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CAN A NONSTABLE STATE BECOME STABLE
BY SUBORDINATION?

By MiIcHAEL RUBINOVITCH!?

University of Utrecht

Let Zy(t) be a Markov chain and X(¢) a subordinator. Set Z(¢) =
Zy(X(t)) and let « be a nonstable state of Zy. It is shown, via an example,
that it is possible for « to be a stable state of Z(¢) even when the total
mass of the Lévy measure of X is unbounded.

Let {Z(¢); t = 0} be a standard Markov chain with stationary transition pro-
babilities on a countable state space /.

Let {X(7); t = 0} be a subordinator, i.e., a process with stationary independent
increments on [0, co). We assume that X is defined on the same probability
space as Z,, that it is independent of Z, and that X(0) = O surely. (See Fristedt
[3] for a full account of subordinators, their Lévy measures and sample functions
properties.)

Define now a new process {Z(t); t = 0} by

Z(t) = Zy(X(¥)) »
so that Z is a subordinate of Z, directed by X. It is not hard to check that Z is

standard Markov chain with stationary transition probabilities on /.

We pose now the following problem: Can an instantaneous state of Z, be stable
for Z in nontrivial situations?

By a trivial situation we mean the following. Let a €I be an instantaneous
state of Z, and suppose that X is a compound Poisson process with no drift.
Then a.s. there exists a 7, > 0 such that X(s) = 0 for all r < #,. Thus if Z(0) =
Zy(0) = a then Z(t) = « for all ¢t < ¢, and « is stable for Z.

The interesting situation is when X is not a compound Poisson process and
its sojourn time at zero is 0 a.s. Could « then be a stable state of Z? The
answer is yes, and the objective of this note is to produce an example that proves
this assertion.

Let p, () and p{,(¢) denote, respectively, the transition probabilities of Z and
Z, and set, as usual,

9 = limtqo—l—ff#('); g, = lim,_, L P
t

Also let L denote the Lévy measure of X and a be its drift.
An extensive study of subordinates of Markov chains is given in Cohen [2].
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Among much else Cohen gives an explicit expression for the g,; elements in
terms of the parameters of Z, and X. For i = j this expression reads

9: = aqg; + V5 [1 — ply(t)]L(dt) < o0 ,

where aqj; = 0 if @ = 0 (see also Stam [7]). An immediate consequence of this
is that when a is instantaneous for Z, then a > 0 will imply that « is instantane-
ous for Z. So, from here on we take @ = 0, and, since the compound Poisson
situation is no longer of interest, we assume that L(0, co] = oo. Under these
assumptions we wish to produce an example where ¢%, = oo and

) uw = §5[1 — paa()]L(dl) < oo .
Define a measure ¢ on (0, o] by
m(dx) = x~**°dx

with 0 < ¢ < 1. This measure was given by Kingman [4] as an example for a
canonical measure of a regenerative phenomenon. He showed that near the
origin the corresponding p-function behaves according to

2) L= p(t) ~ Ar r=0

with some constant 4. From the Markov characterization theorem ([5], page
125) it now follows that this p-function is a member of the class 7 7 namely
that there exists a Markov chain Z, on a countable state space /, and a state
a € I'such that p(¢) = p}.(r). This state is clearly instantaneous for this Markov
chain. We have thus produced the process Z, and the state a of the desired
example. Now let X be defined by its Lévy measure

L(dt) = t~# dt 0< 1< o0,

where 0 < 8 < 1. Clearly L(0, co] = oo.
For these X, Z, and a we have from (2) the behavior near the origin of the
integrand of (1), namely

[1 — pou(D]L(dt) ~ At=t+C=B gt t—0.

Now take ¢ > § and you have an example where the integral in (1) converges,
9aa < oo and « is a stable state of Z. Take ¢ < $, the integral will diverge, a
is an instantaneous state of Z.

We conclude that even in nontrivial situations an instantaneous state of a
Markov chain can become stable via subordination. It can, of course, also stay
instantaneous.

The implications of this result are quite interesting. Consider the random set

S, ={t=0:Z(t) = a| Z,0) = a}

of time points when Z, visits @. It is known (Chung [1]) that this set is heavy
(Kingman [6]) in the sense that its Lebesgue measure is positive a.s. Next
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consider the set
G()={x: X(s5) =x;0 <5 < 1}

of all points hit by X during [0, f). When a = 0 this set is light since its
Lebesgue measure is zero a.s.

Now let G = G(c0). Both S, and G are instantaneous sets and, moreover,
they are stochastically independent. However, there are situations when the
heavy set, S, is “so heavy” or the light set G is “so light”” that there a.s. exists
a t, > 0 such that

G(t)c S, as.

Since X(t;) > 0 a.s. this also implies that there exists an x, > 0 (a.s.) such that
GnJl0,x)c S, N[0, x) a.s.

(the inclusion is of course proper).

On the other hand there are situations when G is not sufficiently light or S,
not heavy enough, so that no such ¢, or x, exist.

It is important to note that there is nothing special about the example given
here. In fact, as pointed out to me by G. E. H. Reuter, one can use the famous
Kolmogorov example ([1], page 278) to give a behavior like (2) without having
to appeal to Kingman’s deep characterization theorem. Let Zy(¢) be the Markov
chain of Example 3 on page 278 of [1] and « = 0. Then

1 — poo(r) = §i poo(s)h(r — s) ds

h(t) = X5 e nt
with 3] ¢,7" < co. Taking g, = nf (8 > 1) it is easy to see that A(f) ~ At~"? as
t — 0, so that

where

L — pio(t) ~ §§ h(s) ds ~ Br*
where
c=1-—-p" and 0O<e<l.

Another observation due to Reuter is that for each p,(f) of a nonstable state
a, one can produce nontrivial Lévy measures (and hence subordinators) to
make the integral in (1) finite or infinite. This will be discussed in a forth-
coming paper on subordination of regenerative phenomena and intersections of
random sets, where a short proof of Cohen’s formula in a more general setup, as
well as a complete characterization of subordinates of regenerative phenomena,
will be given.
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