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ALMOST SURE CONVERGENCE FOR THE
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In this paper we investigate the almost sure convergence of the
Robbins-Monro process X1 = Xn — a@u(y» — ) under assumptions about
the conditional distribution of y, given x, which involve the existence of
first moments or something closely related. The process x, can converge
almost surely even when the series 31, @u[ys — E{yx|xa}] does not do so.

1. Introduction. Suppose one wishes to find the unique number ¢ at which
a fixed function m(.) takes on the value «, that the function m(.) is unknown,
but that at each real number, x, a random variable whose expectation is m(x) can
be observed. Robbins and Monro [10] proposed starting at some x,, observing
Y1 at x,, and recursively generating x,,, from x, and y, by the relationship

(1 Xog1 = Xp — (Y0 — Q)

where y, is observed at x,. This problem and variations of it have been studied
extensively. The convergence almost everywhere, in mean-square, and in pro-
bability of x, to # have been studied as have the asymptotic distribution of x, and
optimality properties of (1).

In this paper we restrict our attention to the almost sure convergence of x,
to 6. We use (1) but allow the function m(.) to vary with time (with n). The
convergence almost surely of x, to 6 and the strong law of large numbers are
closely related, however, past results on the almost sure convergence of x, to ¢
have assumed the finiteness of E{|y,|?|x,} for some p > 1, usually p = 2 (see
Krasulina [8] for results with 1 < p < 2), while in the i.i.d. case the strong
law of large numbers requires only the finiteness of first moments. In this paper
we deal, as nearly as possible, with the case p = 1.

Section 2 contains a precise statement of our model—which is essentially that
of Burkholder [3] in his Theorem 1—and statements of our results. In Section 3
these results are compared with other results in the literature and our assumptions
are discussed. Our proofs are in Section 4. Section 5 contains some remarks
about sharpness.

2. Our model and results. Let x,, y,, y,, - - - be random variables on a pro-
bability space (Q, Z, P). The symbol w will denote a point in Q. Let a, be a
sequence of real numbers, and for n > 1 define

(2) Xogr = Xog — an,yn .
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(We assume—strictly for notational convenience—that the & and @ referred to
in Section 1 are both zero. Thus we will be concerned with the almost sure
convergence of x, to zero, not to §.) We assume that for all @ and n we have
Ply, S t]xyy ooy X351 -+ 5 Yaoi}(@) = P{y, < t]|x,}(») and that the only de-
pendence of P{y, < | x,}(») on w is through x,(®); we use the notation P{y, <
t|x, = x} and also E{«|x, = x}. We further assume that E{|y,||x, = x} < oo
for all real x. We define m,(x) = E{y,|x, = x} and §, = y, — m,(x,).

In that which follows we use three notational conventions. If A is a finite
set, we use #4 to denote the number of elements in 4. We use C to denote
all positive constants whose exact numerical values do not matter; using this
notation 1 4+ C < C makes sense. We will use a/bc and a/b(c + d) instead of
a/(bc) and a/(b(c + d)) with some regularity to cut down on the number of
parentheses needed.

We assume

(3a) a,>0 for all n,
(3b) there existsa C > 0 such that for every a >0 we have
#{n|a, = a} < Cla,
(4a) for every a > 0 there existsan N such that
xmy(x) =0 forall n=N and |x|=a,

(41b) for every 0 < a< b< oo wehave

Z:=1 a’n infuézsb m'n(x) = - Z:=1 an Sup—bézs—a m'n(x) = 00, a‘nd
5) . there existsa C > 0 such that for all x andall =n

we have |m,(x)] < C(1 + |x]).

Whenever the function F appears it will be used in an expression bounding the
tails of the conditional distribution of &, or of y, given x,. We will always
assume that

(6a) F is nonincreasing, F(0)=1, and lim,_, F(x) =0.

If we have an F which satisfies (6a) and the remaining properties which we will
want it to satisfy, then it can easily be modified so as to be continuous as well.
We will assume that

6b P{l¢,| = s|x, = x gF( 5 > forall x andall s=0,
60 Pl zsln == P (0

or equivalently that P{|¢,| = #(1 + |x,|)|x,} < F(¢) for all # = 0.

THEOREM 1. Assume the model presented in this section including (3), (4), (5), and
(6). Suppose one of the foliowing two sets of conditions holds:
) (v tlog t|dF(f)| < oo or
®) (¢ tdF(1)] < oo and
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&) forevery C >0 thereexistsa d >0, a positive integer
N, andan ¢ in(0,1) such that forall n>= N andall

x| = C  we have

(%9a) SUPeaa [E{En e 1st/a, | Xn = X} = (1 — €)|my(x)] .
Then x, — 0 almost surely.
REMARK. (9a) holds if either (i) the conditional distribution of &, given x, = x
is symmetric, or if (ii) .54/, HdF((H)/1 + [x])| = (1 — €)|m,(x)|.
COROLLARY. Assume the model presented in this section including (3), (5), (62),
and (8). In addition assume
(3¢) 271Gy =0,
(4¢) for every a > 0 there exists a positive integer N such that
If, gy Ma(X) > O @nd  SUP,¢_yimsy Mu(x) < O,
and either
(4d) for every C > 0 there exists a positive integer N and an ¢ >0
such that if |x| = C and n =N then e|x| < |m,(x)|,
or
(6¢) P{l¢,| = s|x, =x} < F(s) forall s=0, all n, andall x.
Then x, — O almost surely.

Proor. It can be shown in a straightforward manner that the conditions of
Theorem 1 hold.

In addition to these results obtaining—from basic considerations—the almost
sure convergence of x, to 0, we will also prove the following theorem obtaining
almost sure convergence from a weaker form of convergence.

THEOREM 2. Assume the model presented in this section including (3), (6a), and
(8). Assume that

(10) there existsa b >0 such that
(10a) m,(x) exists and is finite for all |x| £ b,
(10b) SUP, a5 |M(X)] < 00,
(10¢) forall a in (0,b) we have
21 @ infagugy Mu(X) = — 3071 G, SUP_pgos0 M(X) = 00,

(10d) for every a in (0,0b) there existsan N such that xm,(x) =0
forall n=N and a<|x|<b, and

(10e)  P{l€,| = s|x, =X} < F(s) forall s=0 andall |x|<b.

If x,, — 0 in probability, then x, — 0 almost surely.
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The main point of interest about Theorem 2 is that once one has x, — 0,
then it takes additional assumptions near zero only to get convergence almost
surely. Note also that the conditions (10a)—(10¢) of Theorem 2 are guaranteed
by either of the two sets of conditions of Theorem 1.

It should also be pointed out that if ¢ is in [a, 5], and if we define recursively

Xny1 = al(z n—Cn¥n<a} + (xn - anyn)l(agz,,—-a,,,v,,ﬁb) + bI(b(zn—any”) s

then theorems can be proved which provide the almost sure convergence of x,
to zero and which are similar to, but simpler to prove than, the ones stated
here. For example, condition (5) would reduce to sup,..; |m,(x)| < C and (6b)
would reduce to P{|§,| = s|x,} < F(s) for all x in [a, b]. Theorems of this sort
exist in the literature. Robbins and Siegmund [11, page 244] have introduced
adifferent form of “truncation” for controlling the oscillation of the sequence x,,.

3. A brief discussion of our assumptions and comparison with the literature.
As the name suggests, the Robbins-Monro process was introduced by Robbins
and Monro [10] who proved mean-square convergence of x, to zero (actually,
to 0) under the assumption that the y,’s are bounded, the assumption that 0 <
Ci/n < a, < Cy/n for all n, and fairly strong assumptions on m (m, = m). Blum
[1] was the first to prove almost sure convergence; he assumed

(11) m(x)| < ¢ + d|x| forall x,

(12) E{(y, — m(x,))*| x,} £ 0* < oo forall n and all values of x,,
(13) xm(x) >0 for x+£0, and

(14) inf,_ < [m(x)) >0 forall 0<a<b< .

Numerous authors have worked on variations of this problem. Dvoretsky [5],
for example, has worked on a stochastic approximation scheme which is quite
general. (A paper by Schmetterer [12] and a book by Wasan [13] contain
extensive bibliographies.)

Our model is essentially that of Burkholder [3, Theorem 1]. He assumed
conditions (4a) and (5) and a condition just slightly stronger than our condition
(4b). He also assumed the existence of, and a uniform bound on, the conditional
variances of the y,’s, and that

(15) Z:=l an2 < oo .

If our a,’s were reordered so as to be nohincreasing in n, then (3b) would imply
thata, < C/n for all n so that our (3b) is more restrictive than Burkholder’s (15).

Most authors who have worked on this problem have assumed that the con-
ditional distributions of the y,’s have finite variances though their methods of
proof may not have required such an assumption. Krasulina [8] assumed only
that for some p > 1

(16) E{ly, — m(x,)]?|x,} £ C, < oo uniformlyin n and x,.
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It is our purpose in Theorem 1 to come as close to the case p = 1 as possible.

If we could first argue that 3;=_, a,&, converges to a finite limit almost surely,
then the rest of the proof of Theorem 1 would follow easily using essentially
Blum’s methods [1], [2]. We were, of course, unable to do this; in fact, this
method of proof would seem to be precluded entirely in the case p = 1 as long
as we allow the conditional distributions of the &,’s given x, to grow linearly
in x, as in (6b). If the bound F[s/(1 + |x[)] in (6b) were replaced by F(s), then
these conditional distributions would be uniformly bounded in x,. Then, when
(7) holds, either the lemma numbered (10) of Dubins and Freedman [4] or a
minor modification of Theorem D on page 387 of Logve [9] gives the almost
sure convergence of ) ~_, a,§, to a finite limit. The series Y=, a,&, may not
converge to a finite limit almost surely if (7) does not hold. Gladyshev [7] and
Robbins and Siegmund [11] allow the conditional distributions of the &,’s given
x, to grow linearly in x, but they assume finite variances and we have been
unable to use either method of proof in our situation.

For intuitive purposes it is convenient to write (2) in the form x,,, = x, —
a,m,(x,) — a,§,, to think of a,m,(x,) as a correction term causing a return to
zero, and to think of @,&, as an error term. Then the particular inequality in
(3a) is simply a convention, but the combination of (3a) and (4a) guarantees
that “eventually” the correction term is in the right direction. Assumption (4b)
guarantees that the process will not get caught away from zero lacking enough
“remaining correcting force” to return to a neighborhood of zero. If the error
term is zero, then it is “obvious” that some sort of bounds must be put on the
m,’s in order to prevent wilder and wilder oscillations of the sequence x,;
assumption (5) is a standard assumption for eliminating this potential problem;
Dvoretsky [5, Remark 1, page 51] gives an example of this oscillation problem.
(Engelhardt [6, Theorem 1] shows that a similar linear growth condition on the
conditional standard deviations of the &,’s given x, (first used by Gladyshev [7])
is reasonably “tight.”)

Our remaining assumptions essentially gurantee the proper behavior of the
sequence a,&,, either by itself or in relation to the sequence m,. We originally
tried to prove Theorem 1 assuming (8) as our only assumption on the function
F bounding the tails of our conditional distributions. Unfortunately, this is
insufficient; an imbalance in the tails—positive and negative—can cause almost
sure convergence to fail. Our assumption (7) bounds the imbalance sufficiently
and, indirectly, guarantees the almost sure convergence of } 7, a,, to afinite
limit. (9a) relates the allowable imbalance to the particular sequence a, and
the particular mean functions m, involved; it does not necessarily guarantee the
almost sure convergence y.=_, a,&, but instead guarantees that the m,’s are large
enough to compensate.

4. Proofs. We begin with two lemmas involving the sequence a, and the
moment assumptions (7) and (8).
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LemMA 1. Assume (3), (6a), and (8). Then for every d > 0 we have

(17) 21 F(dfa,) < o0

and

(18) 2in=14." $10,00,1 V' 1AF ()] < o0 .
PRrROOF.

Y F(d]a,) = X5 [Z{nlM—1<d/ansM) F(M — 1)]
= Zua #{n|M — 1 < dja, < M} 37, [F(k — 1) — F(k)]
= Zia [Fk — 1) — F(k)lg{n| d[k < a,}
= CXiak[F(k — 1) — F(k)] < oo
This proves (17). To prove (18) we perform similar but more complicated
manipulations.

Yin-1 @, § 10,4/, Y|dF(y)|
._S._ Z;=1 [Z(nlM—1<d/an§M) an2 S[O,M] )’2|dF(}’)|]
< C+C X5 4n| M—1<dja, < MIM* TIL, R[F(k—1)—F(k)]

(19) S CH+C Yo K[F(k—1)—F(k)] 25 M{n| M—1<dja, <M} .
Note that
D= M {n | M — 1 < dfa, < M}
- 1 1 p _
= 2 (}7_(]—4_7)7) D= #{n|M — 1 < dfa, < M}

SCE g Bnldj S a) = C L) = Clk.
Thus (19) is finite.
LEMMA 2. Assume (3), (6a), and (7). Then for every d > 0
(20) 21521 Siajag e HAF(1)] < 00
PRrOOF.

2in=14, S(d/an,oo) t|dF(1)]
= Z:Lo=1 an[(d/an)F(d/an) + S(d/an,w) (t - d/an)ldF(t)I]
= C + Y51 [ X mi-1<asapsin Gn $i1-1 F(t) dt]
< C ot Mok M= 1< da, < M) S By FR)
< C 4 C Xy F(k) Syos M40 | M < dfa, < M + 1)

= CHC DT [F() = F(+D] Zims T2 40| M<dja, < M+1)

< C+ C U7 JIF() — F( + DI Zi- MT¥{n|d]a, = M + 1}
— X M7{n|d]a, < M}]
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LN ) #ln| dja, < M+1}

< C+C X7, JIFU)~FG+D]| T (5,- M1

+ 4l dja, S 5 + 11 ]

= €4 C X JIF() — FU + DX M7(C/M) + €]
= C+ C L JIF() — F( + Dllogj + €] < ..

Proor oF THEOREM 1. The proof has several distinct parts to it. Lemma 3
is used later in the proof. In Lemma 4 we show that if 0 < a < 8 < oo then
P{lim inf x, <a; lim sup x, > 8}=0 and P{lim inf x, < — §; lim sup x, > —a}=0.
A standard argument using these shows that if we allow + co and — co as limits
then P{lim x, exists} = P{lim x, € [— oo, + 0]} = 1. In Lemma 5 we use argu-
ments similar to those used in Lemma 4 to eliminate the probability of all finite
limits except zero, i.e., to show that P[lim x, € {—o0, 0, 4+ o0}] = 1. The re-
mainder of the proof uses a moment argument to eliminate + oo and —oo.

LEMMA 3. Assume the model presented in Section 2 including (3), (5), (6) and
8). Thenif 0 < a< B <
21 Px, < a and x,., =B i.0.} =0
and

Plx, = —a and x,, < —p i.0.}=0.

Proor. The proofs of the two conclusions are essentially the same. We will
prove only the first of the two. For that it suffices to show that }»_, P{x, <
a, X, = B} < . Note that

{xn+1 g IB’ xn é a} == {(xn - ‘B)/an - mn(xn) g én’ xn é a}
c {(X” - ‘B)/a,, + C(l + |xnl) = Em Xy = a}
o+ [ P=nly o]z 60 x 2
0+ b
c {(1 + |xn|)(_l/an + C) g ’Sn’ Xn = a}
where 2 = min {1, (8 — a)/(1 + a)}. Since (3b) implies a, — 0, for n sufficiently
large C < 2/2a,, and thus P{x,,, = B|x, < a} < F(4/2a,). Consequently
Yiwa P{xa S o, X,y = B} = C + 27, F(4)2a,)
which is finite from Lemma 1.
LEMMA 4. Assume the conditions of Theorem 1. If 0 < a < 8 < oo then
(22) P{liminf x, < @ and limsup x, > B}
= P{liminfx, < —B and limsupx, > —a} =0.
Proor. The proofs that the two probabilities in (22) are zero are essentially
the same. We will prove only that the first of the two is zero. For n =1,

2, ... define 9, = a,§, g0 ,<p- Fix d > 0;if (9) is applicable let d be associ-
ated with C = a/2 in (9). Define 7,? = 9,1, <q- Whether x, € [a/2, 8] or
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not, we have Py, # 7,*|x,} < F(i/a,) where 2 = d/(1 4+ f). Lemma 1 gives
Yin—1 P{na # 1,%} < oo so that P{y, # 5,%i.0.} = 0.

Let z, = 5,* — E{3,*|x,}. Note that E{z,|x,} = 0 and that the z,’s are
bounded by 2d. A straightforward calculation and an application of Lemma 1
show that 31>, E{z,*| x,} < co. Then either the lemma numbered (10) of Dubins
and Freedman [4] or a minor modification of Theorem D on page 387 of Loéve
[9] will give the almost sure convergence of Y>_, z, to a finite limit.

Define the sets 4, B, C, and D as follows:

A = {o|x,(0) £ «/2 and x,,,(0) = « only finitely often},
B = {w| 2%, z,(w) converges to a finite limit},

C = {0 | 7.(w) # 1,%(w) only finitely often}, and

D = {w|lim inf x,(0) < a, lim sup x,(w) > B}.

Note that P(4) = P(B) = P(C) = lsothat P(4 n B n C n D) = P(D). We will
show that AN BN Cn D is empty and that will complete the proof of this
lemma.

Now suppose that we 4 n Bn Cn D. Choose N large enought that for
m = n = N we have

(23) Xu(®) = a  implies  x,(0) = /2,
(24) |27 z(@)] < (B — @)/2,

(25) 7a(0) = 7,%0) ,

(26) m,(x) =0 forall x=a/2,

(27a) if (7) holds (using Lemma 2), then

2i=m (1 + B)a $carap1em,e SIAF(5)] < (B — @)/2,
and

(27b) if (9) holds, then for all - |x| = a/2, our particular d,
and some fixed ¢ in (0, 1) we have (9a).

Choose particular values of m and n with N < n < m so that x(w)<a,a<

x(0) = Bforn < k < m,and x,,,,(w) > B. From (23) we see that x,(0) = a/2.
Then

(28) B— & < Xpyy(0) — x,(0)
= — 2 [@ (@) — n(@)] — Tt [7(0) — 2(@)]
— 20w @) — X, [ my(x(w)) + E{n | xi}(@)]
<040+ (B—a)2
(282) — Xt [@em(x(@)) + E{n? | x.}(@)] -
If (7) holds then, since E{§, | x,} = 0, we have |E{p,? | x,}| < a, §asay.co) HAF((1)/(1 +

|x¢])| which is bounded, if |x,| < 8, by (1 + p)a, §@/apa+p, S|IAF(s)|. Using
(27a) we get the following contradiction from (28):

B—a<(B—a)2 — X Ent|xo) < f—a.
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If (9) holds then, using (9a),
(282) = — 21, aemy(x (@) + Zi-n @lEEL e isaay | Xl
= —Xitaca,m(x, () <0
so that (28) gives the contradiction 8 — a < (8 — a)/2.
LEMMA 5. Assume the conditions for Theorem 1. Then
(29) P[lim x, € {0, +co, —c0}] = 1.

Proor. It follows from Lemma 4 and a standard argument that P{lim x, €
[—o0, + 0]} = P{lim inf x, = lim sup x,} = 1. If the conclusion of this lemma
were false there would exist 0 < @« < < oo and ad > Osuch that a + d <
B — 9 and such that either P{lim x, e[a 4+ 6, 8 — 6]} > O or P{limx,e[—8 +
0, —a — 0]} > 0. We will prove that the former is impossible.

Define 7, 7,%, z,, and the sets B and C as in the proof of Lemma 4. Let 4 =
{limx, e[a 4+ 0, 8 — 0]}. As in the proof of Lemma 4, P(B) = P(C) =1 so
that P(4 n B n C) = P(4). We will show that 4 n B n C is empty so that
P(A) = 0.

Fix we A n B n C. Choose N so that for all m = n = N we have (24), (25),
(26),

(30) a < x(0) < B,
and, if appropriate, (27a) or (27b). Then, using the expansion in (28),
(31) —(B—a) < xp(0) —x,(0) <0+ 0+ (8 — a)/2 4 (expression (28a)) .

In the following we treat E{»,*| x,} as in the proof of Lemma 4; when (7) holds,
(31) gives (using (27a))
Lii=n G(x(0)) < 2(8 — @)

which gives a contradiction for large enoug m; when (9) holds, (31) gives

2w amy(x (@) = 3(B — @)[2 + X, a(l — e)my(x(@))

which again gives a contradiction for large enough m.

REMAINDER OF THE PROOF OF THEOREM 1. From Lemma 5 we see that it suf-
fices to prove that P{lim x, = +oo} = 0 and P{limx, = —oo} = 0. We will
prove only the former.

Let d > 0 and, if (9) holds, let d be such that for large enough n we have for
x| = 2d
(32) SUP;zq |E{§nluénlst/an; [x, =" x}| < (1 — ¢)|m,(x)] .

Let b > 0. Define D, = {|x,| < b}, B, = {x, = 2d}, C, = {|a, &, < |x:|/2}, and
Ayw = Dy 0 Ni-y B, C,.

A straightforward induction argument shows that E|x,|l, < oo for all n.

Choose N large enough that, using (4a) and (5), if x = d and n = N then
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m,(x) =z 0 and x — a,m,(x) > x/2; in addition, if (9) holds, choose N large
enough that (32) holds if » > N and |x| > 2d. Note thatifw e B,C,andn > N
then x, ., > x,/2 —a,€, = 0. If n > N then

Ex,., < E(x, — anmn(xn))IANm_lan
- anE{IAN,n_IIBnE{énICn | xl’ ] xn}}
(33) = Ex,lyy ,  — @Bl Iy [m(x,) — [E(§, 1 |x}]]}-

If (9)—and thus (32)—holds, then for w in B, we have |E{¢, Ip | x.}] £

SUPq |E{€al e, 5000, | Xa) | sOthat Ex, 1, <Ex,l, —ea,E{l, I, m(x,)}<

Ex,1,, It follows that sup,, v Ex,I, < co. If (7) holds then using (33)
""'HIAN,n é Ex""IAN,n—l + anE {]ANyn—lan S‘>lzn|/2“nt dF

we get
(il
= (Ex Ly, )1+ B,) + B,

where 8, = a, $e>d/a,0420) E |[dF(2)]. Weknow that 37, 8, < oo from Lemma 2.
An induction argument shows that if n > N then

Exn+1]ANm =+ Exyiidy, ) Ilkeva (1 4+ B) — 1
=+ EXN+1IAN,N) ey (I +B) — 1 < oo
Again we have sup,. Ex, I, . < oo. Let B*, = Niy B, Cy* = Nizy Gy
cand Ay = DB, *Cy* = N2y Ay... If either (7) or (9) holds we have
sup,.y E£x,I,, < oo so that P[4, N {x, —» +oo0}] = 0. Since N By* D {x, —
+oo} and P(Cy*) —>1 as N — oo, it follows that P(D, N {x, — +co}) = 0.
Since this holds for all 5 > 0 we have P{x, — + oo} = 0.

n—1"

Ex

PROOF INDICATION FOR THEOREM 2. One proves that
(34) if 0<a<p<b then Plliminf|x,| < a,limsup|x,| > p}=0.

The convergence in probability of x, to zero implies P{lim inf |x,| = 0} = 1.
This combined with (34) gives P{x, — 0} = 1. ,
One first proves an analog of Lemma 3, that for 0 < a < < b

Pl-b=x,fa,x,, =2 i0}=P—a<x,<b,x,,, < —p 1.0} =0,
using essentially the proof of Lemma 3. One then proves that
P{liminf |x,| < a, limsup x, = 8} = P{liminf |x,| < @, liminfx, < —f} =0.

The proof is very much like the proof given for Lemma 4. The sets 4 and D
must be redefined as follows:
A={o|—-b= x,(0) < a/2, x,,,(0) = a only finitely often}
and ,
D = {o|liminf |x,(0)| < a, lim sup x,(0) > B} .
5. Some remarks about sharpness. Condition (6b) allows the conditional
distribution of the errors to “spread out” linearly in |x,|, i.e., in distance from
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zero (or from the desired root). This would allow, for example, for a proportional
measurement error if m(x) were linear. It is an intuitively appealing hypothesis,
and in addition it is the analog of hypotheses made about the errors when the
existence of second moments has been assumed. Unfortunately, the techniques
of proof which we used to deal with (6 b) obscure some more basic considerations.

Condition (7) in Theorem 1 was not intended to imply that }z_ a,&, con-
verges to a finite limit, however, the convergence of this series is a by-product
of Theorem 1. Once we know that x, — 0 almost surely we know, in particular,
that for each w the sequence x,(w) is bounded. Then we can’t quite replace
(6b) by (6¢) but we can come close. In particular, (7) is now enough to guar-
antee that )~ a,£, converges to a finite limit.

Suppose {£,} is an i.i.d. sequence with continuous distribution function G.
We write x,,,, — x, = — 2", a,m(x,) — 2.r, a,§, and recall that, since the
correcting terms a, m,(x,) behave properly, x, will converge to zero (or to 6) if
2in-14,€, converges almost surely (using Blum’s methods [1], [2], for example).
We write 9, = a,§,1,,¢,1<q for a fixedd > 0. Then

(35) Xmpr — Xn = — 2 n @& — ] — Zren [0 — Eni]
— D amy(x,) — 2, En, .

Using Lemma I, the assumed finiteness of E|,| and our assumptions on {a,}
guarantee that P{a,§, +# 7, i.0.} = 0 and also guarantee, via the Three Series
Theorem (Theorem A on page 237 of Loéve [9]), that Y%, (7, — E7,) converges
almost surely. The convergence of {x,} thus depends on the precise relationship
between the two sequences {a, m,(x,)} and {Ep,}. Suppose P{§, < —d/(max a,)} =
0. Then

(36) 2ivm Ene = T @ ES e s} = — Xva §Za, 1dG(1) .

If, for example, for ¢t > 0 we have G'(t) = C(t log 1)~?, then E|§,| = § |¢| dG(r) <
oo but §{,, ,, #dG(t) = C(log 5)~* so that (36) is infinite if @, = 1/k. Clearly one
can produce a sequence m,(+) so that — Y™ a,my(x,) — 2, Ep, — co as
m — oo,

Now in the case given above }7_, a,&, — — oo almost surely since }}7_, Ep, —
—oo. In spite of this, {x,} will converge almost surely if the sequence {a, m,(+)}
behaves properly.
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