

in our change of variables. Since 7 > 0 we have

2 P(F,) = +o0
so P(F, i.0.) = 1. Thus P(C,i.0.) = 1 and hence (4.41) holds as ¢ > 0 was
arbitrarily small. This completes the proof of the corollary since (4.41) now
implies (3.20) if dim H, = oo, and if dim H, < oo, then fairly standard modifi-
cations of the previous argument yield (3.20) as well.

Another application of Corollary 3.1 is given in our next result which estab-
lishes the law of the iterated logarithm for C(S) valued random variables under
conditions exactly the same as those used to establish the central limit theorem
in this setting. Its proof is in the same spirit as that of Theorem 2.1 of [19] so
it will be omitted. Further references and examples are also contained in [19].

Let S denote a compact metric space with metric d. Let C(S) denote the
space of real-valued continuous functions on S, and for fe C(S) define ||f]|., =
sup,es | f(#)|- If S is a pseudo-metric space with pseudo-metric p, then N(p, S, ¢)
denotes the minimal number of balls of p-radius less than ¢ which cover S. The
e-entropy of (S, p) is

H(p, S, ¢) = log N(p, S, ¢)

where log x denotes the natural logarithm of x.

If S is a metric space under d and p is a pseudo metric on S'we say o is con-
tinuous with respect to d if for every ¢ > 0 there exists 6 > 0 such that d(s, /) <
implies p(s, ) < e. If S is compact under & (with topology z,) then it is easy to
see that p is continuous with respect to d iff z, is stronger than 7,
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THEOREM 4.4. Let X be a C(S) valued random variable such that
E(X(s)) =0 and E(X*(s) < oo seS.

Suppose there exists a nonnegative random variable M such that for given s, te S
and sample point w we have

|X(s, ) — X(t, 0)] < M(@)o(s, 1)
with E(M?®) < oo and p a pseudo-metric on S such that p is continuous with respect
tod. If

(@) $o HY(S, p, u) du < oo,

(b) Xy, X, - - - are independent identically distributed such that £ (X,) = A(X),
and if

(¢) K is the unit ball of H ,,, then

P{nm"d<__ii___ K>::0}=1

(2n LL n)t ’
and
S .
PIC{{—r __:n2= 1 =Kt =1.
(2nLL n)}
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