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LIMIT THEOREMS FOR BRANCHING PROCESSES IN A
RANDOM ENVIRONMENT

By DavIiD TANNY?
University of Rochester

In this paper, growth of branching processes in random environment
is considered. In particular it is shown that this process either ‘‘explodes”
at an exponential rate or else becomes extinct w.p.1. A classification
theorem outlining the cases of ‘‘explosion or extinction” is given. To prove
these theorems, the associated branching process (the process conditioned
on each particle having infinite descent) and the reduced branching process
(the particles of the process having infinite descent) are introduced. The
method of proof used, in general, is direct probabilistic computation, in
contrast with the classical functional iteration method.

0. Introduction. Consider a population of particles with initial population
size Z,. Each of the particles is identical and splits independently according to the
offspring distribution §,. The offspring of Z, are referred to as the 1st generation
of the branching processes in a random environment. In general, Z,, the size
of the nth generation, is the number of progeny of the Z,_, identical particles
of the (n — 1)st generation, each of which split independently according to the
offspring distribution &, ;. & = (&, &,, ---), the “environmental sequence” is
assumed to be a stationary and ergodic stochastic process. &, is referred to as
the environment of the ith generation. For given &, the process {Z,)r_, generated
in this manner is called the branching process conditioned on the environment
&. {Z,)z., is called the branching process in a random environment. The latter
model is sometimes referred to as the Athreya—Karlin model of the process ([1],
[3]) in contrast to the Smith-Wilkinson model ([10]) which assumed that the
environments {£;}2, were independent and identically distributed. In this paper
we are concerned with the following problems for the Athreya-Karlin model
of the process:

(1) Must the process {Z,}z_, either “explode” or become extinct?

(2) If (1) is true, what are necessary and sufficient conditions for noncertain
extinction of the process?

(3) What is the rate of growth of the process {Z,}3_, on {0: Z, (w) — oo as
n— oco}?

Theorem 5.3 answers (1) afﬁrmativel}; (except for the degenerate case P(p,(§,) =
1) =1 for which P(Z, = 1V n|&) =1 w.p. 1.) This “explosion or extinction”
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theorem was first proved by Athreya and Karlin ([1]) under the hypotheses
E(log* m(&,)) < oo, where m(&,) is the expected number of offspring of a particle
conditioned on the environment &, However, Theorem 5.3 asserts the result
without any hypotheses on the process.

(3) and part of (2) are answered by the classification theorem (Theorem 5.5).

THEOREM 5.5. (Classification theorem). Let {Z, )7, be a branching process for

a random environment for which E(log m(&,)) exists. Then
(i) E(log m(&,)) < O implies P(q(€) = 1) = 1, where q(§) = P(Z, — 0 as n —

o [£), )

(ii) E(log m(§,) = O implies that either P(q(§) = 1) =1 or P(py(&,) = 1) =1,
in which case P(Z, =V n|Z,=1,8) =1 w.p. 1, and

(iii) E(log m(§,)) > O implies that lim,_, 1/nlog Z, = E(log m(§,)) a.e. on
{w: Z (0) > + o0 as n— oo}.
In the special case of Galton-Watson processes, part (iii) asserts that
lim,_, 1/nlog Z, exists and equals logm a.e. on {w: Z,(w) — oo as n— oo}.
This result can also be proved by using the normalization theorem of Heyde-
Senata ([3], Chapter 6).

In Section 6, we make further partial progress on problem (2). A sufficient
condition for noncertain extinction is stated (Proposition 6.2) from which the
sufficient condition of Athreya and Karlin ([1]) follows as an easy corollary.

1. Mathematical description of branching processes in a random environment,
Let (Q, Z, ) be a suitably large probability space. Let II denote the space
of probability distributions p = {p;}iz, where } 5, ip, < co. Let (¢/=, ) be
the space of bounded real sequences with &2, the Borel g-algebra generated by
the product topology. Then II < ~> (in fact Il € £,) and so we can endow II
with the trace s-algebra Il n <Z,,. (The trace g-algebra on II is the Borel o-
algebra generated by the induced topology.)

Let {£}, be a sequence of random variables, &;: Q — II, and denote by &
the process (§y, &, - - +)- & is assumed to be stationary and ergodic. %0(3) =
2o Pi(6o)s* is called the probability generating function associated with the
environment &, m(§,) = 372, ip(&,) is called the mean corresponding to the
environment §,and is equal to the expected number of offspring of a particle given
the environment &,.

Consider a sequence of random variables {Z,}7_, on Q having the nonnegative
integers as their state space, and suppose that this process satisfies

) E(s7nt1]| F0(6)) = [pe, ()]

forn =0, |s| < 1, where & ,(€) is the o-algebra generated by Z,,Z, ..., Z,
and &; i.e., conditioned on the past and on the environmental sequence &, Z,,,
may be viewed as the sum of Z, independent and identically distributed random

variables, each having ¢, (s) as its probability generating function. Then the
process {Z,}z_, conditioned on the environment & is called a nonhomogeneous
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branching process, and the unconditioned process {Z,};_, is referred to as the
branching process in a random environment. The proof of the existence of such
a process is standard and we refer the interested reader to Harris (1963).
The following notation will be used frequently.
Z+ the positive integers '
Xe & the random variable X is measurable with respect to the s-algebra &~
(X, X, - -+, X,) theo-algebra generated by the random variables X}, X,, .. -, X,
E( | Xy X,, - -+, X,) the expected value conditioned on ¢(X,, X,, - - -, X,)
E( |4; X, Xy, -+, X,) E( | Xy, X,, ---X,, x4) On A, where y, is the indicator
function of the set 4, and 0 on 4°
y-n(é) 0(Zyy Zys + -y Zy; é) )
T the shift transformation T(&,, &, ---) = (61, s -+ +)
[x] the greatest integer contained in x
ST(x) equals f(x) if f(x) = 0; otherwise equals 0
f~(x) equals —f(x) if f(x) < 0; otherwise equals 0
f'(x) the first derivative of the function f
f™(x) the nth order derivative of the function f.

By an iteration of (1), it can be shown that, for any set of integers i < n, <
n, < - -+ < n, and positive integer m

@) Bs™s e s 2= mi E) = [E(sPist e e 5P Z, = LB

where |s;] <1 for 1 <i < k. Using (1) and (2), Athreya and Karlin (1971)
noted the following proposition.

ProrositioN 1.1.

E(s"n+1] Zy = m; €) = [9e (g, (- -+ (92,)9)- - )"

Though the process {Z,}7_, is not, in general a Markov process, the brahching
process conditioned on the environment & is Markovian by (1) and has indepen-
dent lines of descent by (2) (see [1]). The unconditioned process {Z,}7_, is easily
seen to be Markov, however, in the special case when {51} >, are independent
and identically distributed (i.i.d.).

2. Extinction probability of the branching process in a random environment.
From (1) it is easily seen that E(s?+1|Z, = 0) =1 for |s| < 1. Butfor 0 <
5, < 1, 0 < sp%»+1 < 1, with equality holding iff Z,,, = 0. Thus Z,,, = 0 a.e.
on {w: Z, = 0}, from which we conclude that, excluding a set of measure zero,
Z, (@) = 0 for some n,, implies that Z,,(co) = 0 for all n = n,. In the latter case,
the process {Z,}_, is said to have died out or to have become extinct. Let g(¢)
be the extinction probability given the environment; i.e.,

(3 46)=P(Z, =0 forsome 1> 0[&) = lim, . e (Pe,(+ 96,0) ) -
LetrA = {502 Po(&o) = 1}. .
PROPOSITION 2.1.. P(4) > 0 implies that P(q(§) = 1) = 1.
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Proor. Sinc. the environmental process Eis stationary and ergodic, the Birk-
hoff ergodic theorem implies that :

@ *z 1) P(A)  wp.l as n—oo

where y,(+) is the indicator function of the set 4. Hence w.p. 1 there exists
iy(€) such that py(&, ) =landso Z, ,, = 0 w.p. 1.

REMARK 2.2. In view of Proposition 2.1, we will, from this pomt on, assume
that py(§,) < 1 w.p. 1. :

Let T be the shift operator, T(, &, ---) = (§1, &5 -+ +). T is measure pre-

serving and ergodic. It is easy to see ([1]) that the sets {£: q(§) = 1} and
{T&: ¢(TE) = 1} differ by a set of measure zero and so P(q(€) < 1) equals 0 or 1.
Furthermore, ¢(¢) satisfies the functional equation B(§) = ¢ (8(T¢)) and is
known to be ([1]) the unique solution satlsfylng P(B(¢) < 1) = 1 if such a solu-
tion exists.
- Smith and Wilkinson (1968) showed that for {6}, i.i.d. and E(log* m(§,)) <
oo, a necessary and sufficient condition for noncertain extinction of the process
is that E|log (1 — py(&,))| < oo and E(log m(&,)) > 0. Athreya and Karlin (1971)
demonstrated the sufficiency of the condition for £ stationary and ergodic. How-
ever, the condition is no longer necessary for noncertain extinction (see Example
7.2). The following is a necessary, but not sufficient (see Example 7.4) condition
for noncertain extinction of thé process.

THEOREM 2.3. If E(log* m(§,)) < oo and P(q(€)< 1)=1, thenlim,__, 1/nlog (1—
Po(Es)) = 0 w.p. L.

The proof of Theorem 2.3 is postponed until Section 5.

3. The associated branching process in a random environment. Consider a
branching process in a random environment {Z,}>_, for which P(q({:‘) <hHh=1
and let {g, (s)}7-, denote the associated probability generating functions. Define,
for n =0

(1 — g(T™"E))s + q(T"+18)) — 918
1 —q(T"%)
It is easily checked that ¢,.; is a probability generating function. In the case
of nonrandom environment (i.e., ¢;(s) = ¢(s) w.p. 1 for some fixed p.g.f. ¢)
the transformation of ¢ to ¢ is the transformation introduced by Harris (1948),
namely, the conditioning of the generating function on infinite descent.
Define a sequence of random variables {é,,}:=o, £:Q1I by

én(w) — {95(;25(0)}

) Gami(s) = il

=0

Since & = (&, £, - - -) is a stationary and ergodic process; then £ = (o & -+ 0)
is also stationary and ergodic ([4]). Now consider a branching process in a
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random environment {Z,}2_, with Z, = 1 on (Q, F, P) having £ as its environ-
mental sequence. The process is unique and is called the associated branching
process in a random environment. We note that £ is completely determined by
£, and so & will be used frequently to denote the environmental sequences of both
processes. Also, it is convenient to adopt the notation ¢, (s) = ¢¢ (s), Pu(&;) =
pi(§;)» ete.

PRrOPOSITION 3.1. {Z,)2_, is an increasing process. Furthermore either P(Z, —
+ooasn—oo|é)=1wp.lor P(Z,=1Vn=0|&) =1 w.p. 1 with the latter
occurring iff P(p,(§,) = 1) = 1.

ProoF. We note that ¢, (0) = 0 = py(§,) where py(§,) is the probability that
a particle in the nth generation gives birth to 0 children, given the environment
£,. Hence each Z-particle gives birth to at least one child so that {Z,}5_, is in-
creasing. Thus, for each » € Q, either Z,(w) — + oo as n — oo or there exists a
positive integer N(w) such that Z,(w) = Zy,,(») for all n = N(w).

Let 4, = {0: 2,(0) = Z,(0) Yn = k} and 4 = U, 4,. Since {4,}7, is an
increasing sequence of sets,

0 < P(4|€) = lim,_,, P(4,|%)
= lim,_,, P(each particle in the nth generation produces
exactly one offspring V n = k|§)
™ < limsup,_., P(a single particle of the kth generation
and each of its descendants produce exactly
one offspring |£)
= lim sup, ., ITsz: Au(§)) -
If P($,(&) = 1), then it follows that P(Z, = 1V n = 0|€) = 1 w.p. Lsince {£,}5.,
is stationary. Hence it suffices to assume that there exists 0 < 6 < 1 such that
P(p,(&,) < 0) > 0. By the Birkhoff ergodic theorem

® D tsew@ o PAE) <9 wp.l as nooo

and so P(p,(§,) < 9) > 0 implies that P(p,(§,) < 0 i.0.) = 1. Therefore, for any
integers k = 0, M = 0, [, Ai(&:) < 6% w.p. 1, so by (7) P(4|§) =0 w.p. 1.
This implies that P(Z, — 400 as n— oo |§) = 1 w.p. .

4. The reduced branching process. -

DEFINITION 4.1. A tree T is a connected graph containing no cycles; i.e., it
consists of a set ¥ = {v,, ,, - - -} called vertices and a set E, called edges, such
that

(i) v, we Vimplies that there exists v,, v, - - -, v, € ¥V such that vv,, v,v,, - - -,
v,w are distinct edges; i.e., there is a path from v to w.
(ii) for v, we V there is only one path from v to w.
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DEFINITION 4.2. A directed tree is a tree T with a partial order “<” on V,
the vertices of T, such that

(i) if v,v, is an edge, then either v, < v, or v, < v,
(ii) there exists a minimal element v,; i.e., v, < v forallve V
(iii) if v, < v, and w is on the path joining v, and v,, then v, < wand w < v,.

The length of a path is the number of edges it contains. A vertex v of a directed
tree T is said to be at the nth level of T if the path from v, to v is of length n.
The length of a directed tree T is sup {n: there exists a vertex v, of T at the nth
level of T}.

Let Z, =1 and let w € Q. Consider the following random directed tree T(w).
The initial particle of the process is represented by v,, the minimal element.
Each particle of the nth generation of the process is represented by a vertex at
the nth level of T(w). Let v be a vertex at the nth level of T(w). Then for w a
vertex at the (n + 1)st level, vw is an edge iff w corresponds to one of the off-
spring of the particle in the nth generation of the process which v represents.
Furthermore, for v, w in the nth and (n + 1)st level of T respectively, v is com-
parable to w iff vw is an edge, in which case, v < w. T(w) is thus described
completely and is called the family tree corresponding to @ of the process.
Similarly a particle in the nth generation of the process gives rise to a directed
subtree of T(w), called its tree of descendants ([5]).

DErFINITION 4.3. For o € Q, a particle in the nth generation of the branching
process in a random environment {Z,}>_, is said to be “a particle of infinite de-
scent” if its tree of descendants has infinite length. We call these particles W-
particles.

Let W,(w) = the number of particles of infinite descent in the nth generation
of the process {Z,(»)}z.,- Any W-particle in the nth generation has a parent in
the (n — 1)st generation of the Z-process. This parent must also have infinite
descent (since at least one of its offspring does) and so is a W-particle; i.e., the
W-particles in the nth generation are produced solely by W-particles in the
(n — 1)st generation. Let a and b denote two particles in the nth generation of
the process {Z,}:., and let Z,(§) and Z,(§) be the o-fields of their respective
“futures” conditioned on the environment & (see [11] Definition 1.7.7). Then
Z,(é) and Z,(&) are independent o-fields. Letting 4 and B denote respectively
the event that a is a W-particle and the event that b is a W-particle, we note
that 4 ¢ &,(€) and Be Z,(€) so that 4 and B are independent. Furthermore,
conditioned on being W-particles and on the environment &, the “futures” of a
and b as W-particles (i.e., their lines of descent in the {W,}>_, process) are sub
o-fields of Z,(€) and Z,(£) respectively and hence are independent. Using these
facts and the property that a and b have the branching property within the {Z,}>_,
process, it is readily seen that the process {W,}s., conditioned on & has the
branching property. Hence we have shown, heuristically at least, that the process
{W,}z_, conditioned on £ is a nonhomogeneous branching process. (A formal
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proof of this fact is given in [11], Section (1.7).) We call the process {W,}7 o
conditioned in the environment &, the reduced branching process.

ProrosiTION 4.4. (i) W, is increasing as n increases and W, < Z, and (ii)
{w: Wyw) # 0} ={w: Z, > 400 as n — o}.

ProoF. Each particle of the (n — 1)st generation of the {W,}y_, process has
at least one offspring in the nth generation, since it has infinite descent. Hence
W,_, < W,. Since each W-particle is a Z-particle, W, < Z,. Part (ii) is clear
from the definition of {W, }>_,. ' ‘

The next theorem relates the reduced branching process to the associated
branching process in a random environment. '

THEOREM 4.5. The process {W )z, conditioned on {W, = 1} and on the environ-
ment & is equivalent to the process {Zn}:ﬂ conditioned on & in the sense of finite di-
mensional distributions.

PROOF. Let 4 = {w: Wy(w) = 1}. The processes {W,}:_, conditioned on 4 and
€ and {Z,)z_, conditioned on & are Markov processes with initial distribution
PZ,=1|& =1=PW,=1|4,§). Thus it suffices to prove that these two
Markov processes have the same transition probabilities; i.e., for any nonnegative
integers j, k, n with n > 1, o

9) PW,=k|\W,,=j, A, 8 =P2,=k|Z,,=],%).

Since {W,};_, conditioned in & is Markov, the left hand side of (9) equals P(W, =
k|W,_, = j, . Hence (9) is equivalent to

(10) Lo PW, =k |W,_, =], E)sk = Xlk=0 P(Z” = k|2»—1 =, é)sk

for all real s, |s| < 1. Letting ¢,_(s) = X P(W, = k| W, =1, §)s* and
using the branching property of the processes {W,}7_, and {Zﬂ _, conditioned on
£, (10) becomes

(11) [£ua(9V = [, ()
so it suffices to prove that ¢, _,(s) = @, _ (s) foralln = 1 and |s| < 1. Clearly
(12) Sbn—l(s) = 2= st r=1 P(Wn = k|Zn—1 =rW,,= 1, é)

)(/}’(Z”_1 = er_lz l,é)

Conditioned on &, and given Z,_, = r, {Z,};_, may be viewed as the sum of r
independent nonhomegeneous branching processes, each one generated by a
particle of the (n — 1) t generation. Denote the r particles of the (n — I)st
generationbyi =1, ..., r. Fori=1, ..., rlet X" be the number of offspring
in the nth generation df the Z-process produced by particle i of the (n — 1)st
generation, and let N; #-1 be the number of these particles having infinite descent.
Then {X,*~'};_, are independent and 1dent1cally distributed random variables and
are conditionally independent of {Z,};=} given £&. Also since conditioned on the
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environment &, the Z-particles have independent lines of descent, {N,"~'};_, are
i.i.d. and are conditionally independent of {Z,};-] given £&. Hence for k > 1
P(W,,, = kl W,,_1 =1, Z,L_1 =r, é)

=PW,=k|\W,,=1,2Z,_,=1, é)

_ PW, =k, W, ,=1|Z,_,= l,é)
(13) PW, ,=1(Z,_,=1,§

= PN = k| 3) i}

P(Wn—l =1 IZn—l = la 5)
_ I P =1, Nt =k |§)

1 —g(1"%)
_ Z?:kP(Zn =1, Wn = k_lZ 1= l,é) )
1 —q(1"75)
Substituting (13) into (12) and performing the summation over r yields
1 w ok T _ - 1z
(14) Dua(s) = lj"m TS e PZ, =t, W, =k|Z,_,=1,8).

But
(15) PZ,=t,W,=k|Z,,=1,&)

: = (1 — q(T"E))*q(T"E)'*P(Z, = t| Z,., = 1,§).
-Thus :

— 1 o — I g :
$ueil9) = gy D PZ = 112 = 1Y)
X Db QLA — g(TE))sq(T"E)
. 1 -
16 = — 2. PZ,=tZ,_,=1,
(16) T () 2 P( t £)

X A1 — g(T*é))s + ¢(T*€))" — q(T"6)")
_ e, (1 — q(T"8))s + q(T"8)) — ¢, ,(9(T"5))
1 — g(1%)

= @, _,(5) -
The proposition now follows from the remarks made earlier.

5. Growth of the branching process in a random environment. We begin
with an upper bound on the growth rate of {Z,}7_,.

THEOREM 5.1. Let {Z,}>_, be a branching process in a random environment for
which E(log m(§,)) exists. Then limsup, ., 1/nlog Z, < E(log m(§,)) w.p. 1.

Proor. By Remark 2.2, m(§) > 0 w.p. 1. Thus the random variables X, =
Z, T2z m(§;), n = 0, are well defined except on a set of measure zero on which
we define them to be 0. It is easily seen that {X,}7_, is a positive martingale with
respect to the o-fields {7, ,,(é)};‘;;o and so X, —» X, w.p. | as n — co where X, is
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a random variable satisfying E(X,) < oo ([4]]. Now
1 1

(17) — log T]=d m(€)) = — Yozt log m(€;)

— E(log m(&,)) w.p.l as n—oo
by the Birkhoff ergodic theorem. Therefore

(18) lim sup, ... - log Z, < lim sup, ... - log TTz=3 m(&,)
n n

+ lim sup, ., L log X,
n

= E(log m(&))
and so the theorem is proved.
COROLLARY 5.2. If E(log m(&,)) < 0, then P(q(§) = 1) = 1.

ProOF. On4d={w: Z,+0asn—oo}, liminf, 1/nlog Z,=lim,_, 1/nlog1=0
w.p. 1. But, by Theorem 5.1, on 4 limsup,_, 1/nlog Z, < E(log m(§,)) < 0
w.p. 1 so we must have P(4) = 0.

The next theorem generalizes to branching processes in a random environment
the classical “extinction or explosion” result for Galton-Watson processes [5,
Chapter 1, Theorem 6.2.]. The theorem was first proved by Athreya and Karlin
[1] under the hypothesis E(log* m(§;)) < oo. We now give a proof of the result
without any hypotheses on the process.

THEOREM 5.3. Let {Z,)>_, be a branching process in a random environment.
Then either (i) P(Z, — 0 or Z, — +oo as n — |&) = 1-w.p. | independent of Z, or
(ii) P(Z, = 1V n|Z,= 1,8 = 1 w.p. 1. Case (ii) occurs iff P(p,(§,) = 1) = 1.

LemMA 5.4. If P(q(§) < 1) = land P(p,(§) < 1) > 0, then P(p,(&,) < 1) > 0.

PrOOF. If P(py(&) + p(&) = 1) = 1, then E(logm(&,)) exists, and since
P(py(&) < 1) > 0, it follows that E(log m(§,)) < 0. But, by Corollary 5.2, this
implies that P(q(§) = 1) = 1. Hence P(py(§;) + pi(€n) < 1) > 0. This last state-
ment is equivalent to P(pg(s) > 0 for 0 < s < 1) > 0.

Now

P00) _ (1 — g(T8) _oioepe
19 — % — ) @ (a(T.
(19 P& = P57 = S gy PR

so that if P(py(&,) = 0) < 1, then P(5,(§;) > 0) > 0. If P(py(§y) = 0) = 1, then
Pi(&) = pu(&) w.p- 1 and thus the lemma is proved.

Proor ofF THEOREM 5.3. Clearly P(p,(§,) = 1) = 1 implies that P(Z, = 1
Vn|Z,=1,& =1wp. 1. Alsoif P(Z,=1Vn|Z, = 1,8 =1, w.p. 1, then
P(Z,=1|Z,=1,& =1 w.p. 1 so that P(p,(§,) = 1) = 1. Hence it suffices to
assume that P(p;(&,) < 1) > 0. Furthermore, if P(¢9(§) = 1) = 1 then P(Z, — 0
as n — oo | &) = 1 w.p. | independent of Z, so consider the case P(q(¢) < 1) = 1.
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By Lemma 5.4 and Proposition 3.1, P(Z, — +oc0 asn — o0 |€) = 1 w.p. 1 and
applying Theorem 4.5 yields P(W, — +oo0 as n— oo | W, + 0,8) =1 w.p. 1.
Since Z, = W, for all n, it follows that P(Z, — 4 o0 asn— oo | W, £ 0,8) = 1
w.p. 1. On {W, = 0} there exists N(w) such that Z, (w) = 0; i.e., P(Z, — 0 as
n—oo|W,=0,& =1w.p.1. Hence P(Z, — +co orZ, —»0asn— oo |§) =
w.p. 1 independent of Z,. []

Having established the “extinction or explosion” theorem, our next objective
is to classify the outcomes and obtain a rate of growth on {0: Z, —» + oo as
n— oo}.

THEOREM 5.5. (Classification theorem.) Let {Z }:_, be a branching process in a
random environment for which E(log m(§,)) exists. Then

(i) E(log m(&)) < 0 implies P(q(¢) = 1) = 1,

(ii) E(log m(§,)) = O implies that either P(q(§) = 1) = 1 or P(py(§,;) = 1) = 1,
in which case P(Z, = 1V n|Z,= 1,8 = 1w.p. 1,

(iii) E(log m(&,)) > O implies that lim,_,, 1/nlog Z, = E(log m(§,)) a.e. on
{w: Z,—> 400 as n — oo}.

REeMARK. Case (iii) does not attempt to measure the set of nonextinction since
a large class of examples may be constructed with E(log m(&,)) > 0and P(q(§) =
1) = 1 (see Example 7.3).

Before proceeding with the proof of Theorem 5.5, it is necessary to prove
two preliminary results. The first is a version of Theorem 5.5 under stronger
hypotheses. The second relates the growth parameter of the associated process
to the growth parameter of the branching process in a random environment and,
as well, contains a restatement and proof of Theorem 2.3.

THEOREM 5.6 Let {Z, }7_, be a branching process in a random environment with
Z, = 1 such that P(p,(§,) = 0) = 1. Then E(log m(§,)) exists, E(log m(&,)) = 0 and

(i) E(log m(&,)) = O implies that P(p,(§&,) = 1) = 1, in which case P(Z, = 1
Vn|§) =1w.p. 1,

(i) E(log m(&,)) > O implies that lim, _,, 1/nlog Z, = E(log m(&,)) w.p. 1.

Proor. Since P(py(§) = 0) =1, m(§) = 1, w.p. 1. Hence log~m(§,) = 0
w.p. 1, and so E(log m(&,)) exists and E(log m(&,)) = E(log* m(&,)) = 0. Now if
E(log m(&,)) = 0, then m(§;) = 1 w.p. 1, and this implies that P(p,(§) = 1) = 1
(which further implies that P(Z, = 1 V n|£) = 1 w.p. 1). Suppose E(log m(&,)) >
0. Consider the branching process in a'random environment {Z,}_, truncated
at a positive integer 4, and denote this process by {Z,4}>_,; i.e., forn = 1,k = 0

P(ZA = k| Ziy = 1,8) = P(Z, = k| Z,., = 1, &) if k<A
(20) = Yo P(Z,=j|Zy=1,8) if k=4
=0 if k> 4.

(This truncation is equivalent to allowing the Z-process to ‘evolve under the
restriction that if any particle gives birth to more than 4 offspring, the particle
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is considered to have given birth to exactly 4 offspring.) Clearly E(log m*(§,))
exists, where m4(§))=E(Z*| Z,*=1, &) is the truncated mean. {Z,*}_,isa branch-
ing process in a random environment satisfying the conditions of Theorem 1
of [2], so for almost all &, lim,_., Z,4/II;=} m#(&,) = W* w.p. 1, where W4 is a
nonnegative random variable such that P(W* = 0| &) where ¢%(§) is the extinc-
tion probability of the Z4-process conditioned on &. But P(p,(&,) = 0) = 1 so
that ¢4(§) = P(Z,* -0 as n - 00| ZA = 1,&) = 0 w.p. 1 and hence P(W4 >
018 =1w.p. 1. Therefore log W* is well defined, and, for almost all &,

(21) _logZA—ﬁlogH m(&)—ﬁlogW“—>0 as n—oo w.p.l.

But {log m*(§,)}2, is a stationary and ergodic sequence since £ is stationary and
ergodic ([4], Theorems 6.6 and 6.31) so by the Birkhoff ergodic theorem

22  — 10g II3=s m*(€:)
Z o log m4(§;) — E(log m*(§,)) as n—oo w.p.l.

Now 1/nlog W* — 0 as n — co w.p. 1, so by (21) and (22), lim,_, 1/n log Z,* =
E(log m*(§,)) w.p. 1. Since log m4(&,) is a nonnegative monotone increasing
sequence in 4, it follows that E(log m*(£,)) increases to E(log m(&,)) as A increases
to infinity. Also for n > 0, Z, > Z,4. Hence

(23) lim inf,

n—o0

— log Z, = lim 1nf,M° — log Z,* = E(logm(§,)) w.p.1.

But by Theorem 5.1, limsup, ., 1/nlog Z, < E(logm(&,)) and so lim,,_, 1/nlog Z,=
E(log m(&y))-

ProrosiTION 5.7. If P(q(§) < 1) = 1 and E(log m(&,)) exists, then E(log m(&,)) =
E(log ra(§,)). If in addition E(log* m(&,)) < co, then E(|logm(&,)|) < oo and
lim,_ 1/nlog (1 — py(&,)) = 0 w.p. 1.

Proor. Since P(¢(£) < 1) = 1, the associated branching process in a random
environment {Z,}_, is well defined. Using (5), we conclude that for any £ for
which ¢(T"¢) < 1 for all n (almost all &),

24 " - _l;ﬁT_EL Y

( ) . (E'n—l) (T” 16) (En-l)

and so

(25) — Zi o logm(§,) = — log (I — q(T"é)) — — 1°g (1 —q9)
Z y log m(§,) .

Now {log r(€;)}2., and {log m(§,)};, are stationary ergodic sequences because &
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is stationary and ergodic ([4]). Also P(fy(&,) = 0) = 1 implies that m(&;) = 1
and so E(log r(&,)) exists. By hypothesis, E(log m(&,)) exists. Thus, by the
Blrkhoﬂ‘ ergodlc theorem, lim,_., 1/n 322} log (§,) = E(log (&,)) w.p. 1 and

m, ., 1/n 33723 log m(§;) = E(log m(&,)) w.p. 1. Also 1/nlog (1 — q(T"€)) equals
l/n log (1 — q(&)) in distribution and so 1/n log (1 — q(T"E)) converges to zero
in distribution,. and hence, in probability, as n — co. Thus thevrlght -hand side
of (26) converges to E(log m(,)) in probability as n — co. Since the left-hand
side of (26) converges w.p. 1 and hence in probability, to E(log 7(£,)) as n — oo,
it follows that E(log m(&,)) = E(log ri(&,)).

Suppose E(log* m(&,)) < co. Since P(q(§) <1)=1, it follows that E(log m(Eo))>
0 by Corollary 5.2. Hence E(log~ m(,)) < oo and so E|log m(&,)| < co. But
this implies that E log m(&,) < co. Also for nz=0,

(26) 9(T"8) = Pz, = OIZo = 1, T*€) = py(&,)
and so

0 < lim sup, .. % log (1 = pu(é)

< lim sup, .. i log (1.— ¢(T"&))

— lim sup, .. % r=log (g, — = Z:‘ 3 log m(s)
e ——log(l - q()

= |E(log (&) — E(log m(&)|. w.p. 1

=0.

Therefore lim, _, 1/nlog (1 — py(£,)) = 0 w.p. 1.

ProOF oF THEOREM 5.5. (i) If E(log m(&,)) exists and is negative then P(q(£)) =
1) = 1 by Corollary 5.2. (ii) Suppose P(q(§) < 1) = 1. Then the associated
branching process in a random environment {Z,}=_, is well defined and, by Pro-
position 5.7, E(log i(&,)) = E(log m(&;)) = 0. But (&) = 1 w.p. 1, so we must
have 7(§) = 1 w.p. 1. Therefore P(p,(§) = 1) = 1. Using the contrapositive
form of Lemma 5.4, we conclude that P(p,(§,) = 1) = 1and thus (ii) is proved.
(iii) If P(q(§) = 1) = 1, then there is nothing to prove since it implies that
P(Z,—0asn— oo|&) = 0w.p. 1 independent of Z,. So it suffices to assume
that P(g(§) < 1) = 1. Then the associated process {Z,}z_, is well defined and
E(log (§,)) = E(log m(&,)) > 0. By Theotem 5.6, lim, ., 1/n log Z, = E(log m(&,))
w.p. 1. Applying Theorem 4.4 yields lim, ., 1/nlog W, = E(log m(&,)) a.e. on
{w: W, + 0}. Since E(log m(§,)) > 0, W, — +o0as n— oo a.e. on{w: W, = 0}
and so Z, — +o00 as n— oo a.e. on {w: W, # 0} since Z, > W, for all n.
Clearly {w: Z, — 400 asn— oo} C {@: W, +# 0}. Thus the sets {®: W, = 0}
and {0: Z, — + o0 as n — oo} differ by a set of measure zero. - Hence

(28) lim mf,,_m — log Z, z lim 1nfn%, — log W, = E(log rh(Eo)) a.e.
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on{w: Z, — +oo as n — oo}, and applying Theorem 5.1 concludes the proof
of (iii).

REMARK. Part (iii) of the classification theorem states that whenever “explo-
sion” of the process occurs, the rate of explosion is exponential. Under the
hypothesis E((1/m(&,)) X5, pi(§0)j 10gj) < oo, Athreya and Karlin ([2]), obtained
the following sharper growth rate result: for almost all £, lim,__, Z /= m(§,) =
W w.p. 1, where P(W = 0|&) = q(é) and E(W|&) = 1 w.p. 1. The followmg
theorem, proved by the author in [13], shows that appropriate normalizing con-
stants for the process always exist as long as the environmental process is rever-
sible.

DEBFINITION 5.8, & = (§0» &1 + - +) is a reversible stochastic process if, for any
nonnegative integer K, the joint distributions of {&, &, ---, &,} and {&,,
Ex_1 +++, &} are equal.

THEOREM 5.9. Let {Z,}7_, be a branching process in a random environment with
a reversible stationary and ergodic environmental sequence &. Then there exist ran-
dom normalizing constants C,(£) such that, for almost all &, lim,__, ZJC (&) =W
w.p. 1 where (i) W is a random variable satisfying P(W = 0|&) = q(&) and (ii)
lim,_, 1/nlog C,(§) = E(log m(&,)) w.p. 1.

6. Noncertain extinction of the branching process in a random environment.
Disregarding the trivial case P(p,(§) = 1) = 1, Theorem 5.5 implies that a
necessary condition for noncertain extinction is E(log m(&,)) > 0 provided this
expectation exists. By the monotone convergence theorem, E(log (m(£,) A 4)) 1
E(log (m(&,))) as 4 1 co, where a A b denotes min (a, ). Thus for all sufﬁcwntly
large 4, E, = E(log (m(&,) A A)) > 0.

DEFINITION 6.1. For real 1 > 0, let y,4&,) = inf, 5+ {c = 1: 6 xdF (x) +
¢(l — Fy(c)) = (m(§) A A)je'"4} where F, is the probability distribution having
p-g.f. ;. Itis easily seen that y,%(&,) decreases to some random variable denoted
by D ,(&,) as ¢ increases to 1. (In fact, since 7,4(&,) € Z*, there exists #,(&,) such
that 7,'(§) = D (&) for all #(§,) < ¢ < 1.) By truncation arguments and appli-
cation of the extended Kaplan-Karlin technique ([8], [12]), the following pro-
position may be proved.

PROPOSITION 6.2. Suppose there exists some real A > 0 satisfying

(i) E(log (m(&) A A)) > 0 and
(ii) limsup,_., (|log D(&,)|/n) < oo.
Then P(q(§) < 1) = 1.
The sufficient condition of Athreya and Karlin ([1]) follows as an easy corollary.

CoROLLARY 6.3. IfE(|log (1 — py(&,))|) < oo and E(log m(&,)) > O then P(q(é) <
I)=1.

ProoF. Let {Z,4}=_, denote the process {Z,}:_, truncated at 4 > 0, and let
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mA(&,) = E(Z*| Z,* = 1, &) be the truncated mean. Since m*(§)) = (1 — py())s
E(log~ m4(&,)) < E(log™ (1 — po(&,))) < co and hence E(log m*(§,)) increases to
E(log m(&,)) as A T co. Choose 4 > 0 sufficiently large such that E(log m*(§,)) >
E(log m(§,))/2 > 0. Let g4(§) denote the extinction probability of the process
{Z,4)z-, conditioned on &. Now E(log (m*(&,) A A)) = E(log m*(§;)) > 0, and
clearly 1 < 7,%&,) < 4 for the process {Z,*}r_,. Thus the conditions of Pro-
position 6.2 are satisfied and so P(¢4(¢) < 1) =1. But Z, > Z,* w.p. 1 for
n = 0, and so ¢(§) < ¢%(&) w.p. 1. Hence P(q(§) < 1) = 1.

7. Examples. The examples in this section rely heavily on the properties of
the following Markov chain.

ExaMmPLE 1. Consider a Markov chain {X,}_, with state space the positive
integers and with the following stationary transition probabilities:

PO, k) = p, k=1,2,
P,k —1)=1 k=12, ...
where {p,}5_, is a sequence of positive reals such that
() Jiape=1,
(29) (ii) i kp, < o0 and
(iii) 2 kpy = 40

Let0 < T, < T, < - - - be the successive times that the Markov chain occupies
state 0. In order that there exists an invariant probability distribution for the
Markov chain, it is necessary and sufficient that each state be positive recurrent.
In this case, the latter is equivalent to E,;T), < co. But E,;T, = Y2, (k + 1)p,,
which, by condition (ii) is finite. Thus there exists a finite stationary initial dis-
tribution which will be denoted by x. Since {X,}7_, is clearly an indecomposable
Markov chain, the Markov process {X,}_, having the initial distribution g is
stationary and ergodic ([4, Propositions 7.11, 7.16]). Furthermore, E”(X,) =
+ oo and lim,_, X,/n = 0 w.p. 1 ([12]).

EXAMPLE 2. A branching process in a random environment {Z,}7_, with sta-
tionary Markovian environments such that

(i) 0 < E(log m(&)) < oo,
(i) E|log (I — po(&))| = + oo, and
(iii) P(g¢ < 1) =1.

This example shows that the condition of Smith-Wilkinson is not a necessary
condition for noncertain extinction of the process (see Theorem 2.3).

Let {X,}_, be the Markov process of Example 1 and let {¢,}2_, be a sequence
of random environments with &, defined by its associated probability generating
function

(30) Pe,(5) = (1 — e7"n) + e %ns'n
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where 4, = ([4e*»] 4 1). (This corresponds to placing probability mass e-*» at
the point 2, and the rest of the probability mass at the origin.)

Let {Z,)}z_, be a branchmg process .in a random environment with environ-
mental sequence {§,}_,; i.e., conditioned on the environment §,, a partlcle in
the nth generation gives birth to 2, particles with probability e~*» or to 0 parti-
cles with probability 1 — e=*». By repeating the argument of Theorem 1 of [12],
it follows readily that P(q(§) < 1) equals 1. Furthermore, E|log (1 — py(&,))| =
EX, = 4 o0, and '

(31) 0 detn e < m(E,) < (deFn + e
so that 0 < E(log m(£,)) < oo.

ExAMPLE 3. A branching process in a random environment {Z,}3_, such that
oo > E(log m(§)) > 0 and P(g(§) = 1) = 1. '

If {Z,}z_, is any branching process in a random environment having i.i.d.
environments {§,}=_,, and such that 0 < E(log m(¢,)) < oo, then P(q(§) = 1) =1
iff Ellog (1 — py(&,))] = +oo. In particular, let {X,}>_, be a sequence of positive
i.i.d. random variables with EX; = 4 oo, and with this choice of {X,}7_,, let
{€,);=, be defined by (30). Then the process {Z, }=_, satisfies co > E(log m(&,)) > 0
and E|log (1 — py(&,))| = + oo, so by the previous remarks, {Z,}>_, satisfies
P& =1)= 1. ‘

ExAMPLE 4. A branching process in a random environment {Z,}7_, with sta-
tionary Markov environments such that

(i) 0 < E(log m(&)) < +oo

(ii) 1/nlog(l — py(&,)) —»0asn— co w.p: 1, and

(iii) P(g(6) =1) = 1.

Let{ a}n=o be the Markov process described in Example 1. Let {Z, Jio be a
branching process in a random environment with environmental sequence g,
where £, has as its associated probability generating function

(32) 0:,(8) = (1 — e7a) 4 (e"a — )5 4 e s
where 2, = = ([2e*%] + 1).
{Z,}:-, satisfies (i) since
(33) 0 < 2%t . e ¥ < m(&,) <2+ 2eX%e—X
so that 0 < E(log m(&,)) < +oo.
Since lim,_ X,/n = 0 w.p. 1, and,since log (1 — py(£,)) = —X,, it follows
that lim,_, I/nlog (1 — py(§,)) = 0 w.p. 1. It remains to prove part (iii).
We first note that the sequence {X; ,,}¢, is i.i.d. and that
(G4 : EX? p1= 2 k’pr = o0,
so that : : :

2
XTk+l

35) lim sup, .., = +oc0 w.p. 1.
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Since lim, ., (T}, + 1)/k = E,T, w.p. 1, where 0 < E,T, < + oo, it follows that

2
XTk+l

T, +1
Thus, w.p. 1, there exists a strictly increasing sequence of positive integers
{mdizo = m({X}720)}e-o such that X3, > n)%,* = n,%,* for all k = 0, where {e,}7,
is a sequence of positive constants such that e, 1 4 co as k — .

For k = 0, let

(36) 1im sup,_.. — 4o wp. 1.

A, ={weQ: for n, <j<n, + [(n)}2], no particie in the jth
generation produces more than one child and Z, .., i5 > 0}.
(37 P(A|Z,,,8) £ Z, P(Z; =1 for
m = j=m+ (2112, =1,8).
Now, by Theorem 5.1, lim sup, ., 1/nlog Z, < E so for all sufficiently large k =
k(w), ’
(38) Z, < ems.
Also \ ‘
P(Z; =1 for m, < j < m+ (21| Z,, = 1, &)
L = It — )
39) <TI0 emmentes
= Hg'(:fc(ef,lj,i)—&l—gmk)ml e
< e—(nplep /s
for sufficiently large k. Thus
(40) P(Aklz'nk’ é-) — O(e—nk(ek)t/snnkE)

as k — oo and since e, 1 + oo as k — oo, it follows that 35, P(4, ] Z,, &) < oo.
By the extended Borel-Cantelli lemma, P(4, i.0.|&) = 0.

Now on {w: Z, 0 as n — oo}, Z, 4, tm > 0 for all k = 0. Furthermore,
since lim sup, ., 1/nlog Z, < E w.p. 1, there exists w.p. 1 an integer n(w) such
that Z, < 2% for all n = ny(w). Since

(41) x4> e S ang
T

for n, < n < n, + [(n,)}/2] and all sufficiently large k, it follows from (32) and a
simple Borel-Cantelli argument that any particle in the nth generation, n, < n <
n, + [(n,)}/2] and k sufficiently large must give birth to at most one particle.
Thus

(42) P(Z,+0 as n— | £ P4, i.0.]§ =0 wp. 1. .
Therefore {Z,}r_, satisfies P(q(§) = 1) = 1.

8. Remarks. While the growth theorems presented here concerned the growth
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of log Z,, it is of interest to consider limit theorems for (F(Z,) — g(n)) for an
appropriate class of functions F and g. This problem was considered by Waugh
([14]) for continuous time (nonrandom environment) birth and death processes
with g(f) = t; however Waugh’s motivation stemmed from convergence theorems
for continuous time (nonrandom environment) branching processes.

In closing, it should be noted that a number of theorems presented here in
terms of branching Processes in a random environment can be generalized to
“branching processes in a varying environment” (see [6]).
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