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ESTIMATION OF A MIXING DISTRIBUTION FUNCTION!

By J. R. BLUM AND V. SUSARLA?

University of Wisconsin, Milwaukee

Let = = {f(+, 6): § € J}, J an interval, be a family of univariate proba-
bility densities (with respect to Lebesgue measure) on an interval I. First,
a necessary and sufficient condition is proved for = to be identifiable
whenever = C Cy(J), the class of continuous functions on J vanishing at
oo. If fgisa G-mixture of the densities in = with G unknown, an estimator
G, based on f¢ and & = {f(x, +): xe I} is provided such that Go —u G
under certain conditions on =. If Xi, -+, X,, are i.i.d. random variables
from fg, an estimator G, is provided such that Ga(X1, « -+, Xa, ¢) —w G(+)
almost surely under certain conditions on ~ and G. Furthermore, it is
shown that |fg,(x) — fe(x)| — 0a.s. and in L, with rates like O(n~=C) (C > 0)
under certain conditions on the density estimator fg(x) involved in the
definition of G.. The conditions of various theorems are verified in the
case of location parameter and scale parameter families of densities.

1. Introduction and summary. Let f be a Borel measurable function from
I x J to (0, co) such that {,f(x, 0)dx = 1 for each ¢ in J where I and J are
intervals contained in R = (— oo, oo) and % and = be the collections of sections
of f with the first coordinate (in /) and the second coordinate (in J) fixed respec-
tively. For a probability distribution function G on J, let

(1.1) fo(x) = §, f(x, 0) dG(0) , x in I.

We provide an equivalent condition for the identifiability of ~ (for the defi-
nition of identifiability, see (Al)) in Section 2. In Section 3, we consider the
problem of estimating G in terms of f, and <%. To obtain an estimate G, of G,
we solve a system of equalities and inequalities and then show that G, converges
weakly to (—,) G under some conditions on &%. If G and f; are unknown, but
i.i.d. random variables X, - - -, X,, - - - are observable (this is the standard em-
pirical Bayes situation of Robbins [4], described in Section 4), then we construct
(in Section 4) estimates G,(X,, - - -, X,, +) which —, G(+) almost surely (a.s.)
under some conditions on <Z. It is then immediate that §, 6f(x, 6) dG,(0) —
§; 0f(x, 0) dG(0) a.s. whenever 0f(x, 0) e C(J). Furthermore, it is shown that
our method of construction of G, provides rates for a.s. and L, convergences of
fé,(x) — fe(x) to zero for each x under some additional conditions on <Z. In
Section 5, all the above results are shown to hold for location and scale parameter
families of Lebesgue densities under rather weak conditions.
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The results of Section 3 are not only of mathematical interest, but also pro-
vide an intuitive basis for the results of Section 4. In Sections 4 and 5, we take
I = J = R as other cases can be treated with obvious modifications of the method
presented here. Throughout, G is assumed to be a distribution function with
support in J. The estimator and its properties are compared with three other
estimators for G in Section 6. In Section 4, we discuss the application of the
main result of this paper to empirical Bayes estimation problems.

2. Identifiability. For the distribution function G in (1.1) to be estimable in
terms of f; and 7, it is obvious that the following condition should be satisfied.

(A1) So(%) = fu(x) forall x in I=H—-G=0.

This condition is called the identifiability (of =) condition. (For example, see
Teicher [7].)

With Cy(J) denoting the Banach space of continuous functions on the interval
J which vanish at co and normed by

(2.1) [l9]] = sup{lg(y)||y in J},
we obtain

THEOREM 2.1. Let <8 < Cy(J). Then (Al) holds if and only if <& generates
Cy(J) in the supremum norm (2.1).

Proor. Let (Al) hold. Let B be the closed subspace generated by <7. If
B = Cy(J), then there exists a g in Cy(J) — B and a bounded linear functional
® on Cy(J) such that ®(g) = 1 and ®(f*) = 0 for f* in B. Also, by the Riesz
representation theorem, there exist nondecreasing, nonnegative functions K, and
K, of bounded variations on J such that

O(f) = §,f(y) diK, — K)(y)  for [ in Cy(J).
Since @(f*) = 0 for f* in B, it follows that §, f(x, 0) dK,(0) = §, f(x, ) dK,(0)
for all x in I which, by (A1), implies that K; — K, = constant. But then, this
implies that @(g) = {, g(y) d(K; — K,)(y) = 0 which is a contradiction since
®(g) = 1. Hence <Z generates C(J).
Conversely, let <% generate Cy(J) and (1.1) hold at G and H. We show that
G — H = 0. By assumption

(2.2) {, f(x, 0)dG(6) = §, f(x, 0) dH(0) forall x in I.
Since &7 generates Cy(J) in the supremum norm, (2.2) can be extended to
(2.3) {,9(0)dG(0) = §, g(0) dH(0) forall g in CyJ).

Since ®(g) = {, g(d) dG(0) is a bounded linear functional on C(J). whenever G
is of bounded variation on J, the uniqueness part of the Riesz representation
theorem and (2.3) show that G — H = constant. This completes the proof of
the theorem since G and H are distribution functions on J.
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3. Construction of an estimator of G in (1.1). In this section, we define an
estimator G, ((3.6)) of G in terms of f, and <. We consider in detail the case
I =J = R only and point out the required changes if I or (or and) J is an (are)
interval(s). Throughout this section, the integration is over (— oo, o), and the
limits are as n — co unless otherwise stated.

For a fixed partition

(3‘1) 0%,—l(= —oo) < 0n,0(= —n) < on,l < v-e
< 0n,m(-n)(: n) < on,m(n)+1 =

with

3.2) 0, =max{0,; —0,;,|j=1,---,mn)}—0
and for x in R, and for | = —1, ..., m(n), let

(3-3) M, (x) = sup{f(x,0)|0,, < 0 < 0,11}
and

(3.4) m, (x) = inf{f(x,0)|0,, <0 < 0,,,}.

Let Pn = {pm,—l’ cte ,Pn’m(%)} be such that

(i) puy=0 and Ypr™p,, =1,
(3.5) (1) 27 puu M, () Z fo(x)  and
(i) X p, m, (X)) S fe(x)
where (ii) and (iii) hold for x in {0, o, - - -, 0, mw}-
Let P, = {p,| p is a solution of (3.5)}. That P, is not empty follows since

one such solution is given by p, , = {opi+1dG for l = —1, ..., m(n). For any
pP. in P,, define
Gn(y) = 0 }’ < 0n,0
(3'6) = P‘”,-l + Pn,o on,o é }’ < 07),1
= Z§'=1Pn,z 0n,l é)’ < 0n,l+1 , I=1,.., m(”) .

Clearly G, is a discrete distribution function on R.

Note. The solution of (3.5) is a simple linear programming problem and
there are efficient computational algorithms available for the solution of such
inequalities. (3.5) can be solved theoretically for p, without the assumption that
xisin {0, -+, 0, nm}> but such a solution might be difficult to obtain.

The result leading to G, —,, G is

THEOREM 3.1. Let f(x, +) € C(R),
(A2) lim,,_, sup, |f(x, ) — f(x',0)| =0, and
(A3) foreach ¢ >0, 30,0’ >035|x' — x| <0 and
6" — 0] <0 =|fx', ) — f(x', 0)| <&

§f(x, 0) dG,(0) — § f(x, 6) dG(9) = fo(x) -

Then
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Proor. Without loss of generality, let |[x|] < n. By the choice of the partition
(3.1) and (3.2), there exists a sequence {0, ;.,,} such that ¢ — x. Wealso
observe that f(x, «) € Ci(R) and (A2) imply that

n,3(n)

(3.7 foreach ¢>0, 36,M>03|x — x| <0, || >M=f(X,0)<c.
By the definitions of p, and G, given in (3.4) and (3.6) respectively,

(3‘8) Z'lméﬁ)l Pn,lm-n,l(on,a'(n)) § Sf(an,f(-n)’ 0) dGn(a)
é Z'l”;(?-)l Pn,l Mn,l(a-n,j(n)) :

Now observe that 0 < D, (= the difference between the extreme sides of (3.8))

é Zréz)lpn,l{Mn,l(an,f(n)) - mn,l(an,i('n))}
< sup{|f(x', ) — f(*'s )| |x — ¥'| < 0,, |6 — 0'| < 0}
+ sup {f(x', 0)||¥' — x| < 0,, |0 = n}

by the choice of the partition {0, _,, -, 0, nw+} and the sequence {6, ;. }.
This last expression (and hence D,) — 0 due to (A3) and (3.7). Hence, since
the lhs of (3.8) < f4(0, ;) < rhs of (3.8) due to (ii) and (iii) of (3.5),

(3‘9) Sf(a-n,j(-n)’ 0) dG”(ﬂ) - fG(en,j(-n)) —0.

But (0, ;) —fe(x) by (A2) since 6, ;, — x. For the same reason,
§ f(0,.5m» 0) dG, — § f(x, 0) dG,(0) — 0. This completes the proof in view of
3.9).

CorOLLARY 3.1. Let <& < C|(R), (Al); (A2) and (A3) hold for each x in R.
Then G,—,G. If, in addition, 0f(x,0)e C(R), then § 0f(x,0)dG.,(0)—
§ Of(x, 0) dG(0).

Proor. By Theorem 3.1,
(3.10) § f(x, 0) dG,(0) — § f(x, 0) dG(0) foreach x in R.

Since & C Cy(R) and (A1) holds, <& generates C(R) in the supremum norm
(2.1) by Theorem 2.1. Therefore, (3.10) can be extended to § g(f) dG,(6) —
{ 9(6) dG(0) for each g in C,(R) which is equivalent to the first result. The second
result is a consequence of the first result since 0f(x, 6) € C(R).

REMARK 3.1. If J = [a, b] and T = [c, d] with —c0 < a, b, ¢, and d < oo,
thentaked, , =a<0,,< -+ <0, nim <pmms1 = bwitho, = max{|d, ; —
0uialj=0,1,..-, m(n) + 1} — 0 and solve (3.5) at the nth stage when x is in
{X1s X35 ++ +s Xp(my4a} Where {x;, x,, - - -} is dense in I.

4. Estimation of G when f;, is unknown. In this section, assume that the dis-
tribution function G and f; are unknown, / = J = R and that X, .., X, are i.i.d.
random variables with common density f,. We exhibit G,(+) (= G,(X;, - - -,
X,, +)) such that G, —, G almost surely (a.s.). An application of and motiva-
tion for the results of this section is given in the lengthy Remark 4.2.



204 J. R. BLUM AND V. SUSARLA

Let fo(x) (= fa(Xs» - - -» X,, X)) be an estimator of f,(x) such that
(A4) 1fo(+) =

where || || denotes the sup norm. For each fixed n, let B, be the class of solu-
tions obtained for (3.5) when f in (ii) and (iii) is replaced by an —cand f; + ¢
respectlvely where ¢ (= ¢,) is the smallest pos1t1ve number for which the class
B, is not empty. This method of choosing £, does not require ¢ to be known
in advance, P, is well defined for each n, and the method involves a linear pro-
gramming problem. Whenever the sample sequence is in the a.s. event A guar-
anteed to exist by (A4), the ¢ (= ¢,) corresponding to that sample sequence at
stage n converges to zero for the following reason. Let e,* = 2|| fu(xy - - -5
X,, *) — fa(+)||- Then ¢,* — 0 by assumption. Moreover, P, is not empty for
large n since ||fu(xy, -+ s X, o) — ful(+)|| < &,* implies that p, = {f, i, - -,
Pumw}s With g, , = {fm1+1dG for | = —1, ..., m(n), is a solution belonging to
P,. Since ¢ (=¢,) < ¢,*, ¢ > 0. Define Gn( ) (= Gu(Xys -5 Xys #)) bY
4.1) G,.(y) = G,(y) of (3.6) with p,, replaced by p,, where
ﬁn = {ﬁ'n,—l’ tet ’ﬁn,m(n)} is in pn .

With the above notation, we obtain the following two theorems. The first
theorem is an analogue of Theorem 3.1 for G,. The second theorem provides
rates of convergence for fz (x) — fe(x) — 0 a.s. and — 0 in L,.

THEOREM 4.1. Let (Al) and (A4) and for each x in R, the conditions of
Theorem 3.1 hold. Then G, —,G a.s. If, in addition, 0f(x,0) e C(R), then
§ 0f(x, 0) dG,(6) — § Of(x, ) dG(0) a.s.

Proor. Let the sample sequence {x,, - - -, x,, - - -} be a fixed point in the a.s.
event A guaranteed to exist by (A4). We show that G,(x,, - - -, x,, +) —, G(+).

Unless otherwise stated, let x be fixed. Without loss of generality, let n > |x|
and let ¢, be as in the discussion preceding (4.1) and let e,* = || fo(xp - -5 X, +) —
. As in the proof of Theorem 3.1, let 4, ;. — x. By the construction of
ﬁn and Gm

42) DR fuii(On i) S § fOn,iims 0) 4G,(6)

:fén(an,:’(m) S X Pua M, (0, ) -
The difference between the extreme sides of (4.2) goes to zero due to (A2) and
(A3) as in the proof of Theorem 3.1. Also, by the construction preceding (4.1), .
and the assumption on fi, the lhs of (4.2) = fu(0,. ;) — €n = fo(On jm) — €n —
e,* and the rhs of (4.2) < f4(0,,;n) + €, + ¢,* for large n. Now recall that
0<¢ <e*—0. Hence §f(0, ;.0 dG,(0) —limfy0, ;) = fa(x) since
(A2) implies that f; is continuous at x and 6, ;,, — x. For the same reasons,
§ f(0,.icny» 0) dG,(6) — § f(x, 6) dG(6) — 0. Therefore, ‘

(4.3)  §f(x,0)dG(0) > fu(x) = § f(x,0)dG(@®) forall x in R.
Now the conditions B < Cy(R) and (A1) imply (as in the proofs of Theorem
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3.1 and Corollary 3.1) that (4.3) can be extended to § g(0) dG,(0) — § g(6) dG(6)
for all g in C,(R) which is equivalent to G ,(x,, - - -, X,, +) =, G(+). Since {x;, - -,
X,, +++} is an arbitrary point in 4 with P(4) = 1, the proof of the first part of
the theorem is complete. The second part follows from the first part since
0f(x, 0) € C(R). ‘

One advantage of our method of construction of G, is that the rate results of
fo can be used to obtain the corresponding rate results for fz, as the following
theorem shows. Recall that ¢, in defined by (3.2).

THEOREM 4.2. Let the conditions of Theorem 4.1 hold and let (A4) hold with rate
O(a,) with a,, | 0. If
(A3) SUPja/—zi<a, SUPs {|.f(X; 0) — fIx', )|} < 14
with v, | 0 as d, | 0, then [max {a,, r,}]7". |f3,(x) — fo(x)| = O(1) a.s. (a.s. set
is independent of x, but O(1) could depend on x). Additionally, if
(A6) sup {E(fo(x') — o))" — x| < 8,} = O(8,") ,
then [max {a,’, B,%, 1" HI7E[(f3,(x) — fe(x))’] = O(1). (Again, O(1) could depend
on x.)

NotTEe. (AS) is actually (A2) with a rate of convergence property.

Proor. Let {0, ;. }be such that|x — @, ;.| < 8,. By Theorem4.1,G, —,G
a.s. The results now follow from the following set of inequalities:

|f6,(¥) — fe() = 1/8,0n50m) — feOn,sem)l
(4.4) + 1/6,(0) = f4,00n5)l + |fo(¥) = f6(On,im)]
= lfa"n(avz.j(m) — fa(On,jm)| + 27
where the second inequality follows from (AS5). Now observe that

Ifén(an,j(m) — fe(On, i) A )
4.5) = Ifé,,(ﬂﬂ.jim) — JoOu i)l + 1 feOn, i) — foOn,iin)]
= 2, + IfG(an,j(n)) _fG(ﬁn,j(n))l

where the last inequality follows from the construction of G, (for example, see
the argument following (4.2)). Now the first result follows from (4.4), (4.5)
and (A4) while the second result follows from (4.4), (4.5) and (A6).

REMARK 4.1. If I and/or J are finite, intervals, then apply the modifications
suggested in Remark 3.1.

REMARK 4.2. Here, we discuss an application of Theorem 4.1 to the standard
empirical Bayes decision problem of Robbins [4]. In an empirical Bayes decision
problem, there is a sequence of i.i.d. vectors {(4,, X,)} where 6, ~,,, G, an
unknown distribution and given 6, = 0, X, ~ f(+, 0)(€ 2). X, is observable
while 0, is not. The empirical Bayes problem involves exhibiting {,(X;, - - -, X))}
such that the Bayes risk of using #, in deciding about @, less the minimum Bayes
risk of deciding (using X,) about 6, converges to zero, hopefully with a rate.
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Robbins [4] named such rules as asymptotically optimal empirical Bayes rules
(a.o.e.B.). In this situation, one can use Theorem 4.1 as follows: Use X;, -,
X, to estimate G by G, as in Theorem 4.2. Then take t,,, = t,,(X;, -+ 5 X,41)
as the Bayes rule of deciding (using X,,,,) about @,,, when the prior distribution
is 2,® + (1 — 2,)G, where @ is the standard normal distribution function and
0< 2,}0asn?oo. Sucha rule {z,} cannot only be shown to be a.o.e.B., but
also componentwise admissible under fairly general conditions on , G and the
loss function involved in the definition of the Bayes risk. For example, in the
problem of empirical Bayes squared error loss estimation of ¢, the above method
and the dominated convergence theorem provide a.o.e.B. estimators which are
component admissible (with @ restricted to [a, b]) provided G is in the class of
all distributions with support in [a, 8], —c0 < @ < b < co. The compactness
of the support of G is not an unrealistic assumption. If the prior distribution
does not have a compact support, the asymptotic optimality of the above pro-
cedure can be obtained by appealing to an unpublished lemma of Le Cam and
Scheffé’s theorem. All these details, which are too long, will appear elsewhere.
Before closing, we note that one has to use both parts of Theorem 4.1 namely,
the convergence of f3 to f; and that of { 6f(-, 0) dG, to § 6f(+, 6) dG to obtain
the above empirical Bayes results.

To obtain rate of convergence results in the above empirical Bayes estimation
problem, we make the following change. Instead of solving the equations as
described in the paragraph preceeding (4.1), solve the equations (3.5) with f; in
(ii) and (iii) replaced by fa — nand f; + 7 respectively along with the following
equations:

(iv) Zr®p,.sup{0f(x,0)|0,, < 0 < 0,1} = ho(x) — 7
(V) Zrip,,inf{0f(x,0)0,, <0 <0,,,} < he(x) + 7

where f,4(+) is an estimator of () = § 0f(+, 6) dG and 7 is the smallest positive
number for which the above five equations (i) through (v) can be solved simul-
taneously. Such a solution, as in Theorem 4.2, will lead to simultaneous rates
for the mean square convergences of fe and A, to f; and A, respectively. In turn,
these mean square convergence results can be applied to obtain rates in the above
empirical Bayes estimation problem along with componentwise admissibility
since the function to be estimated is simply A,(+)/fe(+) based on Xi, - - -, X,. This
method of obtaining componentwise, admissible procedures has been used in a
nonparametric context in Susarla and Phadia [6].

5. Examples. We consider two examples, one involving a location parameter
family of densities on I = R(— oo, oo) and the other involving a scale parameter
family of densities on 7 = [0, c0). All densities are wrt Lebesgue. measure on
the real line or on [0, o).

To consider the location parameter case, assume that

(5.1) h is a continuous density with A(x) -0 as |x| > 0.
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If
(5.2) f(x,0) = h(x — 0), —00 L0, x< o0,
then we have

THEOREM 5.1. Iff is.deﬁned via (5.2) and satisfies (A1), then G, of (3.6) —, G.
If, in addition,
(5.3) sup {|'(f)]|te R} < oo
4 Jo(x) = (na,)™ T3 k((x — X;)/a,)
where X,, - - -, X, are i.i.d. fo(fo(x) = § H(x — 0) dG(0)), k is the standard normal
density and a,* = n~', then Gn of (4.1) -, G a.s. provided ¢, of (A4) = n=° with
0<4c< 1. If 6,=0(n77) with v > 1, then |fGn(x) — fo(x)| = O(n~°) a.s.
Moreover, E[(fz (x) — f5(x))’] = O(n=mintie1-2}),

Proor. The first part of the theorem follows from Corollary 3.1 upon ob-
serving that (5.1) implies the conditions (A2) and (A3) and that <& c C(R).

For the second result, observe that (5.1) and (5.3), respectively, imply that f,
and f’ are bounded. Therefore Corollary 2.6 with r = 0 of Schuster [5] obtains
that

nl|fe — fel| 0 a.s.

where || || stands for the supremum norm and 0 < 4¢ < 1. Thus (A4) also

holds with ¢, = n=*. Now Theorem 4.1 obtains the result G, —, G a.s.
The third part of the theorem follows since

SUPyar—ai<a, SUPy {|f(x, 0) — f(x', O)[} < 0,]|]|

implying (AS5) with y, =6, = n=7. To obtain the L, convergence result, we
verify (A6) with 8,* = n~mintte1-% a5 follows:

(55 El(folx) = fol¥))] = Var (fo(x)) + (E[falx)] — folx))" -
By the definition of f; and Lemma 2.3 of Schuster [51, |E[fo(x))] — fo(X)| £ ¢a,
for some constant ¢,, and since k is bounded by unity and since X, ..., X, are
i.i.d., Var (f4(x')) < (na,)~". Hence, since a, = n~° (5.5) = O(n—minle,1-2}),
This verifies (A6) since 0 < 4c < 1 and so the last result follows.

For considering the scale parameter case, assume that  is a continuous density
on [0, co0) with

(@) sup{yh(y)|ly =2 n} =0,  sup{|F'(y)||y 2 0} < oo,
(5:6) (i) sup{y()||y 20} < oo and
(iii) sup {y|F(y)||y 2 0} < oo .

If

5.7 f(x, 0) = Oh(x0) for x,6 >0,

then we have the following theorem whose proof is omitted since it is similar
to that of Theorem 5.1.
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THEOREM 5.2. If f is defined via (5.7) and satisfies (A1), then G, of (3.6) —, G.
If, in addition,

(5.8) § 02dG(6) < oo

andfa is defined by (5.4) where X; are i.i.d. f, (= {¢ 0h(x0) dG(0)), then G, of
(4.1) >, G a.s. provided ¢, of (AS)=n" with 0 < 4c < 1. If J,=0(n77)
with y > 1 then |fg (x) — fo(x) = O(n™°) a.s. Moreover E[(f3 (x) — fo(x))"] =
O(n—min(Zc,l—Zc)).

REMARK 5.1. Theorem 5.1 includes the family of normal densities indexed
by the mean and with known variance while Theorem 5.2 includes the family
of scale parameter exponential distributions with the second moment of the
mixing distribution finite.

REMARK 5.2. The results of this paper can be extended when both the argu-
ments x and 6 are vectors and can be applied to mixtures of discrete probability
distributions with appropriate changes. It is well known that the family of bi-
nomial distributions {B(n, p)|0 < p < 1} is not identifiable. That this is the
case can be readily seen from Theorem 2.1 since the class of polynomials of
degree at most n does not generate C[0, 1].

6. Some other estimators and comparison with our estimator. We briefly de-
scribe three methods of estimation of G and compare their results with those
presented here. In the method by Deely and Kruse [2], the finite interval A
(on which G is assumed to have support) is partitioned by the points 2,,, - - -, 4,,
so that there is a sequence {Z,} of classes of distributions such that the support
of each distribution in &, isin {4,,, - - -, 4,,} and for every G with support in A,
there exists a sequence {G,} with G, in &, and G, —, G. Then their method
chooses a G, * in &, which minimizes the sup distance ||F, — F|| where H is
in &, nF,(+) = Y31 lix,s.and Fy(e) = § F(-, 0) dH where F(-, 0) is a distri-
bution function for each #. They point out that their method involves finding
an optimal strategy in a game with a payoff matrix which depends on F,, and
Ains ++ 5 An,- They point out that A can be taken to be R. Choi [1] uses the
Wolfowitz distance function d(G, G) = | (G(x) — G(x))* dG(x) and in the words
of Deely and Kruse [2], the computational feasibility of Choi’s method is not
clearly established. Moreover, Choi’s [1] method needs the solution of a dy-
namic programming problem, and considers only finite mixtures. Meeden [3]
constructs a probability distribution on &, the class of all probability distri-
butions on [0, co) and then show that the Bayes estimate based on the first n
observations corresponding to the constructed prior converges —, to the true
element G, in &. Again the solution of finding estimates by Meeden’s [3] method
appears as hard as we have in the paper. Our estimators have the simplicity that
they need only a linear programming computation (see the note following (3.6)),
have some distance properties (Theorem 4.2) and will give componentwise ad-
missible empirical Bayes estimators with and without rates with a small amount
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of extra work if the support of the prior is in a compact set. It is not clear how
one can recover rate results for the density fG and A, from the weak convergence
results of the above three authors.
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