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ON THE EXISTENCE, UNIQUENESS, CONVERGENCE AND
EXPLOSIONS OF SOLUTIONS OF SYSTEMS OF
STOCHASTIC INTEGRAL EQUATIONS
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A theory of stochastic integral equations is developed for the integrals
of Kunita, Watanabe, and P. A. Meyer. Existence and uniqueness of solu-
tions of systems of equations with semimartingale (or ‘‘quasi-martingale”)
differentials is proved, in which we include as particular cases the customary
results as put forth by McKean and Gihman and Skorohod. Under weaker
conditions we prove existence and uniqueness with explosions, and study
the explosion times. We show that when the (random) coefficients or the
differentials converge, the solutions converge to the solution of the limiting
equation.

1. Introduction. About twenty-five years ago K. Itd developed a theory of
stochastic integration with respect to Brownian motion. About 1967 Kunita and
Watanabe proposed a generalization of what is now called the Itd integral: mak-
ing use of P. A. Meyer’s decomposition theorem for supermartingales, they
proposed a stochastic integral with respect to square-integrable right continuous
martingales. Meyer expanded their theory, and in particular a theory of stochas-

-tic integration for local martingales with continuous paths was developed, which
includes Brownian motion as a special case. A theory of stochastic ordinary
differential equations for the Itd integral is well known. McKean (1969) sets
forth the basic theory, and Gihman and Skorohod (1972) consider somewhat
different questions than McKean does. The integral of Kunita and Watanabe,
however, admits any continuous local martingale as a differential, and a theory
of stochastic differential equations for this integral has not been studied, except
for the note of Kazamaki (1972).

The aim of this paper is to develop a theory of stochastic ordinary differential
equations where continuous local martingales are admissible as differentials. We
also allow random differentials whose paths are continuous and of bounded vari-
ation, and hence give rise to Riemann-Stieltjes integrals. As such we are essen-
tially dealing with a continuous semimartingale (or “‘quasi-martingale”) calculus,
as was proposed by Doléans-Dade and Meyer (1970).

In the next section we develop a seminorm for the space & of continuous
semimartingales. In Section 3 we utilize the seminorm to prove the existence
and uniqueness in & of a solution of a system of equations.

The customary existence and uniqueness theorem with a Brownian differential
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has two hypotheses on the (continuous) coefficients (see, for example, Gihman
and Skorohod, 1972): they must satisfy a Lipschitz condition and a condition
of the form:

(1.1) LAt ) = KX(1 + |x[)

for some constant K. Using the technique of optional stopping, we are able to
eliminate the growth condition (1.1) and still prove the existence and uniqueness
of a continuous, nonexploding solution.

We then weaken the remaining Lipschitz condition (Section 4) and find that
solutions do explode unless the Lipschitz condition is weakened in the time vari-
able only.

In Section 5 we consider stochastic coefficients and extend Gihman and
Skorohod’s (1972) results. Here we weaken the Lipschitz condition so that it
becomes a “Lipschitz process.” In Section 6 we consider the question of con-
vergence, allowing the coefficients to converge, the differentials to converge,
and both to converge together. In all cases the solutions converge to the solu-
tion of the limiting equation. Last, we generalize to our situation the well-known
result of Wong and Zakai (1965) concerning the convergence of solutions of
ordinary differential equations to those of stochastic ones.

I wish to thank Professor R. K. Getoor for his advice and encouragement
during the work on this paper.

2. Preliminaries and the seminorm. We will assume throughout a given un-
derlying structure (Q, &, %, P), a complete probability space together with
an increasing, right-continuous family of g-algebras .5, (1=0) such that &, C
& and # contains all the P-null sets of & . That is, (Q, &, &, P) satisfies
the “usual hypotheses.” The reader is assumed to be familiar with the Kunita—
Watanabe-Meyer treatment of stochastic integration relative to continuous local
martingales as is set forth in Meyer (1967) or Doléans-Dade and Meyer (1970).
For the reader’s convenience, however, we will recall here some of the basic
definitions and results.

A process X is called previsible if it is measurable with respect to the o-algebra
generated by the processes adapted to (,) with left-continuous paths. (Such
a process is called predictable by many authors.) We will write X = Y to denote
that the process (X,) is indistinguishable from the process (Y,). It is in this sense
that our uniqueness results are to be interpreted. All stopping times will be
(&) stopping times, and a process' X will be said to stop at a stopping time T
if X,,, = X, for all #, a.s. For a stopping time 7 we write X,” = X,,, 1.,
where 1, denotes the indicator function of a set 4 € .. We call X,” a modified
stopped process. Of course, if X; = Oa.s., then X,” = X,,,. Anadapted process
(L,) is called a local martingale if it a.s. has left limits and is right continuous,
and if there exists a sequence of stopping times (7") increasing to oo a.s. such
that L,"" is a martingale for each n. The class of all local martingales L with
continuous paths such that L, = 0 a.s. will be denoted &,
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We will let .7+ denote the class of processes which have continuous, increasing,
finite-valued paths, are adapted, and are such that 4, =0 a.s. We let % =
S — 7+ that is, 4 e 7 if it is the difference of two processes in 7+, We
also introduce the notation &, ® % = {(1,): y, = Z, + A,, where Z,e &,
Z, < oo a.s., and (4,) € '}. We will call a process X a continuous semimartin-
gale if it can be decomposed as X, = 7, + L,, with () € &, ® ¥ and (L,) € &£
The collection of continuous semimartingales will be denoted by & Note that
such a decomposition of a continuous semimartingale is unique due to the non-
trivial fact that a continuous local martingale either a.s. has paths of unbounded
variation or is constant (see Fisk, 1965). Examples of semimartingales include
processes with stationary, independent increments, and Meyer’s decomposition
theorem assures us that any supermartingale (hence any submartingale) is a
semimartingale. Fisk (1965) has given simple conditions under which a process
has a unique decomposition into the sum of a continuous martingale and a process
in &, @ % which also has finite total expected variation. By requiring that
Fisk’s conditions only hold “locally” one obtains a corresponding (unique) de-
composition into the sum of a continuous local martingale and an element of
F @ . (“Locally” here means that there is a sequence (7™) of stopping times
increasing to oo such that the property in question holds for the modified stopped
process corresponding to each 7™.)

For any L e &, we let (L, L) denote the unique process in %+ such that
L* — (L, L) is in .. Note that E{L’} = E{{L, L),}. For L, Me &, {L, M)
denotes the unique process in % such that LM — (L, M) ¢ . For any stop-
ping time T, (L, M),* = {(L", M)y, = (L, M"),.

For M e ., we let L*(M) denote the collection of all real valued previsible
processes C such that E (¢ C'd{M, M), < co. Also, L}, (M) will denote the
processes C which are locally in L(M). As shown (for example) in Meyer (1967),
for any Me < and Ce L} (M) we can define the stochastic integral C . M as the
unique element of . such that (C. M, N), = {{C,d(M, N), for any Ne &
(The preceding is a Lebesgue—Stieltjes integral for a.a. fixed w.) We also write
C. M, = {§C,dM,. The reader is referred to Meyer (1967) for further properties
of this integral, including a change of variable formula, or “It6’s lemma.” We
will also use the notation [[R, S]] = {(#, w): R(w) < t < S(w), and ¢t < oo} to
denote stochastic intervals, where R and S are nonnegative random variables.

We recall a stopping time is said to be previsible (or predictable) if there exists
an increasing sequence (S*) of stopping times such that lim,_, $* = R, and
S§* < R on {R > 0} for each k. Such a sequence announces R. Previsible stop-
ping times are treated in detail in, for example, Dellacherie (1972).

We now begin the development of the seminorm. For a process Z e & and
a stopping time T, we define :

(2.1) vi(Z) = Zi'l 50 + SUPigr L + (15 |dA,|)?
where Z, = Z, + L, + A,, with (Z, + A)e F,® %7, and (L) € . We also
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write |A4|, = {§|d4,|, the total variation up to ¢ of the signed measure induced
by 4. For any Z ¢ & and stopping time T, we let

1Z]lr = (E{vr(Z)})?*
denote a seminorm on & which depends on 7.

The following sequence of lemmas develops the desired properties of the semi-
norm |||l

(2.2) LEMMA. Suppose T is a stopping time, and (Z™) C & such that || Z™||; < oo
for each m, and (Z™) is Cauchy in ||+||;. Then there exists a Z ¢ & such that Z
stops at T and lim,, ., ||Z™ — Z||, = 0. Also, there exists a subsequence m' such
that (Z,™) stopped at T converges uniformly in t to Z,”.

Proor. We will show the existence of the three parts of Z: Z,, L, 4.

Part 1. Clearly Z,"1,,,, is Cauchy in L*(dP) and we let Z, denote its limit.
We let m’ denote a subsequence such that Z™1,., — Z, a.s. We take here
Zmr=Z" + L™+ A"

Part 2. The class of all centered square-integrable martingales is a Hilbert
space under the norm ||M||, = E{M_}}, and all continuous squareintegrable
martingales is a closed subspace. Assuming without loss of generality that L,”
stops at T for each m, (Z,) Cauchy in ||+||, implies L™ Cauchy in ||.||,, hence
there is a continuous L* martingale L which is its limit. Also sup, |L,"| Cauchy
in L*(dP) implies there exists a subsequence m’ such that lim,,, sup,|L,™ — L,/ =0
a.s.

Part 3. We assume 4, stops at T for each m. We can choose a subsequence
of (m), which we call (k), such that E{sup, |4,*** — 4,*]’}} < 27*. Then 4,* is
dominated uniformly in k by an L? function, and 4,* converges a.s., uniformly
in t. We let 4, = lim, 4,* a.s. Then A, is the uniform limit of continuous
functions, so a.s. + — 4,(w) is continuous, and is adapted. It remains to show
|4]; < co and that 4™ converges to A4 in expected squared total variation. For
any ¢ > 0, there exists an N such that for n, m = N,

e > E(jA» — A™|,)
2 E(Zziepj |(A?,-+1 - AZH) - (A?, - AZZ)DZ
where P; is a sequence of refining partitions of [0, 1] with mesh (P;) — 0. Letting
m — co through the subsequence k and using Fatou’s lemma one obtains, for
n= N, E(|A" — A|;)* < e. |A|p is clearly in L*(dP). This completes the proof
of Lemma 2.2.

(2.3) LEMMA. Let (Z™) C & and (R;) be a sequence of stopping times a.s.
increasing to co. Suppose also that ||Z"||, < oo for all n and k, and that (Z*) is
a Cauchy sequence in ||+||z, for each k. Then there exists a Ze S such that
lim, ., ||Z — Z"||z, = O for each k, and there exists a subsequence m’ such that a.s.
lim,, ., Z™ = Z, forte (0, c0). Also, Z™ converges to Z, uniformly in t a.s. on
[[0, R,]] for each k.
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Proor. Let k = 1. Then by Lemma 2.2 we know there existsa Z® ¢ &such
that Z® stops at R, and lim, _, [|Z" — Z®"||, = 0. Further, except on a P-null
set A, there exists a subsequence n(1) of n such that Z,*® converges to Z,®
uniformly in ¢ on [[0, R,]]. Inductively we get a P-null set A,, a subsequence
n(k) of n(k — 1), anda Z* ¢ &“stopping at R, such that lim,_,||Z* — Z»|| = 0,
and for ¢ A,, Z»* converges to Z,'® uniformly in ¢ on [[0, R,]]. Let A =
Ui Ay, so that P(A) = 0. If k¥’ > k and w ¢ A, then on ((0, R,]], lim Z,»*" =
Z* = Z"», s0a.s. Z* = Z,® on ((0, R,]]. Since[[0, R,]]increasestoR, x Q
as k increases to co, we can now well define Z by Z, = Z,' on ((0, R,]], and
Z, = Z,® on {R, > 0}. Our one subsequence of (n) consists of the sequence
having its kth term be the kth term of the sequence n(k). This completes the
proof of Lemma 2.3.

3. A simple stochastic differential equation. In this section we establish a
theorem whose hypotheses are simple. This prevents the notation from obscuring
the proof, and we will refer to this proof when proving Theorem 5.3, which
includes this theorem as a special case. Note that since the Wiener process is
in &£ and V(0) = ¢ (nonrandom) is in .97, the following theorem includes as a
special case the standard existence and uniqueness theorem as presented, for
example, in Gihman and Skorohod (1972).

(3.1 THEOREM. Fix an Me £, a Ve 7, and a Y,e 7, such that a.s.
|Yo| < oo. Let f(t, x) and g(t, x) mapping R, x R to R be jointly continuous and
satisfy

(3.2) (&, x) — f(t, )] + 1902, %) — 9(t, y)] < K|x — y|

for all x,y and t, and for some constant K. Then there exists a unique Y ¢ & such
that

(3‘3) Yt = Yo + Sé (S, Ys) dMs + Ség(s, Ya) st M

Proor. Let C, be a sequence of constants increasing to co. We define the

following stopping times:
T)* =inf{t > 0: |M,| = C,} T)) =inf{t > 0:|V|, = C,}
T = kly 50, T} =inf{t > 0: (M, M), = C,}
Tk = minléis4 Tik . '

Note that lim,__, 7% = o a.s.

We now fix an arbitrary k and let 7= T*; we let N, = M,”, W, = V,7, and
Zy, = Y,iip5q. Since Xe & implies t — f(¢, X,) is continuous, {; f(s, X,) dN, and
§5 9(s, X,) dW, both exist, and the first defines an element of & for X e .,

We define Y," = Z,. Inductively, we define
(3.4) Yot = Zy 4 §§f(s, Y,") dN, + §Eg(s, Y,*) dW, .

Suppose Y*e & Since 5 — f(s, ¥,") is continuous, it is in L2, (N), so $ f(s,
Y,")dN,e £ and (| g(s, Y,") dW, e 7.
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Now let R be an arbitrary stopping time. Working first with the local mar-
tingale part of Y**' — Y*, by approximating R by bounded stopping times and
using Doob’s maximal quadratic inequality ([9], page 94) for continuous local
martingales we get:

Efsupisz (§:f(s, Y,") dN, — §if(s, Y,*7") dN,)’}
(3.5) S AKPE(\E|Y,» — Yr P d{N, N),}
< 8KPE[{f v (Y™ — Y1) d(N, N}
using the Lipschitz condition, (a + 6)* < 2a* + 2b* for positive a, b, and where
v, is as defined in (2.1).
We next consider the part of Y»+' — Y™ that is in".%7. We have
E{(§5* |d(§s 9(s, Y,") dW, — [ 9(s, Y,"7") dW,)I)}
= E{(§¢ l9(s, Y.") — g(s, Y," )| [dW.])"}
= KE(|WR &Y — Yo 'Plaw])
by the Cauchy-Schwarz inequality and (3.2). Since || is uniformly bounded,
we have for some new constant C,

(3.6)  E{({5 |d(§59(s, Y.*) — g(s, Y.,* ) dW)|)} < CE{{§ v (Y" — Y"7)|dW [} .
We now let 4, = (N, N), 4+ |W|,. Combining equations (3.5) and (3.6) we have

for some new constant K,
3.7) E{y(Y"* — Y")} < CE{{E v (Y™ — Y1) dA,}.

The inequality (3.7) suggests a Gronwall-type procedure, and since we use it
repeatedly in this paper, we state the next step in the proof as a lemma.

(3.8) LeMMA. (i) Let (A,)e " be such that A, < a a.s., where a is a finite
constant. Let Q be a stopping time such that (X™) C & satisfies || X"||, < oo, for
each n. Suppose for any stopping time R, we have

(3.9) Blug(X* — X*} < CE{{§ v(X*~ — X"} dA} .

Then (X™) is Cauchy in ||||o.

(ii) Further, if the hypotheses of (i) are satisfied for a sequence of stopping times
(Qy) increasing to co, then there exists an X € & such that lim,_,, [|[ X" — X]||o =0
for each k.

Proor. Define r, = inf{s > 0: A4, > ¢}, the right-continuous inverse of the
increasing process (4,). For each fixed ¢, {r, < s} = U, {4,_1,» > t} € F,, since
(4,) is adapted. So r, is a stopping time for each z. By (3.9) we have

B{y,,o(X* — X"} < CE[§5°% v,(X*™ — X*%) dA,)
< CE{§§="" v, ,o(X*™ — X*7") ds}

S CIt Efy, po(X™ — X"} ds

by Lebesgue’s change of time formula (see, for example, page 91 of Dellacherie
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(1972)), and by Fubini’s theorem. For notational simplicity, let g,(f) =
E{v.,,o(X* — X»")}. For ¢ < a, the above yields g,(f) < C {§ g,_.(s) ds. Using
Fubini’s theorem repeatedly we have

9u(t) < C* §¢ $3 9,_o(u) du ds
= C* §¢(t — u)g,_o(u) du

ol g wa

and continuing inductively yields

(3.10) g < cmp U0

m 9.(u)du .

But g,(#) is bounded, since || X"||, < oo for each n, in particular for n = 0, 1.
Therefore (3.10) implies, for 1 < a,

_ K(Cay~
) = || X* — X712 <
g'n( ) || ||t't/\Q - (n _ 1)!

which is the nth term of a convergent series. Letting 1 = a, we observe that
T, = oo a.s., since 4, < a a.s. We conclude that

a =

_ K(Cay—

Xr — X 2 <

and so (X™) is a Cauchy sequence ||||,.

The proof of (ii) is of course nothing more than an application of Lemma 2.3,
given the truth of (i). This completes the proof of Lemma 3.8.

Returning to the proof of Theorem 3.1, we wish to show the sequence (Y™)
as defined in (3.4) converges to a process Ze.&. By (3.7) and Lemma 3.8, it
will suffice to show that there exists a sequence of stopping times (R,,) increasing
to oo such that ||Y*||, < oo for all n and m. However, ||Y"||, < oo for all n
provided that R,, is bounded: clearly ||Y’||, < oo, since |Y?| is bounded; assuming
[|1Y"||z < oo, we have

vo(Y*¥) < C, + 4B(1E f(s, Y2 d(N, NY) + E(W |, §2 o(s, YYdW,))

and since R is bounded, f Lipschitz and continuous implies | f{¢, x)|* < K(1 + |x|?)
on [0, R(w)], so

ve(Y"*) < G + 4C(1 + Efsup,cp |Y,}) + C(1 + Efsup,x |Y"")
= (1 + 41Y]|2") -

Thereforev, (Y"*') < co and so [|[Y"#||, < co. Thus we may let Z e .5 denote
the limit of the sequence (Y™): that is, for any sequence of bounded stopping
times (R,,) increasing to co, we have lim,_, ||Y" — Z|| By = 0, for each m.
Such a process Z € & stops at the stopping time T = T* chosen at the begin-
ning of the proof. Let us denote this limit by Z = Z*. Then by Lemma 2.3 we
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may well define a new process Y on [[0, o0)) by:
(3.11) Y,(w) = Z,X(w) if 0<t< THw)
= Z}(w) if t=0 and T*w)>0.
The process Y given in (3.11) is our candidate for the solution to equatiun

(3.3). It remains to show that Y actually satisfies (3.3) and is the unique process
that does so. Since limits are unique, it suffices to show that for each k,

(3‘12) limn—»oo ||Y”+1 - YO - S(t)f(s’ Ys) dMs - Sg g(S, Ys) st”T" = 0 .

We fix an arbitrary k and let T = T*. Using (3.4) and letting 4, = (M, M),,, +
|V]inr>» We have

”YO + Séf(s, Y, dM, + i g(s, Y,)dV, — Y |,

(3.13) < CE(§I|Y, — Y[ dA,)
< C'Efu,(Y — Y*)
=Y — Y*||,?,

since T may be assumed bounded, without loss of generality. Since {(¢, ):
0 < ¢t £ THw); T*w) > 0} increases to R, x Q, we deduce Y satisfies (3.3).

Suppose there exists a Z e & such that Z also satisfies (3.3). By analogous
reasoning as the preceding, one obtains ||Y — Z||,+ = O for each k; hence Y = Z.
This completes the proof of Theorem 3.1.

For simplicity we have stated Theorem 3.1 with only one local martingale
differential, and only one differential of bounded variation. The proof of the
theorem with a finite number of martingales and/or processes of bounded varia-
tion, while notationally more cumbersome, is exactly analogous.

Similarly, the extension of Theorem 3.1 to systems of equations poses no new
difficulties. We let d be the (implicit) number of equations. We let S = (&
&, -+, &) denote the class of (d-dimensional) vector semimartingales. For a

vector x = (x, - - -, x%) in R? we let [x| = Y%, |xY|. For a ZeS we define the
vector norm by
(3.14) Zll; = Zia 121l

for some stopping time 7. Lemmas 2.2 and 2.3 are true for the obvious gener-
alizations (Protter, 1975). With these definitions, we may now state the analogue
of Theorem 3.1 that holds for systems of equations. We omit the proof, which
is a straightforward adaptation of the proof of Theorem 3.1.

(3.15) THEOREM. Fix M, ... M?e & V', ..., Vie ¥ and Y,, where
Y,ie F g such that |Yi| < oo as. for 1l <i<d. Forl <j<p, 1<k <q,let
f;(,x): R, xR* > R? and g,(t, x) : R, x R? - R¢ be such that f;'(t, X) and g,(t, X)
are jointly continuous for 1 < i < d. Further, suppose they satisfy

(3.16)  [fi(t,x) — f,(.y)| = K[x —y], &t %) — &u(t, )| = K|x — |

for some constant K, and all t, X and y. Then there exists a unique Y € S that
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satisfies
Yo = Yo + 25 (s, Yo) aMi + Fi, Sieuls, Y) dV,k.

4. Exploding solutions. As discussed in the introduction, Theorems 3.1 and
3.15 improve even upon the standard result with the Wiener process and Lebesgue
measure as differentials, since they eliminate the growth condition on the coef-
ficients while obtaining nonexploding solutions. One then wonders if also the
Lipschitz conditions (3.2) (respectively (3.16)) can be weakened. The answer
is that they can, but one must be careful: in Theorem 5.3 if we take K,(») = K,
for te(m — 1, m], we see that the hypotheses of Theorems 3.1 and 3.15 are
stronger than they need to be, but Theorem 4.3 shows that a straightforward
weakening of the Lipschitz condition introduces “explosions” into the solutions.

We begin with the definition of an explosion time.

4.1) DEFINITION. A stopping time R is called an explosion time for a process
Z if R is a previsible stopping time such that for any sequence of times (S*)
announcing R, Z is defined on [[0, $*]], and lim sup,; , |Z,| = oo.

4.2) DerFINITION. For any stopping time R we let &, (respectively S;) be
the family of R-valued (resp. R¢-valued) processes such that Z ¢ &, (resp. Z € Sy)
if there exists a sequence (S*) of stopping times, S* < R and increasing to R,
such that Z,5* ¢ & (resp. Z5* ¢ S) for each k.

Note that R need not be previsible in Definition 4.2; hence we only require
that [[0, R)) ¢ Ui, [[0, S*]] < [[0, R]]. Functions that satisfy the condition
below we will call weak Lipschitz.

(4.3) THEOREM. Let the hypotheses of Theorem 3.15 be satisfied, except that in
place of (3.16) we require only that (| f;(¢, x) — fi(t,y)| + |9.(2, X) — g.(t, Y)])/|x — |
as a function of (t, x, y) be bounded on compact sets, where1 < j < p,1 < k < g.
Then there exists a unique process Y in Sy with explosion time R such that on [[0, R))
Y satisfies

(4.5) Yo=Y, + D5 G fi(s, Y) aMi + i (i auls, Y,) dv,k.

Proor. For notational simplicity, we establish only the case where d = p =
g = 1, and hence denote the coefficients by f(z, x) and g(¢, x). The proof for
general d, p and ¢ is an obvious generalization. The method of proof will be
to extend f and g off of U™ = [0, m] x [—m, m] C R, x R in such a way that
we may use Theorem 3.15. We then have a solution on each U™ such that if
m’ > m, the solution for m’ agrees with the one for m on U™. We begin by
defining

(4.6) ™, x) = f(t, x) if (t,x)eUm
= f(u,y) if (t,x)eU"

where (u, y) is the point on U™ that minimizes {|(u, y) — (¢, x)|: (u, y) € U™}.
We define g™(#, x) in the analogous manner. Both f™ and g™ are Lipschitz on
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R, x R and jointly continuous. So by Theorem 3.1 (or Theorem 3.15 for the
vector case) there exists a unique process Y™ ¢ & such that

4.7) Y,m =Y, + §if"(s, Y,") dM, + § gm(s, Y,") dV, .

We define the stopping times S™ = inf {t > 0: (¢, ¥,™) e (U™}
We fix an m and let § = S™. Using (4.6) and (4.7), we have

(Y™)? = Yo lisoq + §6°5 f™(s, Y,™) dM, + §0°8 g™(s, Y,™) dV,
= Yolisso + $5°5f(s, Y,™) dM, + (478 g(s, Y,™) dV,
= Yy lis50 + §75f"4(s, V™) dM, 4 §5*S g™*i(s, Y,™) dV,

since f" = f = f"*' on U™, and (s A S, Y™(s A S))e U™. We have used the
simple result that for a process C e L},,(M) and a stopping time S, (C - M),,s =
(C® - M),,s, where C - M, is the stochastic integral {; C, dM,. Using the unique-
ness of each Y™ as a solution to (4.7), we may conclude from the above that

(4.8) Y=Y '  on [[0,S]].

Since each Y™ is continuous, S™ < $™*! on {§™ < oo}, s0 R = lim S™ is a pre-
visible stopping time. Indeed, R is the explosion time referred to in the statement
of the theorem. By (4.8) we define

(4.9) Y,=Y" on [[0,S"]].

It is easy to verify that for any sequence of stopping times (7*) increasing to R
we have Y7* ¢ &, for each k.

It is straightforward to verify that, since Y satisfies (4.7), and hence (4.5) on
[[0, $™]], it must satisfy (4.5) on the whole interval [[0, R)).

Suppose Z ¢ & also satisfies (4.5). Then (Z,5™) will satisfy equation (4.7),
and so by the uniqueness result of Theorem 3.1 we have Z,1 gn,o = Y, 1 (Sm>0)
on [[0, S™]], for each m. Thus Z, 1y, 5, = Y, 11y »),. This completes the proof
of Theorem 4.3.

Theorem 4.3 raises the possibility that the solution will explode if the coef-
ficients are permitted to grow too fast. If an explosion time R is such that
P({R = oo}) = 1, then of course &, = & (resp. S, = S), and Theorem 4.3
emerges as stronger than Theorem 3.15. This is not true in general, but one may
put additional conditions on f,(z, x) and g,(¢, x) which make P({R = oo}) = I;
that is, they make explosions impossible. For a result of this type, the reader
is referred to Protter (1975).

McKean (1969) states and proves what he calls “Feller’s test for explosions,”
where he considers the equation

X, = x4+ (i f(X,) dB, + (i 9(X,) ds

where (B,) is the Brownian motion martingale with B, = 0 a.s., and x represents
a sure initial state. Assuming f(+ 0) and g are continuously differentiable (hence
weak Lipschitz), McKean obtains a condition for explosions to be a.s. impossi-
ble. The following theorem replaces (B,) with an arbitrary M ¢ 2 and allows a
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stochastic initial state. For the proof, which is adapted from McKean’s, we
refer the reader to Protter (1975).

(4.13) THEOREM. Let Me £ andf,g: R— R be continuous and weak Lipschitz
such that f + 0. Let X,e F, be finite a.s. and let (X,) € &% satisfy

X, = X + [3f(X,) aM, + {5 9(X,) &M, M),
where R is the explosion time for X. Let
% = j(x) = {§ exp(=2 {i 9(V)[f(v)]7* dv) du ,
(@) = §% [j(x) — j(— o) /(j(x))¥(d)
(6) = §& [j(eo) — LS (G(*)7"f(dx)
where f( Jj(x)) = j'(x)f(x). We have
(1) ifboth (a) = (b) = oo, then P({R = oo}) =1;

(i) if lim, (M, M), = oo a.s. and either P({X, > 0}) = 1 and (b) < oo, or
P({X, < 0}) = 1 and (a) < oo, then P({R = o}) < 1.

and

5. Existence and uniqueness for stochastic coefficients. We next consider
the possibility of coefficients which are themselves random. This has been con-
sidered previously by Gihman and Skorohod ((1972), page 50) for Brownian
motion and Lebesgue measure differentials, and also by McShane ((1974), page
154). McShane considers a more general equation than Gihman and Skorohod,
using the definition of stochastic integral which he developed. He does not,
however, permit the Lipschitz constants to depend on time, and in his existence
theorems he requires the differentials to satisfy several Lipschitz conditions which
Brownian motion satisfies, but which do not, in general, hold for elements of <.

Due to the nature of stochastic coefficients, we must relax the condition that
an explosion time must be previsible, as required in Definition 4.1.

5.1 DEFINITION. A stopping time R is an explosion time for a progressively
measurable process (K,) if R = lim,,_,,, Q™, where

(5.2) Q™ = min (inf {r > 0: |K,| > m}, m1 g ) -

We require (K,) to be progressively measurable so that Q™ are stopping times
(see Dellacherie (1972)). A previsibly measurable process is progressively
measurable.

(5.3) THEOREM. Fix M, ... MPec &5V, ... Vie ¥}, - -, 90 e F,®
7. Let Fyt, X) = (Fj(t,x), -+, F%(t,X)), ] £j < p;andGy(t,x),1 <k < g,
be random R*-valued functions such that a.s. (t, X) — F(t, X) and (t, X) — G,(t, X)
are jointly continuous, and Fj(t, X), G,k(t, X) are & ,-measurable for each fixed t
andx,1 < i < d. We also require that there exist a finite-valued process (K,) defined
on [[0, R)) such that F; and G, satisfy, on [[0, R)):

(5-4) max,g;<,asise ([Fi(5 X, @) — Fi(t, y, 0)|, |Gy(t, X, 0) — G, (1, y, 0)|)
< Kt(a))|X — y] .
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Let R be the explosion time of (K,). Then there exists a unique process (X,) € Sg
such that for 1 < i < don [[0, R)), X satisfies

(5.5  Xji=n 4 25, St Fis, X)dM + 31, 6Gi(s, X,)dV "
Proor. Without loss of generality, we may assume that

(5.6) K, = sup,. ,» MaX,g ;< ucis, (IFi(1 X*) — Fy(t, y¥)|/|x* — y*,
|Gi(, X*) — Gy(t, y¥)|/IX* — ¥*|)

where x*, y* € Q%, Q being the rational numbers. Then (K,) is the supremum
of countably many previsible processes and so is previsible. Also, (5.6) implies
that a.s. t — K, is lower semicontinuous.

Since (K,) is previsible, (Q™) as defined in (5.2) are stopping times, and so also
is R. Further, the lower semicontinuity of (K,) assures us that |K,¢"| = K" < m:
suppose w, is not in the exceptional set where (K,) is not lower semicontinuous.
Let 0™(w,) = 1, and K, (®,) > m. Then there will exist a neighborhood N, of #,
such that K,(w,) > m for t e N,. Since N, n [0, t,) = @, we have Q™(w,) < #,
which is a contradiction.

From the above and as in the proof of Theorem 3.1 we know we can find a
sequence (T™) of stopping times increasing to R such that for 7' = 7™, |(9),”| =< m,
(M, My, Sm, |(VE)pp <m,and K" <mfor 1 <i<d, 1<j<p, 1<
k < q and each m. We fix an arbitrary m and denote: ¢* = (v)"; N/ = Mj, ,;
Wk =Vt ,; and C, = K,7.

We let Y, = ¢, = (8.}, - - -, $,%), and inductively define
(5.7) Y =@, + 202, S F(s, YV AN + 3, §6Gu(s, Y, dW - .

Each Y" so defined is in S: clearly Y°e S; assuming Y" €S, it is adapted and
continuous, so F (¢, Y,”) and G,(#, Y,") are also, hence they are previsible. They
are also locally bounded, so F,i(t, Y,") € L},.(N?), and {{ F,¥(s, Y,*) dN,7 ¢ <& for
1<igd, 1 <j<p. Analogously, |G,i(s, Y,")| is locally bounded, so §; G,i(s,
Y,*) dW,* is of bounded variation since it is a (finite) Riemann-Stieltjes integral.
It is adapted and in %" as a consequence of the definition of the Stieltjes integral.

We will now show that (Y") is a Cauchy sequence in the vector norm ||«||.
Let S be an arbitrary stopping time. Let

H(i,j,n, t)y = {§ F;(s, Y")dN,;7 — §EF; (s, Y1) dN/7 .
Then by Doob’s maximal inequality (Meyer, 1966) extended to local martingales,
using (@ + b)* < 2¥(a* + b*) and using (5.4), we have
E{sup,<s (XN3-1 H(, J, n, )} = 4E{(X 31 HG, /o 1, S)))
=42 N EKHG, Jy ny ), HG, Jo 1,y 0))s)

= 220 2o E{§F CAY,» — Y 2PN, N7}
and so

(5:8)  E{supigs (131 H(E, Jy n, 1))}
< 20400 302 E{§S v (Y* — Y1) d(N7, N7} .
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Again using (a 4 b)* < 2*(a* 4 b*) as well as the Cauchy-Schwarz inequality,
we have
E{(2i-1 7 1G(1, Y2") — Gi(r, Y2 7)| |[dW )’}
= 20m 3o E{§S CIY" — YW )
< 29m2t g E{§5 v (Y — Y ) |dW kY,
and combining this with (5.8) we have:
(5.9) Efys (Yt — Y™} < dm®2r+atdHE((S y (Y" — Y"1 dL,}

where L, = 372_, (N’, N%), + > 4_, |W*,. Note that L, < (p + q)m a.s. Thus
by (5.9) we may apply a vector version of Lemma 3.8 provided there exists a
sequence (R;) of stopping times increasing to R such that ||Y"||, < oo for each
n, I. Taking

R, = min,g; .02, (inf {t > 0: [Fy(¢, 0)] > I}, inf {t > 0: |G,(z, 0)] > 1})

we have max (|F;(t, x)|*, |G,(¢, X)|’) < K(1 + |x]*) for some constant K, on [[O,
R;AT]]. Aninduction onras in the proof of Theorem 3.1 shows that || Y*||;, < oo
for each n, I.

Since Y as defined by (5.7) depends implicitly on m, we write Y»™ = Y,
Since lim,_,, R, = oo a.s. and lim,,_, T™ = R a.s., we may choose one sequence
of stopping times (Q™) with 0™ < T™and ||Y™™||,m < oo for all n; then by Lemma
3.8 there exists an X € S, such that
(5.10) lim, ., [[Y"™ — X||gn = 0
for each m.

It remains to show that the above process X satisfies equation (5.5) and is the
unique process in S, that does so. By (5.10) it suffices to show that

lim, o [[Y™" — 2, — 25 S0 Fi(s, X)) dM,f — 318 §5 Gul(s, X,) AV, |gn = 0.
By arguments analogous to those leading to (5.9), we have
||Y”'m — N — Z?:l 1} Fj(sa X,)dM,7 — Y&, §6 Gu(s, X,) stk”Q"‘
< DIIY™™ — X]|gm

for some constant D, and the right-hand side tends to 0 as n — oo, each m.
If Z € Sy also satisfies (5.5), we have for any stopping time S and each Q = Q™

Efvgus(Z — X)} < DE{§§*S v(Z — X) dL,}
for some constant D. This implies that ||X. — Z||,» = O for each m, hence X = Z

on [[0, R)). This completes the proof of Theorem 5.3.

6. Convergence theorems. Several different questions may, and have, been
posed concerning the convergence of solutions of stochastic integral equations
under varying hypotheses. Wong and Zakai (1965) investigated the convergence
of solutions of ordinary integral equations to the solutions of stochastic integral
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equations. This was generalized to systems by McShane (1974), who used his
own integrals, and allowed more general differentials than just Brownian motion.
Theorem 6.7 extends Wong and Zakai’s theorem to include general local
martingales.

Gihman and Skorohod (1972) consider a convergent sequence of stochastic
coefficients and show the solutions converge to the solution of the limit equation.
Theorem 6.4 is a somewhat stronger and more general version of their result.

The following theorem shows that when the local martingales (*M?) converge
to a local martingale (M?), and the processes (*V'*) of bounded variation converge
to V*, the solutions converge to the solution of the limiting equation. We believe
this is the first time this question has been raised.

6.1) THEOREM. Foralln = 1,"Zi = "M/ 4 "Viwith ("M’) ¢ &, ("V') € 7,
and (") € F @ 7, 1 < j < p. Let Fi(t, X), Gy(t, X) be as in Theorem 5.3. Let
R be the explosion time for the Lipschitz process (K,). Suppose further there exists
a sequence of stopping times (T,,) increasing to oo; semimartingales Zi = M? 4 Vi
and processes e F @ % where (for each j, 1 < j < p):

(a) lim,_, |["Zi — Z¥||, = O for each m;
(b) lim, . E{sup,c, |p,* — 3,|'} = O for each m;
(c) lim,_. E{|p" — 9|7 } = O for each m;

and let X" and X satisfy on [[0, R)):
X =9 4+ 230 (S F(s, X" d"M7 + §§ G,(s, X,”) d*V,9)
X, =5+ 22 (S Fi(s, X,) dM7 + §£G (s, X,) dV,9) .

If (a) and (b) hold, then X" converges locally to X in maximal quadratic mean. If
(a) and (c) hold, then X* converges to X in ||+||, , for each m.

Proor. We only give the proof for the case where (a) and (b) hold, since the
modification of the proof for when (a) and (c) hold is clear. Also, we only
consider the case of one equation, and take p = 1. The proof for general d and
p follows easily. We need to show only that the hypotheses imply the existence
of a convergent subsequence, since the limit is identified. We choose a sequence
of stopping times increasing to R, denoted (7™), that simultaneously satisfies the
hypotheses (a), (b), (c).

We shall show that by passing to a subsequence if necessary we may assume
without loss of generality that |V*|,, ,m < m, |V],.om < m, (M, M™,, om < m,
and (M, M}, ; m < m, all a.s. By redefining 7™ to be T™ given by

™ — min(Tm, inf{t >0: |V, >%},inf{t>0: (M, M5, >%}>

we may assume |V|,,,m < m/2 and (M, M), ,n < m/2. By (b), lim,_, |V* —
V|pm = 0 in L}(dP). Since P has finite mass, we know there exists a subsequence
n’ such that lim, ., sup,<zm |V,* — V,| = 0 a.s. That is, a.s. V},,» converges
to V,,r= uniformly in t, and so for large n’, |V"|,, ;n < m. By Proposition 3 on
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page 77 of Meyer (1967), we know that for bounded H and K, and L, Ne &,
E{§o |H,| K| [d<L, N).|} < E{§; H,* d{L, L) PE{{; K;'d{N, N} }} .
Therefore for the subsequence n’ obtained above, letting 7= T™, and using
hypothesis (a),
Efsup,p KM™, M™), — (M, M),|}’

= E{sup,c, [KM™ 4+ M, M™ — M},|}

< EUMY + M, MY 4+ MY }EKM™ — M, M~ — M),)

= E{(M" + M) }JE(M" — M),’}
which converges to 0 as n’ tends to oo, since

E{(M™ + M),"} < 2E((M™ — M)’} + 2E((M + M},*},
which is bounded. Therefore there exists a subsequence n” such that
lim, ., ., SUP,erm [(M™', M¥"S, — (M, MY, = 0,

soa.s. (M™', M™"),, .m converges uniformly in ¢ to (M, M, , .m, and so for large
n’, M, My, e < M aLs.

Without loss of generality we may take K, = max (K, |F(t, 0)|, |G(t, 0)]),
where

K¢ = supa o ma (176X P )L 160,27) = Gt y)
o ¥ — y¥| Jx* — y*|

where x*, y* are in Q. Thus we may also assume without loss of generality that
K,"™ < m. Finally, it is also convenient to assume |X,”"| < m, which of course
we may also do without loss of generality.

We now fix an m and let 7= T™. Let S be an arbitrary stopping time.
Repeatedly using the inequality (a 4 b)* < 24’ 4 24*, and then by Doob’s quad-
ratic inequality, the Cauchy-Schwarz inequality, and the fact that max (|F(z,
X)), |G(t, X)) £ m 4+ m?, we have:

Efsup,<sar (X" — X))
< AE{suPigsar (7" — 0} + 8E{sUpigsnr |§5 F(s, X,) d(M, — M)}
+ 8E{sup,cs.r |§6 F(s, X;) — F(s, X,*) dM*|*}
+ 8E{(§5*7 |G(s, X)[|d(V — V™).))}
+ 8E{(§5"" |G(s, X,) — G(s, X,")||dV"]))}
< AE{sup,csnr (" — 7)) + 32(m + M E((M — M"),*}
+ 16(m* + m)E{|V — V"|g, .}
+ 32mE({§T |X, — X (M, MPy,)
+ SME(JST |X, — XV}
Letting A(n, m) denote the sum of the first three terms in the preceding expression,
we have shown

(6.2)  E{supes.r (X" — X} < b(n, m) + 32mE(§5°7 (X, — X,*) dL,}
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where L, = L™ = |V*|,.om + {(M", M">,, ,m. Note that L_»™ < 2m for each
n. Weletr, = ¢,»™ =inf{s > 0: L™ > r} be the right-continuous inverse of
(L) Since (L,) is previsible, 7, is a stopping time for each ¢. For integrability
reasons, we define R = R™! = min (inf {r > 0: |X,"| > I}, 1. 1y xmsn), @ stopping
time. Wedenote f, (f) = E{sup,s., .. [(X, — X,")"]'} and by (6.2) and Lebesgue’s
change of time formula (see, for example, Dellacherie (1972), page 91):
Fuilt) < B(n, m) + 32mE(§ (e )(X., — X2)ds},
where I' = [0, T A R]. This yields

Jault) = b(n, m) 4 32m* §i £, ((s) ds .
Since s — f, ,(s) is positive, increasing and finite for each I, {if, (s)ds <
if,,(f) < oo, so we may apply the Bellman-Gronwall lemma (see, for example,
Gihman and Skorohod (1969)) to conclude f,, (1) < h(n, m)e®**. By the mono-
tone convergence theorem this yields
(6'3) E{SupsSrt/\T (Xs - Xsn)z} é h(na m)e32M3t *
But L,»™ < 2m implies 7,, = 5, = oo, s0 (6.3) becomes

E{sup,.rn (X, — X"} < h(n, m)e®™ .

Sincelim, ., h(n, m) = 0 for each m, we conclude lim,, ., E{sup,<;m (X,— X,*)*} =0
for each m, and Theorem 6.1 is established.

Our next theorem shows that the solutions converge to the solution of the
limiting equation if the coefficients converge. We note that for any 4 e '+ we
may define a measure ¢, on the previsible sets by

#4(T) = E §7 1(t, 0) dA,(0) .
6.4) THEOREM. Fix(Mi)e L, 1 <j<p;(VHe 1<k < q; (")), 7' C
T @S, I <i<dnz 1. Let Fr(1,x), Fi1,x), | <j < p, and G (1, X),
Gu(1,X), 1 < k < qbeasin Theorem5.3, all n > 1, with Lipschitz constant process
(K.) and explosion time R. Let stopping times (T™) increase to R a.s. such that for
each m the following conditions are satisfied, where T = T™:
(a) lim,_., P{sup <, |(F;"(s, X) — Fy(s, X))?| > ¢} = 0 and
SUPyizm [(F,(5, X)7)| = Ho(s, ) for 1 < j < p, n = 0;
(b) lim,_., P{supyicn [(G*(5, X) — Gy(s, X))7| > ¢} = 0 and
SUPgm [(Gi™(s, X))*| = Ju(s, 0) for L sk < ¢, n 2 0;
() (1) converges locally to (3,) in maximal quadratic mean.
The processes H,, and J,, above satisfy
E{\q Hu(s) d{M, M);} < o0 and  E{{{ J,(s)|dV,]} < oo
We let X" and X denote the respective solutions of
X ="+ Dl GFs XM dMJ + B, 10 G (s, X,) dv !
X, =0+ Lj EF(s, X) M7 + T, (i Gy(s, X,) dV,*
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Then lim, ., E{sups_,m |X,* — X,|*} = 0; that is, X» converges locally to X in maxi-
mal quadratic mean.

PROOF. We treat the case d = p = ¢ = 1 for notational simplicity. As in the
proof of Theorem 6.1 we may assume without loss of generality that the sequence
of stopping times (7™) increasing to R a.s, of hypotheses (a), (b) and (c) is also
such that for each m and T = T™ K" < m; |X,"| £ m; (M, My,,, < m; and
|Vlear < m. Using the hypotheses, the inequality (a + b)* < 2(a® 4 b%), Doob’s
quadratic inequality for continuous local martingales, and the Cauchy-Schwarz
inequality, we have for an arbitrary stopping time S,

Efsup.gsnr [X" — X%}
= 4E{sup,<, (9" — 7,)%}
+ B2E(§§" SUpcp (FX(s, ) — F(s, )" d(M, M)
+ 8E{m ({7 sup,, <, (G*(s, x) — G(s, x))*|dV,|}
+ B2E(§T (F(s, X2) — Fo(s, X)) d(M, M.}
+ 8E{|V]s\r §§°7 (G™(s, X,") — G*(s, X,))dV,]} .

Denoting the first three terms on the right-hand side of the above by h(n, m),
the above yields.

(6:3)  Efsupigsar [X," — X'} < h(n, m) + 32mE(§§°7 (X,* — X,)*dL}

where L, = L™ = (M, M), ,, + |V|;ar- Note that L ™ < 2m.

Hypotheses (a), (b) and (c) imply that lim,_, 4(n, m) = 0 for each m, since,
for example, sup,, <., (F*(s, x) — F(s, x))* tends to 0 as n tends to oo in i-measure
while dominated by H, which is in L(d2). Here A is the measure given by
AY) = EJ Y, d{M, M},, for any previsibly measurable positive process (V).
The desired result follows by an argument analogous to the one following the
inequality (6.2) in the proof of Theorem 6.1. This completes the proof of
Theorem 6.4,

We may also allow both the differentials and the coefficients to converge.
Our next theorem shows that then the solutions converge to the solution of the
limiting equation. The techniques used in the proofs of Theorems 6.1 and 6.4
may be utilized to prove Theorem 6.6, which we state here without proof.

(6.6) THEOREM. For all n = 1 let: ("Mj),(M?) c £, 1 SJ=Sp; (*VY,
Ve ¥ 1sk<q (), (0)C F,®%, 1<i<d Foral nx1 let
F*(1, x), Fy(1, X), G,*(1, X), G, (£, x), | < j < P> 1 < k < q be as in Theorem 5.3
with Lipschitz constant process (K,) and explosion time R. Further, suppose:

(a) (*n’) converges locally to 4 in maximal quadratic mean forl <i<d,

(b) ("M?) converges locally to M/ in quadratic mean, 1 <j=p .

(€) (“V*) converges locally to V* in expected total variation, 1 < k < g;

(d) foranye>0,1<j<p,lim, P{sup i< [Fi(s, X) — F;"(s,x)| > ¢} = 0
and |(F (-, x)),""| < H,(s, ®), n > 1;
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(e) foranye >0,1< k < g, lim,__, P{sup,, ., |Gy(s,X) — G,*(s,X)| > ¢} =0
and |(G,"(+, x)),""| < Ju(s, w), n = 1.

The processes H,, and J,, above satisfy:

E ™ H,(syd{Mi, M3y, < co;  E\I™H,(s)*d{Mi — "Mi, Mi — *Mi, < oo ;
E ™I (sV|dVE < 005 ST T (s)d(VF — "VH),| < C, as.;

for constants C,; all m,n; 1 < j<p; 1 <k <gq. On[[0, R)), let X" and X re-
spectively be solutions of

X" =0t 4 D5 GF 6 X d" M7 + Fi, §§G(s, X dn v -
Xt = 7}t + Z?:l S(t) F:i(s’ Xs) dMsj + le=1 S(g Gk(s3 Xs) stk .
Then (X,") converges locally to (X,) in maximal quadratic mean.

The proof of the preceding theorem as well as the proof of the next theorem
is in Protter (1975). The next theorem generalizes the well-known convergence
result of Wong and Zakai (1965).

(6.7) THEOREM. Let ne F,@ %, Ve 7, and Me ~. Let (y*), (V™), and
(H"™) have piecewise continuous derivatives and be such that a.s. p,* —y,, V,* — V,
and H* — M, for all t. Let F(t, x), G(t, x) be random continuous functions as in
Theorem 5.3, with Lipschitz constant process (K,) and explosion time R. Suppose
also that |F(t, x)| =z B > 0 a.s., where B is random. Let F(t,x) = dF(t, x)/ot,
Fy(t, x) = 0F(t, x)/0x be continuous, and |F(t, x)| < KF(t, x)?, for random K. Let
(T™) be the announcing sequence of stopping times associated with R, and suppose on
each stochastic interval [[0, T™]], we have either

(a) |V, |n.,"|, and H, are all uniformly bounded, n > 1; or
(®) (2), (V) and (H.) a.s. converge uniformly in t to (,), (V,), and (M,)
respectively.

Let X" and X respectively satisfy
Xt =" 4 G F(s, X*)dH" + §§G(s, X,*) dV,»
X, =9, + G F(s, X,) dM, + §;G(s, X,) dV, + § §§ F(s, X,)Fy(s, X,) d{M, M, .

Then under hypothesis (a), a.s. lim, . X,* = X,; under hypotheses (b), a.s.
lim,_, X,* = X,, and the convergence is uniform in t on [[0, T™]], for each m.
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