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RATES OF CONSOLIDATION IN A SELECTIVELY
NEUTRAL MIGRATION MODEL!

BY STANLEY SAWYER
Yeshiva University

Assume a population is distributed in an infinite lattice of colonies in
a migration and random-mating model in which all creatures are selective-
ly equivalent. Inoneand two dimensions, the population tends to consoli-
date into larger and larger blocks, each of which is composed of the
descendents of a single initial individual. The purpose here is to describe
the variation of the size and shape of these blocks with time. Specifically,
we obtain asymptotic results for (1) the expected number of individuals in,
(2) the approximate radius of, and (3) the distribution of the individuals
within a typical block for large time. These results depend on the di-
mension, and most extend to three or more dimensions.

1. Assume we have a population distributed in an infinite lattice of colonies,
with 2N individuals in each colony. These individuals migrate independently
between colonies, and before each migration, each colony is replaced by 2N
new individuals by multinomial sampling (with replacement) from the old
colony. This is a model of random mating, migration and competition in the
absence of Darwinian selection. We assume that initially all creatures are of
distinct types but are selectively equivalent, and that migration follows the
transition law P[X’ = y| X = x] = g(y — x) where } x’g(x) < co. Except for
a more general migration, this is essentially the stepping stone model of Malécot
(1948, 1975) and Kimura and Weiss (1964). See Sawyer (1976a) for more detail
about the model.

If the total population were finite, it would eventually become fixed at one
of the initial types. In the model above, however, the class of the descendents
of any initial type eventually becomes extinct, and in fact every initial type
eventually dies out (although not of course at the same time; see Sawyer (19764,
Section 3)). In contrast, the population “tends to uniformity” in one and two
dimensions in the sense that any bounded set of colonies becomes homogene-
ously the same type for any preassigned number of generations with probability
converging to one. What apparently happens is that “dynasties” are established
which take over larger and larger sets of colonies, with the changeover times
between dynasties becoming more and more infrequent as time progresses.

The purpose here is to describe the growth in time of the size and extent
of these dynasties, specifically the dynasty reigning near the origin in the nth
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generation. In particular we establish an apparent “wave of advance” which
mimics the steady expansion of a selectively advantageous gene studied by Fisher
and others (Fisher (1937), Moran (1962, page 168+ ), Aronson and Weinberger
(1977)). We emphasize, however, that our “wave of advance” is due entirely
to random effects and occurs in the absence of selection.

For definiteness, we assume the lattice of colonies is the integer lattice J¢ in
d dimensions for d =1,2,3, ..., and that {x, — x,: g(x;) > 0, g(x,) > 0} is
not concentrated on an additive subgroup of the lattice of colonies. In one
dimension, let ¢ = 3} x’g(x) — (X xg(x))* be the variance of one migration
step, and in higher dimensions let ¢,%, ¢,%, - - - be the eigenvalues of the covari-
ance matrix ¢i; = X x;x;9(x) — (23 x; 9(x))(2] x;9(x)) where x = (x,, -+, X,).
In particular, if 3 x;9(x) = ] x;x;9(x) = 0 (i # j), then ¢,> = }; x.’g(x). For
the symmetric nearest-neighbor migrations studied by Kimura and Weiss (1964)—
i.e., g(+1) = $m, 9(0) = 1 — m in one dimension and g[(+1, 0)] = {m,, ¢[(O,
+1)] = 4m,, 9[(0, 0)] = 1 — m, — m, in two dimensions, where 9(0) and ¢[(0,
0)] are the probabilities of no migration during a migration stage—one has
¢ = m in one dimension and ¢,> = m, in two dimensions.

2. For a given initial type, let Ny(n) be the number of its descendents in
the nth generation. Then E[Ny(n)] =1 but P[Ny(n) > 0] — 0, which implies
E[Ny(n) | Ny(n) > 0] — co. Indeed E[N,(n)’] ~ n (Rusinek (1976)) which suggests
E[Ny(n) | Ny(n) > 0] ~ Cn.

As a different measure of the size of a typical extant dynasty, choose an indi-
vidual at random in the nth generation from a preassigned colony, and let N(n)
be the total number of individuals in the nth generation of the same type as that
individual. Then

THEOREM 1. Under the above assumptions, as n — oo,

b1
E[N(n)] ~ 8No <l> in one dimensions,
T

in two dimensions,

1 ~ 8zNa,o, "
M v log n
~ Cn in three or more dimensions,
where C is the probability at equilibrium that two distinct individuals from the same
colony are of different types (0 < C < 1 whenever the symmetrized migration random
walk is transient; see Sawyer (1976a)).

We defer proofs to Appendices 1 and 2.

A similar situation arises with mutation. Assume all individuals in the popu-
lation undergo mutation with probability # > 0 in each generation. Each new
mutant individual founds a type that is wholly new to the population but is
selectively equivalent to the original population. Then the dynasties of Section
1 cannot form, and there is a nontrivial limiting probability J(x — y, u) that
individuals chosen at random from the colonies at x and y (different individuals,
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if x = y) are the same type. At equilibrium, let N(co, #) be the total number
of individuals identical with an individual chosen at random from a preassigned
colony. Then (see Appendix 1 for proof)

THEOREM 2. Under the assumptions of Theorem 1, if the mutation rate u > 0 is
small,

4No .
Exp[N(co, u)] ~ —= in one dimension,
p[N(oo, u)] 2uy in one dimension
) ~ BENoos dimensions,
2u log (1/2u)
~ C[2u in three dimensions,

where C = 1 — J(0, 0) as in Theorem 1.

3. We now try to indicate the expected shape and physical dimensions of the
dynasties described in Section 1. Let I(n, x — y) be the probability that two
creatures chosen at random from the colonies at x and y in the nth generation
are of the same type (different individuals if x = y). Then I(0, x) = 0 but
I(c0, x) = lim,_, I(n, x) = 1 in one and two dimensions, and solving I[n, x(n)] =
a(0 < a < 1) for x = x(n) should map out the crest of a “wave of advance.”
Similarly, if I[n, x,(n)] = b and I[n, x,(n)] = a for 0 < a < b < 1, then xy(n) —
x,(n) (more exactly its minimum) should give an estimate of the width of the
wave front.

THEOREM 3. In one dimension, assume integers x(n) ~ Ac(2n)t for some A > 0.
Then

3) lim, ., I[n, x(n)] = erfc (A) = (i)* (= e dy

In two dimensions, for vectors x(n) = (x,(n), x,(n)) + 0,

log n* — log ||x(n)||
log nt

“4) lim,_, I[n, x(n)] = lim, _,

whenever the limit on the right exists and is nonnegative. In particular

lim,_ I[n, x(n)] =1 — b if ||x(n)|| ~ Cn®?

for 0 < b < 1. If Exp(||X'|***) = X [|x|[***9(x) < oo for some a > 0, also

C(x)

fog 1 for n~ix(n) — x

) I, x(n)] ~

uniformly for 0 < ¢ < ||x|| < 1/e for any ¢ > 0 and some expression C(x).

Thus lim,_,, I(n, [Ao(2n)t]) = erfc (4) for A > 0 in one dimension, and dif-
ferent “heights” of the wave of advance move roughly along the curves r =
Ag(2n)t for different 4. This is a typical diffusion wave; indeed, suppose we
pump heat at a constant rate into the origin of a homogeneous plane initially
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at temperature zero. Then the same wave of advance as (3) is obtained for the
temperature, except that a different function of A replaces erfc (A4).

The two-dimensional result (4) is much different. Indeed, different “heights”
of the wave of advance expand like n® for different values of 5. One can only
obtain a limiting distribution by plotting log ||x(n)|| against log n. In any event
(3) could not have extended, since the number of colonies with ||x|| < Cn!? is
~ nC’n while the expected size of a dynasty is exp[N(n)] ~ Cn/log n by Theorem
1. There is no wave of advance in three or more dimensions since /(n, x) <
I(o0, x) < C/||x|| uniformly in n.

If we follow the distribution of mass in dynasties rather than the wave front,
there is less dependence on dimension. For, let N(n, r) be the total number
of individuals in the nth generation at a distance r’ < r from a preassigned
colony which are of the same type as a randomly chosen individual from that
colony. Then

THEOREM 4. Indimensionsd = 1,2, or 3, assuming Exp (|| X’||*+*) < oo for some
a > 0 in two dimensions,
Exp[N(n, A(n)*)] _
Exp[N(n)]

6) lim, ., T, (4), 0<A4< o,
where W ,(A) is strictly increasing in A, Wy (0+) = 0, Wy(oo) =1, 50 0 < Ty(4) <
1 for 0 < A4 < co, and W ,(A) depends only on {o,} and d.

Theorem 4 is actually a fairly straightforward consequence of Theorems 1 and
3. Indeed, in one dimension,

Exp[N(n, Ao(2n)})] = 2N 3\ < aocam K(n, X)
(7) ~ 2No(2n)t {4, I(n, [ ya(2n)*]) dy
~ 4No(2n)t (¢ erfc (y) dy

by Theorem 3, and (6) follows from Theorem 1. In two dimensions,

Exp[N(n, A(m)!) — N(n, e(n)')] = 2N X Xcmisisnsami 1(n, X)
= 2Nn \§ §2 I(n, re*’(n)¥)r dr df + O((n)?)

where I(n, x) is defined for continuous vectors x as the average over nearest
vectors x with integer components, and we use complex notation. Theorem 4
now follows for d = 2 from (5) and (1) provided

(8) ' = {5 C(reyrd rd0 = 4rno, o,

which is easily verified from the form of C(x). The proof in three dimensions
is similar (see Appendix 2).

Theorem 2 extends in exactly the same way. Let N(co, u, r) be the number
of individuals at equilibrium identical to and at a distance ' < r from a random-
ly chosen individual in a preassigned colony, where u > 0 is the mutation rate.
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Then

EXp[N(co, u, Ac|(2u)})] _ 1 _

%) lim, _,
Exp[N(co, u)]

e~4 0< A< o

in one dimension, with more complicated limits in two and three dimensions.

We have only considered discrete-colony population models here, since con-
tinuous-space stepping stone models have great theoretical difficulties (see, e.g.,
discussions in Felsenstein (1975) and Sawyer (1976a)). However, in one di-
mension with both time and space continuous, some of these difficulties disappear
(the migration here is Brownian motion). Nagylaki (1974) has an exact solution
of I(n, x) in this case, from which lim,_,, I(t, AC(t)}) = erfc (A4) follows after
some manipulation.

See Sawyer (1976b, Section 4.2) for the analogs of Theorem 3 for critical
branching random fields. These are migration-birth-death processes similar to
the stepping stone, but without bounds on the density of the population.
Dynasties are formed here also in one and two dimensions; the population
density of these dynasties converges to infinity. As one might expect from the
buildup of density, the waves of advance of Section 1 go faster in this case.

We remark that this model also applies to competing noninterbreeding species
occupying the same ecological niche in different locations, in addition to neutral
alleles at the same genetic locus in a fixed interbreeding population.

APPENDIX 1
Define /(n, x) as in Section 3. Then
(A1) C(n) = Exp[N(n)] = 2N 3, I(n, x) + 1 — I(n, 0) .

Given two individuals chosen at random in the nth generation, one at the
origin and one at x, let M, = M(x) be the (random) number of generations since
their most recent common ancestor. Then I(n, x) = Prob[M, < n], since indi-
viduals can be of the same type only if they have a common ancestor. Hence
C(n) = 2N 3, Prob[M, < n],and if 0 < s < 1

fls) = Xy s"[C(n) — C(n — 1)]
(A2) = 2N 3¢ s" 2, Prob[M, = n] = 2N 3}, 317 5" Prob [M, = n]
= 2N 3, Exp[s*™].
Now at equilibrium Exp[s"®] = J(x, u) for s = (1 — u)?, where J(x, u) is the
equilibrium probability of identity with mutation rate » defined in Section 2
(Malécot (1975)). On the other hand,
H(x, s)
2N + H(0,s)’

where H(x, 5) = 5 5"Qu(x), Qu(x) = 3, Quus(x — 1)Q(y)(n = 2) for Q(x) =
Qu(x) = X,9(x + y)9(y) (Malécot (1948), (1975); see also Sawyer (1976a)). By

(A3) J(x, u) = s=(1—uy?,
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induction Y, Q.(x) = 1, so X, H(x, s) = s/(1 — s) and
2Ns — s 1 — JO, u)
(1 — s)[2N + H(0, 5)] I — (1 —up
Now H(O0, 5) ~ 1/(26(2u)}) in one dimension and ~ (1/(4rg,0,))log (1/2u) in
two dimensions (e.g., Sawyer (1976a, Section 4) and
f(s) ~ 4No/2u)t (d=1), as s—1,
(AS) ~ 8nNa,a,/2ulog (1/2u) (d =2),
fs) ~ (1/20)[1 — J(0,0)] (4 =3).
Since C(n) — C(n — 1) = 2N 3, Prob[M, = n] = 0 in (A2), the relations (A5)
imply Theorem, 1 by use of the Karamata Tauberian theorem (see, e.g., Feller

(1966, page 418+)). Since Exp[MN(oo, u)] = 2N 3, J(x, u) = f(s) in (Al), Theo-
rem 2 follows directly from (AS5).

REMARK. Here C(n) = 2N 3, Prob [M, < n] = 2N Exp[Number of x with
M, < n]. If 2N = 1, M, is the first hitting time of the colony x by the parental-
distance random walk begun at the origin, and C(n) is the expected range (i.e.,
number of colonies visited) by this random walk through time n. Indeed the
relations (1) are similar to known results about the expected range of a random
walk in various dimensions.

(A4) f(s) = 2N 3, J(x,u) =

APPENDIX 2
For some sequence x = x(n) in J¢, define
(BI) Fo(0) = Prob[M,, = 6,] = K[0n], x(n))

where M, is as in Appendix 1, [y] is the greatest integer less than or equal y,

and 0 < 0 < oo. Thus F,(0) =0, F,(6) < 1, and F,(0) changes only by jumps

at § = k/n of magnitude Prob[M,,, = k]. Hence the Laplace=Stieltjes trans-

formation of F,(0) is

(B2) (e dF,(0) = 3.7 e/ Prob[M,
= J[x(n), u(n)]

where s(n) = (1 — u(n))’ = e~ and r > 0 is fixed. In one dimension

(B3) H(x, 5) = (1/(20(2u)¥))[exp(—|x|(24)}/0) + o(1)]

where o(1) is uniformly small for small # (Nagylaki (1976), or argue as in

Sawyer (1977)). Now (2u(n))t ~ (r/n)}, so if x(n) ~ Ag(2n)! in (B2) and (A3)

A
(2n)}

y = k]

(n

(B4) lim, ., {5 e~ dF,(0) = e~4¢n? = (o e mte~4¥ -t gt |

Since (B4) holds for all r > 0,

A

lim”_,w F"(l) = (271)5

(1e~ 421 dt = erfc (A) .
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Since F,(1) = I[n, x(n)], (3) follows. In two dimensions, assume for simplicity
Exp(]|X"||****) < oo for some a > 0, a < 1, and ||x(n)|| - oo, ||x(n)|| = C(n)t.
Then by Theorem 2 of Sawyer (1977)

(BS) J(x, 1) = 2K [9(x)(2u)t]

log (1/2u) + C, + O((log u)(u* + ||x||=*))
where K(r) is the Bessel function of the second kind of order zero, C, is a
constant, and ¢(x)* = (y,’/o,®) + (y.’/o,’) where y,, y, are the components of x

along the principal axes of the covariance matrix o}; (see Section 1). Hence
by (B2)

(5 et dF(9) ~ 2198 (L/g(x(m) + (3) log (1/2u(m) + O(1)]
° " log (1/2u(n))
. logn — 2log ||x(n)||
logn '

Since the right-hand side is independent of r > 0, it follows that F,(1) =
I(n, x(n)) (or indeed F,(f) for any ¢ > 0) must have the same limit, which
is (4). The relation (4) holds without the restrictions ||x(n)|| < C(n)t or
Exp(]|X"||****) < oo by similar arguments.

Finally, let F,(0) = (logn)I([6n], x(n)) in two dimensions, where ¢(n)} <
||x(n)|| £ A(n)*. Then as before

(B6) §¢ e dF,(0) = (log n)J[xn), u(n)] — 2K [q(x)(r)*]
— 88° e—rte—q(z)2/4tt—1 dt
where x(n)/(n)* — x and r > 0. Hence
F(1) = (log n)I[n, x(n)] — {3 =441 di = C(x) = EIq(x)*/4]

where El(x) = {7 (e~¥/w) dw is the exponential integral function. This proves
(5) (as well as (8)), and completes the proof of Theorem 3.

REMARK. In three dimensions, (5) is replaced by
(B7) I[n, x(n)] ~ C(x)/(2n)} for (2n)~ix(n) — x

where C(x) = [1 — J(0, 0)] erfc [¢(x)]/87Nu,0,0,9(x), which follows from Theo-
rem 3 of Sawyer (1977) in exactly the same way as (5) followed from (BS).
Given (B7), Theorem 4 extends to three dimensions.
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