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DISTRIBUTION INEQUALITIES FOR THE BINOMIAL LAW

By Eric V. SLup!
New Mexico State University

We prove that the probability of at least & successes, in » Bernoulli
trials with success-probability p, is larger than its normal approximant if
p=tandkznmporifp<j}andnp <k <nl — p). A local refinement is
given for np < k < n(1 — p), k = 2, and for p < 4, k = n(1 — p). Bounds
below for individual binomial probabilities b(k, n, p) are also given under
various conditions. Finally, we discuss applications to significance tests
in one-way layouts.

1. Introduction. The classical Poisson and de Moivre-Laplace limit theorems
(see, for example, Feller (1957), chapters 6, 7) deal with approximations in law
or in density to the binomial Bin (n, p) asymptotically as np — 4 or n — oo,
respectively by the Poisson law Poi (1) with mean 2 and the normal law .4 (np,
np(1 — p)). A long line of contributions paralleling the history of probability
itself, and possibly culminating in a paper of Prohorov (1953), sharpens the
rates of convergence and extends the conditions. But only within the last fifteen
years have there been some scattered results giving inequalities among these
distribution functions, more in the spirit of Laplace’s continued fraction for
{2 exp(—7*/2) dt/(2x)} = 1 — ®(a) than of his limit theorem.

The primary emphasis of the present paper is in this newer direction, on in-
equalities rather than approximations for binomial tail probabilities. To chart
progress in the area, we list five known domination relations between binomial
tails and their classical approximants. Here

plk, ) = exp(=A)A k!, Pk, 2) = Tt p(js 4 Pk, ) = T5,.p(J, A)
bk,mp) = (P —py*,  q=1—p,  Blksnp) = Theb(js mp)
Bk, n,p) = ¥, b(j, n, p), and 0<p<1, 2=0,

withk < n nonnegative integers.

(i) (Bohman, 1963). B(k, 2) = 1 — ®((k — 2)/ai).
(ii) (Anderson, Samuels, 1965). If k < n’p/(n + 1), then P(k + 1, np) <
B(k + 1, n, p).
(iif) (Anderson, Samuels, 1965). If k = np + 1, then P(k, np) = B(k, n, p).
(iv) If k = np + 1, P(k, np) = max (B(k, n, p), 1 — ©((k — np)/(npg)?)).
(v) If k < np, B(k, n, p) = P(k, np) = 1 — ®((k — np)/(np)}).
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Bohman’s inequality (i) says that for all 2 > 0 the .#7(4, 4) random variable is
stochastically smaller than the Poi (1) variable. (ii) and (iii) stem from a line
of investigation initiated by Samuels (1965) in his thesis and continued in Jogdeo,
Samuels (1968). In (iv), k > np = 4 allows us to replace 1 — @((k — 2)/a}) a
fortiori by 1 — @((k — 2)/(29)?) in (i), but we note that k — np < 0 in (v). Both
(iv) and (v), which follow easily from (i)—(iii), suggest that it is worth looking
for inequalities of the form B(k, n, p) = 1 — ®((k — np)/(npg)t). Dudley con-
jectured in a seminar that this tail-inequality holds for k = np, p > }, and
showed (in a private communication) that it does when B(k, n, p) is replaced by
its Peizer—Pratt (1968) approximant and k = np + 4, p < 1. In Section 2 we
establish the tail-inequality for k = np, p < } and for np < k < n(1 — p), and
we strengthen it in Section 3 to various local refinements for individual binomial
probabilities including a bound below for error in Theorem 3.2.

There is also a systematic method for checking which inequalities among
binominal, normal and Poisson tail probabilities can hold for arbitrarily large
n. It is based on the following large-deviations result of Chernoff (1952):

TueoreM 1.1. If {X;}7., is a sequence of independent identically distributed
random variables, with some t, > 0 for which E(exp(,X,)) < oo, then for a > 0,

©) n~tlog (Pr{X, + --- + X, > an}) — log (po*(X;, a))
where p*(X,, @) = min, E(exp(t - (X; — a))) .

We remark also that if X, is respectively normal, Poisson or binomial, then
sois X; + ... + X,, and moment-generating functions E(exp(zX,)) exist. Hence
if a is taken > (<) p, (°) gives asymptotic information about upper (lower, using
— X, instead of X)) tail probabilities for all three distributions.

(@) If X,is Bin(1, p), log p*(X,, a) = F(a, p) = alog(p/a) + (1 — a)log((1 —
p)/(1 — a)), and (°) says n~*log B(an, n, p) — F(a, p).

B®) If X, is A (p,p(1 —p)), then logp*(X,a)= G(a,p)= —(a—
PYICp(L — p)-

(r) If X, is Poi (p) distributed, then log p*(X,, a) = K(a, p) = alog (p/a) +
a — p = lim,_, (n~"log P(an, np)).

We readily check that for @ > p, F(a, p) = alog(p/a) + (1 — a)log((1 —
P)I(1 — a)) = alog(pfa) + (1—a)log (1 + (a— p)/(1 — a)) < alog(pa) + a —
p = K(a, p), which is the asymptotic version of (iii). Similar calculations work,
as they must, for (i), (ii). ‘

To find the proper conditions for the inequalities of Sections 2 and 3, we try
to assure F(a, p) = G(a, p) for a = p. At a = 1, this says logp + ¢/(2p) = O,
which holds for all p < » = exp(—(l — 7)/(27)) because the function
p €xp(q/(2p)) decreases in p. (The number 7 is slightly larger than 1.).. F(p, p) =
G(p,p) =0, and F(q, p) = G(q, p) Wwhenever (¢ — p)/(2pq) + log(p/q) = O,
which is true for 0 < p < } because the left-hand side is decreasing in p < }
and 0 at p = }.
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The function F(a, p) — G(a, p) is convex and increasing in a for p < a < ¢,
and concave for ¢ < a < 1. From the above information when a = p, ¢, or 1,
we conclude that if p < a < ¢ then both F(a, p) = G(a, p) and 9F/da = 3G/oa,
while if ¢ < a < 1 and p < 1, then F(a, p) = G(a, p).

It is worth noting that F(a, p) = G(a, p) does not hold for a < p or if G(a, p)
is replaced by —(a — p)*/(2p), so that (v) cannot be extended to k > np, and
B(k, n, p) = 1 — ®((k — np)/(npq)*) will not hold for k < np.

We discuss applications of our inequalities in Section 4, especially to the
construction of statistical tests conservative with respect to type II errors.

2. Upper tail probabilities. The main result of this section is
THEOREM 2.1. If0<p <%, mp <k < n,ornp <k < n(l — p), then

*) Bk, n,p) 2 1 — O((k — np)[(npq)t),  where g =1—p.
We break the proof of this theorem into cases.

Case 1. p< %, k=nq. For fixed k, n, the difference B(k,n,p) — 1 +
®((k — np)/(npq)t) of binominal and normal tails goes to 0 as p | 0, so to prove
Case 1 we show that the derivative of the difference is nonnegative for (n —
k)/n < p < . Direct evaluation reveals this derivative as nonnegative if and
only if

G(k, n, p) = [1 — (k — np)[(2kq)]7*b(k, n, p)(npq)*/$((k — np)/(npq)*)

is at least 1, where ¢ is the normal density. Now G(k, n, p) = [G(k, n, p)/G(k,
n, k/n)] G(k, n, k/n). If k < n, then direct evaluation of the term in square
brackets shows it to be of the form (1 — (k — np)/(2kq))~" exp(M(n, p, k/n)),
where for p < u < 1 we define M(n, p, u) = (nu + %) log (pju) + (n — nu +
3) log (g/(1 — w) + n(u — p)/(2pq) = } log (pg/(u(1 — ) + n(F(x, p) — G(x,
p)). The functions F(u, p), G(u, p) are as in the introduction, where it was
shown that for p < u < 1, F(u, p) = G(u, p). Since for u = ¢, log (pq/(u(1 —
u))) = 0, it follows that M(n, p, u) = 0, and in particular for ng < k < n, M(n,
p» kin) = 0.

LeEMMA 2.1. Forall 0 < k < n, log G(k, n, k[n) = — (8 min (k, n — k))~.

ProoF. log G(k, n, kjn) = log [(})(27)tk**¥(n — k)*~*+in=-i]. By the discus-
sion of Stirling’s formula for binomial coefficients in Feller (1968), pages 53-54,
log G(k, n, k[n) > (12n)~' — (12k)~"'— (12(n — k))~'. By symmetry in k and
n — k, we may assume k < n/2, in which case direct calculation yields (8k)~* +
log G(k, n, kjn) > (n* — nk — 2k*)[(24nk(n — k)) = 0, proving the lemma.

To complete the proof of (*) in Case 1 for k < n, it suffices to show that
(1 — (k — np)/(2kq))~ exp(—(8(n — k))~*) = 1, or even that 1 — (8(n — k))™* =
1 — (k — np)/(2kq), i.e., kg < 4(n — k)(k — np). When k = ng, p < } this
follows easily, as 4(n — k)(k — np) = 4(n/2 — np) > k(2 — 4p) > gk.

Finally, when k = n, (*) becomes p* > 1 — ®((ng/p)t). But by the well-
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known inequality 1 — @(x) < x~'¢(x) for x > 0, we have 1 — ®((ng/p)}) <
(27ng[p)~t exp(—ng/(2p)) < exp(—nq/(2p)), so it suffices to prove p =
exp(—¢/(2p)) for p <} which was done in the introduction in the form
F(1, p) 2 G(1, p))-

Case 2. p < 4, n/2 < k < nq. Again we prove (*) by showing G(k, n, p) = 1
for p < 1 — k/n when k > n/2 is fixed. Differentiating log G(k, n, p) with re-
spect to p, we see that G(k, n, p) is decreasing in p whenever p < &, k = np + 1,
so in particular whenever p < 4, k > n/2. To prove this case, it suffices to check
G(k,n, 1 — k/n) = 1.

Lemma 2.2. If 0 < p < 4, then p exp((q9 — p)/(2pq))/q = 1.
Proor. True for p = 4, and the left-hand side decreases in p.
LemMa 2.3. If k > n/2, then G(k, n, 1 — k/n) = 1.

Proor. By Lemma 2.1, G(n — k, n, 1 — k/n) = exp(—(8(n — k))~"). But
G(k, n, 1 —k[n)|G(n—k, n, 1 —k[n) = (2k*/(k* + (n — k?)) - [((n— k)/k) exp (n(2k —
n)/(2k(n — k)))J**~", and Lemma 2.2 with p = (n — k)/n shows the square-brack-
eted term > 1. Since also 2k > n, the entire expression above is > (2k*/(k* +
(n — k) - [((n — k)Jk) exp(n(2k — m)[(2k(n — k)], and G(k, n, | — kjn) =
(2k(n — K)[(K* + (n — kY’)) exp(n(2k — n)|(2k(n — K)) — 1/(8(n — K))) = [1 +
(n — 2K)?/(2k(n — k)] exp(n(2k — n)/(2k(n — k) — 1/(8(n — k))) > exp(—(n —
2k)’[(2k(n — k)) + n(2k — n)[2k(n — k)) — 1/(8(n — k))), and log G(k, n, 1 —
kin) > (2k — )k — 1/(8(n — K)).

Now since 2k — n = 1, if k < 8(n — k) then logG(k,n, 1 — k|n) = 0. If
9k > 8n, then (2k — n)/k > % > 1/(8(n — k)), and the lemma and Case 2 are
proved.

The remaining cases needed to prove Theorem 2.1 are

Case 3a. np < k < nq, p <%, and
Case 3b. p =4, k = n/2.

Case 3a follows immediately, for k > 2, from Cases 1 and 2 and the local re-
finement (Theorem 3.1) to be proved in the next section. When k = 1 > np,
B(l,n,p) =1—¢* =1 —exp(—np) = 1 — ®((1 — np)/(np)*) by Bohman’s in-
equality ((i) in the introduction), and since 1 > np thisis > 1—®((1—np)/(npq)?),
as in (v) in the introduction, proving (*). Case 3b is also contained in (v) of
the introduction. All the cases of Theorem 2.1 are now proven.

The above results on binomial tails actually followed from information about
G(k, n, p), i.e., about individual binomial probabilities. We collect these local
results in

THEOREM 2.2. (i) If ng = k > n/2, then G(k, n, p) > 1.

(i) If 1 — k/n < p < &, then G(k, n, p) > 1.
(iiiy Ifp < %, k = n/3, and n = 25, then G(k, n, p) > 1.
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Ineach case, G(k, n, p) > 1is equivalent to the inequality b(k, n, p) > (npq)~*¢((k —
np)/(npg))(1 — (k — np)/(2kq)).

ProoF. (i) and (ii) were respectively proved in Case 2 and Case 1 of Theorem
2.1 above. For (iii) we may assume p < } < k/n < q. Since k — np > §,
G(k, n, +) is again decreasing, and it suffices to show G(k, n, 1) > 1 for k < n/2
(When k = 3n/4 we are done by (ii), and when } < k/n < (i) proves our
claim).

Just as before, G(k, n, ;) = [G(k, n, })/G(k, n, k/n)]G(k, n, k/n), and the square-
bracketed term is (1 — (k — n/4)/(3k/2))~* exp(M(n, %, k/n)), while for k < n/2,
G(k, n, k/n) = exp(—(8k)~") by Lemma 2.1.

Now exp(—(8k)™") > 1 — (8k)™ = 1 — (k — nJ4)/(3k/2) because k — nj4 > 1
in case (iii), hence G(k, n, 1) > exp(M(n, §, k/n)). But differentiating twice with
respect to u shows that M(n, %, u) is convex on [4, §], so it is enough to verify
that M(n, {,4) > 0 and 0/0uM(n, %, 1) > 0. We have M(n, %, 1) = (n/3 +
1)log (3) + (2n/3 + §) log (§) + n/54 > 0 and 8/3uM(n, }, 3) = nlog (3) + 4n/9 —
2 > 0 for n > 25, finishing the theorem.

3. Local refinements. We turn now to local theorems, refining Theorem 2.1
to an inequality for individual binomial probabilities in

THeEOREM 3.1. Ifnp < k < n(1 — p) and k = 2, then

(**) bk, n, p) =2 ®((k — np + 1)/(npq)*) — ©((k — np)/(npq)?) .

We remark that (**) holds if and only if H(k, n, p) = b(k, n, p)(npq)t/((k —
np)/(npq)t) = V4=2z+t exp(k—np)/(2npq) — u*/(2npq)) du = {3 exp(— (2(k—np)i-+
*)/(2npq)) dt, and we call this last expression D(k, n, p). Differentiation with
respect to p shows in the range 0 < p < }, k = np that D(k, n, «) increases, while
H(k, n, p) increases in p precisely when k < np + (npq)t.

For fixed k, n with k < n, we define p(k, n) as the root < k/n of (k — np)’ =
np(l — p), so that py(k,n) = (k + 3 — (k + £ — K*/n)})/(n + 1) and k — np, =
(npyq,)t. Moreover, since np 4 (npq)! increases in p on [0, ], whenever np <
k < n/2 the inequalities p < py(k, n)and k = np + (npq)* are equivalent. There-
fore, by the previous paragraph, if kK < n/2 and (**) holds for p = p,(k, n), then
(**) holds as well for all 0 < p < py(k, n). We proceed first to prove Theorem
3.1 for p = py(k, n) in the special case k < n/2.

For the next lemmas, we introduce, the notations x = k — np, s = (npq)}, in
order to express log H(k, n, p) and log D(k, n, p) as power series in k — np.

Lemma 3.1. If0< p <4, np < k < n/2, and p = py(k, n), then log H(k, n,
p) = —x[(2kq) — (8k)™" — x*/(4k?).
Proor. By Lemma 2.1, log H(k, n, p) = log[b(k, n, p)s=*/¢(x/s)] = (x/s)’/2 +

(k + $)log (np/k) + (n — k + ) log (nq/(n — k)) — (8k)~*. Writing log (np/k) =
log (1 — x/k) and log (nq/(n — k)) = —log (1 — x/(nq)), expanding in powers of
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x = 0 and collecting terms, we have

log H(k, n, p) = —(8k)™ + (x/s)"/2 + x*[(2nq) + x*/(2nq)" — x*/(2k)
— X*[(2k)* — x[(2k) — **[(ng) + x/(2nq)
+ Xz ¥l(ng + D)) — (k + DIk
— ((r = (ngy 1.
The terms of degree 1 and 2 in x are easily seen to be > xp/(kq) — x/(2kq) —
/(4K + x¥/(2nkp), while T2, = — Dz, [(k+ /(3K + (2(ng)) ] = —(k+
xnp|(3kY) — (n — k)x/(2(nq)).

But x = 0, and since § = p = p,(k, n), also x* < npq. Therefore x*/(2nkp) =
(k + 3)xnp/(3k*) for k =1, and xp/(kq) = (n — k)x*[(2(nq)*). Altogether
log H(k, n, p) = —(8k)™ — x/(2kq) — x*/(4k®), and the lemma is proved.

We observe that for k < n/2, py(k, n) is an increasing function of k, and
np(1 — p,) = np,q, is an increasing function of both n and k. Hence as k and n
range over positive values with 2 < k < n/2, np,q, = 4py(2, 4)(1—p«(2, 4)) = .8.
So for all § = p = p«(k, n), npg = .8.

LemMA 3.2, If2 < k < n/2, np < k < np + (npq)}, then

log D(k, n, p) < —(6npq)~" — x/(2npq) + (25(npq)*)~" + llx*/(‘108(npq)”)-

Proor. Using the Cauchy-Schwarz inequality on the integral defining D)k,
n, p), we find

log D(k, n, p) < (%) log s exp(—/(npq)) dt + (§) log §; exp(—2tx/(npg)) dt
= —x/(2npg) + (3) log §; exp(—7/(npq)) dt
+ (3) log §aexp((1 — 20)x/(npq)) dt .
Our hypotheses imply p > py(k, n), so npg > .8 and {jexp(—2/(npq))dt <

1 — (3npg)~* + (10(npg)*)~* < 1. Taking logarithms and again using npg > .8,
we find

log §; exp(—#/(npq)) dt
< —@npg)~" + (10(npg)’)~ — ((3npg)™" — (10(npq)’)~")'/2
< —(@npg)~t + 2/(25(npq)’) -
Now
s exp((1 — 20)x/(npq)) df = §*, exp(—2ux/(npq)) du
< 2 §§ exp(2(ux/(npq))’) du
by the inequality cosh (f) < exp(#*/2), valid for all real . Expanding inaseries for x
and using x* < npg, npq = .8, shows this expression < 14 x*/(6(npq)*) + (x/(npq))*.

#o + zho + (Z)(&) + ) < 1+ (F%)x/(npg)*. Finally, (3) log §3exp((1 —
26)x/(npq)) dt < ({#45)x*/(npg)?’, finishing the lemma.
To conclude the proof of (**) in case 2 < k < n/2, k/n = p = py(k, n), we
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combine Lemmas 3.1 and 3.2 to find

log H(k, n, p) — log D(k, n, p) > [(2nkpg)™ — (4k*)™* — 11/(108(npg)*]x*

+ [(6npg)™ — (8k)™" — (25(npq)’)~] -

Since k = 2and npq = .8, (8k)™' < & < (25(npg) — 6)/(150(npg)*) = (6npq)~" —
(25(npg)’)~'. Also npg < k < np + (npq)t = npg(¢~" + (npg)~*) < 3.2npq, and
the quadratic expression k/(2npq) — 1 — ({45)(k/(npq))* is positive for k/(npq)
between the roots (3%8)(1 + (1 — ##%)?!), which are .56 and 4.3. Hence log H(k,
n, p) — log D(k, n, p) > 0, and (**) holds.

As remarked above, (**) for £ = p = py(k, n) also implies (**) for p < py(k, n),
so all that remains in Theorem 3.1 is to remove the restriction k < n/2. But
when k < n/2,

log H(n — k, n, p) — log H(k, n, p)
= (n — 2k)log (p/q) + ((n — k — np)* — (k — np)*)/(2npq)
= (n — 2k)[log (p/9) + (4 — P)/(2p9)] = O
by Lemma 2.2. Also D(k, n, p) decreases in k by inspection, hence D(n — k, n,
p) < D(k, n, p). Therefore (**) for k < n/2 immediately implies (**) for k = n/2.

Our final result strengthens inequality (**) in certain cases by giving lower
bounds for the error.

THEOREM 3.2. If p < 1 and either (i) k = nq or (ii) k = n/3, n = 27, then

b(k, n, p) — O((k — np + 1)/(npg)}) + P((k — np)/(npq)*)
> r(npg)~té((k — np)/(npg)?) ,

r=a=((k —npy|2npg) (k=" — (3npg)™)
in case (ii), and y = max (a, 0.16) in case (i).

Proor. By Theorem 2.2, G(k, n, p) > 1,1i.e., H(k, n, p) > 1 —(k — np)/(2kq).
In either of our cases k > n/4 + (3n/16)t = np + (npq)*, hence H(k, n, p)
decreases in p, and H(k, n, p) = H(k, n, ) > 1 — (k — n/4)/(3k/2) = (k +
n/2)/(3k)=%. Now D(k, n, p)is < {;exp(—t(k—np)/(npq)) dt, increases in p, and
decreases in k. So for k = ng, D(k, n, p) < D(3n/4, n, 1) = (jexp(—8¢/3)dt =
(3)(1 — exp(—8)) < .34, and in case (i) H(k, n,p) — D(k,n,p) >} — .34 =
.16. 1In either case H(k, n, p) — D(k, n,p) > 1 — (k — np)/(2kq) — (npq/(k —
mp)) - (1 — exp(—(k — np)(npq))) > 1 — (k — np){(2kq) — 1 + (k — np)/(2npg) —
(k — np)*/(6(npq)’) = (k — np)(2npq)~(k= — (3npq)~). Therefore H(k, n, p) —
D(k, n, p) > 7, and multiplying through by (npq)~i¢(k — np)/(npq)t) proves the
theorem.

where

4. Applications. We conclude with a short discussion of statistical appli-
cations of inequalities involving tail and individual binomial probabilities.
Foremost among these is the recognition of systematic errors in the common
approximations used in tests of significance. For example, suppose one wanted
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to test the null hypothesis H, that event E occurs with probability p, against
the alternative H, that it occurs with probability > p,. Given the results in n
independent trials of whether E occurred, the size a of the (likelihood ratio)
test of H, versus H, is B(k, n, p,), where we accept H, iff £ has occurred < k
times. Since this and any other reasonable test will reject H, for large n if the
number of occurrences is > n(1 — p,), where p, < {, we apply Theorem 3.14
(or, for small samples, assume p, < } and apply Theorem 3.12) to find & =
B(k, n, p;) = 1 — ®((k — np,)/(np,q,)*). So in this case the binomial tail test is
conservative compared to the normal tail test. Alternatively, the normal-tail
test of H, versus H, with size @, which is precisely the chi-squared test of H, at
level a, is conservative with respect to errors of the second kind.

Binomially distributed statistics arise as well in more general tests of goodness
of fit, and the following example provided one motivation for the work in
Sections 2 and 3. We suppose the sample space partitioned into mutually ex-
clusive events E, ---, E,, and we wish to test the results of N independent
trials against the null hypothesis that event E; occurs with probability p,, i = 1,
2, ...,mp,+ -+ + p, = 1. The N trials will give r, occurrences of E,, where
rn+ .-+ r, =N, and we define Z = min; {B(r,, N, p,)}, where B(r;, N, p;) =
1 — B(r; + 1, N, p;). Then the n-min test (a “slippage” test) at level a consists
in finding y such that the probability Pr {Z < r} = « and in rejecting the null-
hypothetical distribution if in a given realization of N trials it happens that
min {B(r;, N, p;)} < r. This test is defined and implemented in Dudley, Perkins,
and Giné (1975) and developed in unpublished preprints of Dudley. We remark
that for large sample size N, it will be no loss in generality to assume that the
r; which minimizes B(r;, N, p,;) is < Np; — 1. Then by inequalities (i), (ii), (v)
above,

a 2 Pr{min; 334, p(i, Np;) < r} = Pr {min; ©((r; — Np,)/(Np,)}) < 1} .

But the (r; — Np;)/(Np,)} are asymptotically jointly normal with means 0 and
variances 1 — p; under the hypothetical distribution, and covariance E{(r; —
Np)(ri — Np)[(N°p;p;)} = —p.p;(1 — p;)(1 — p;), so we may calculate the
distribution function of Z* = min, ((r; — Np,)/(Np,)}) in terms of incomplete
gamma integrals and use Z* as test-statistic in a conservative approximation to
n-min with respect to type II errors.
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