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LIMIT PROPERTIES OF RANDOM VARIABLES ASSOCIATED
WITH A PARTIAL ORDERING OF R¢

By J. MICHAEL STEELE
University of British Columbia

A limit theorem is established for the length of the longest chain of
random values in R?¢ with respect to a partial ordering. The result is ap-
plied to a question raised by T. Robertson and F. T. Wright concerning
the generalized empirical distribution function associated with the class
of lower layers.

Introduction. There are two distinct roots to the work presented in this paper:
one in mathematical statistics, and the other in combinatorial geometry. Since
the geometrical origin is historically prior, as well as the more succinct, we
will consider it first.

In 1935, Erdds and Szekeres [3] proved that any sequence of n distinct real
numbers has a subsequence of length at least n* which is either monotone in-
creasing or monotone decreasing. S. Ulam later posed a probabilistic version
of the result of Erdds and Szekeres and made a conjecture which we will now
describe.

Let X, = (™, ™), i=1,2, ... be a sequence of i.i.d. random variables
which are uniformly distributed in [0, 1] X [0, 1], and let /(n) be equal to the
largest integer k such that there is a subsequence i, < i, <, - - -, i, < nsuch that

In a form equivalent to our description, Ulam conjectured that the sequence
of random variables /(n)/n* n = 1, 2, - - . converges in probability to a nonzero
constant ¢. This conjecture was proved by Hammersley [4], and his estimate
for ¢ was sharpened by Kingman [7]. A very nice addition to this work was
made in a comment by Kesten (see [7, page 903], and [5]) who proved that
I(n)/n* converges with probability one.

In the present paper we present a natural extension of Ulam’s problem to R?,
d = 2, and provide results on the limit behavior of the analogue to /(n). These
results are given in the first section of this paper and are presented in a form
which makes them immediately applicable to a question in mathematical sta-
tistics raised by Richardson and Wright [10].

To state their problem we need to introduce the concept of a “lower layer.”
If x =%, ¢®, ..., () and y = (D, P, ..., {?D) are two points in R?, we
write x € y if {» < { fori=1,2,...,d. A Borel subset 4 of R? is called a
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lower layer if for any y € 4 we have {x: x € y} € 4. We will denote this class
of subsets by <. To check ones understanding of this definition, he should note
that in R* a lower layer corresponds to the set of points which lie below the
graph of a monotone decreasing function. Also we note that for any d > 1,
the class of sets (— oo, {P] X (—o0, {?] X +++ X (—o0,{?] are a small sub-
class of the class of lower layers, which we will denote by Q.

We denote by 1, the characteristic function of the set 4 and we denote by
X,i=1,2,3... a sequence of i.i.d. random variables which take values in
R?. Next we define random variables =, and 7, by

1
Ty = SUPye » " 1 1,(X)) — P(X e A).

and
i 1 :
7, = SUDseq ]7 1 1,(X) — P(X, € A)} .

Of course, 7, is the classical Kolmogorov-Smirnov statistic and describes the
discrepancy between the empirical distribution and the theoretical distribution
function. For the generalized discrepancy =, Blum [1] proved that 7, — 0 with
probability one provided the X; have a density (see also Dehardt [2]). Now one
of the deepest results on the classical discrepancy 7, is Kiefer’s law of the iterated
logarithm [6], and the question raised by Robertson and Wright [10] is whether
a similar result holds for z,. That is, does one have

lim,___Cn)im,

m,_,——~-"*_ =1 with probability 1?
(log log n)?

The answer to this question for d = 3 is proved in the second section of this
paper to be NO. The results provided there show that the rate of growth of z,,
is much greater than that of #,. The question of the possibility of a law of the
iterated logarithm for z, in R® is still open.

In the final section of this paper we offer two easily stated conjectures whose
solution would be of interest, either from the viewpoint of combinatorial ge-
ometry or mathematical statistics.

1. The probability of long chains. The section is concerned primarily with
chains of points in R? with respect to the partial ordering « defined by
Gl L) &8, -+, 8)) if and only if {; < ¢/ fori=1,2,...,d.
A set which is totally ordered by & is called a chain, and a set such that no
two of its elements are comparable is called an antichain. The only fact we
require from the theory of partial orderings is the Dilworth decomposition
theorem:

If a partially ordered set P possesses no antichain of cardinal
m + 1, then it can be expressed as the union of m chains.

(For a brief and elegant proof of Dilworth’s theorem see Tverberg [13].)
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To gain a quick view of the power of Dilworth’s theorem one should note
that applied to (R?, <) it immediately implies the result of Erdos and Szekeres
mentioned in the introduction.

Now if {y,, y,, - - -, y,} is a set of points in R, we write A;*(y,, y,, - - -, y,) for
the cardinal of the largest subset of {y,, y,, - - -, y,} which is a chain. Similarly
Ay (P Yo - - +» y,) is the cardinal of the largest antichain of { YisVar * s Vube If
X, i=1,2,... are independent random variables which are uniformly dis-
tributed in [0, 1]¢ we write

Ajf(n) = AH(Xy, X,y -+, X,)
and
Ay (n) = A (Xp, Xy, -+, X,)

These random variables have direct relevance to a variety of problems in
probability and statistics. The remainder of this section develops inequalities
for these variables and establishes results on their limit behavior.

THEOREM 1. (Recursive inequalities). For d = 3 and any positive integers n, a
and 8 we have

(1.1) P(Ag*(n) = B) — P(Aj_y(n) = a) < nP(A*(a) = B)
and
(1.2) P(A(n) < B) — P(Ajy(n) < @) < nP(A,"(a) < f) .

Proor. The proof depends upon constructing a set of functions which will
be used to carry estimates from d — 1 dimensions to estimates for d dimensions.
We let y;, y; - -+, », be a set of points in [0, 1]*-! such that no two of the Vs
have equal first coordinate. By Dilworth’s theorem we can decompose the set
{y1> Yo -+ 5 ya} into A7 (31, yy, -+ -, y,) chains. We denote these chains by C,,
i=1,2, -+, Az «(y1» s - - -» y,) and assume that as the index increases the first
coordinate of the least element of the chain increases. Now we can define a set

Of AZ_s(V1s Yo =+ - a) fUNCHIONS 2,(y1, Yy, -+« s Y3 Xu» Xgy + -+, x,) where the x; are
distinct points in [0, 1]. The 4, are defined as follows:

A( V15 Vas =+ *s Vs X1y Xgy + -+, X,) is the cardinality of the
largest subset B, C C, such that for any two elements Yiv Vi
of B, such that y; « Yi, we have x; < x, .

If z,, z,, - - -, z, are i.i.d. random variables with uniform distribution in [0, 1]
we write

Zl(y’ Z) = 'Zi(yl’ ° e "yn; Zyy Zgy * o 0y Zn) .

We note that 4,(y, z) is a random variable which has a distribution that depends
only on the cardinality of the chain C,. Moreover, we note

(1.3) I Aia(Vym oo, y.) S @ we have
P Y1 Yas ++vs Vs 215 2y -+ -, z,) Z B) = P(AH(a) = B) .
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The second basic observation is that
(1.4) P(Ad+(n) g ‘3) = S[O,l]"‘(d"” P(maxi Zi g ‘B) dy
where the maximum is taken over i = 1,2, .-+, A7_ ()1, Yy, - - s Vu)-

These two observations follow directly from the definition of the 2;, and with
these observations under our belt the proof of the theorem proceeds by compu-
tation. To begin we have
(1.5) P(Ag*(n) =2 B) = (4 P(max, 2, = B)dy + P(Af_y(n) = )
where 4 = {y: A} ()1, ys -+, ys) < @}, and we have used the fact that
§4c P(max; 2, = B)dy < §,.dy = P(A}_,(n) > «). Next we have
(1.6) §4 P(max; 2, = B)dy < §, X, P(4; = B) dy

where the sum over i is for i from 1 to Az (y;, yay -+, p,). Since A} (y;,
Vs +++»Ys) = aon A we have for y e 4 that

(1.7) PQY1s Yo =3 Va3 215 B 005 Z,) Z B) < P(AyH(a) = B)
by the application of inequality (1.3). This shows that (1.6) reduces to
(1.8) {4 P(max; 2 = ) dy < nP(A,*(e) = f)

where we have also applied the trivial fact that for all y, Az_,(y1, Yo -+ yu) < 1.
Now by applying inequality (1.8) to the basic (1.5) we obtain

(1.9) P(Ag*(n) 2 B) = nP(Ag*(a) = B) + P(AiLy(n) Z @)
and the first inequality of the theorem is proved.

To prove the second half we note that
(1.10) P(A; () = B) = P(ALi(n) < @) + 5 P(max; 4, < f) dy

where B = {y: Af_y(y, Yo -+ -5 y) > @} C [0, 1]V andi = 1,2, -+, Ag_i(ps
Vas *+*» Vu). Further we have

(I.11)  §p P(max; 4, < B)dy = (5 s P(4 = ) dy < nP(Ay* (@) < B) »

by the same proof as that of (1.8). When this last inequality is applied to (1.10)
the inequality of the second half of the theorem is proved.

To make use of the recursive inequalities of Theorem 1, both tails of the
distributions of A,*(n) must be estimated. We obtain such estimates with
the following results. :

LEMMA 1. For all positive integers n, we have

(1.12) P(A¥(n) = 8(n)}) < 7
and
(1.13) P(A;*(n) < n¥f8) < 1

where y = (e/4)* < 1.



LIMITS FOR PARTIAL ORDERS 399

Proor. The method for proving the first inequality is a slight variant of a
method due to Hammersley [4] which we include for completeness. Let X, =
(X", Xy i=1,2,...,nbei.id. random variables which are uniformly dis-
tributed in [0, 1. Next let X, = X,;® if X, is the ith largest element of the
set {XV, X,V ..., X,P}. Now choose r so that 2r < n and let v be the number
of sequences i, < i, < -+ <i, < nsuch that X, <X, < ... <X,. By the
uniform distribution of the X, we have that
(1'14) E(”) = Zi1<i2<~-z, P(X,tl > Yiz e > X’z,) = (tr)(r!)_l .

But if A*(X, X, - -+, X,) = 2r then v > (%) so by Chebyshev’s inequality and
(1.14) we have
(1.15) P(AH (X, Xy, -5 Xp) 2 2n) S ()(FICT)) T

By Stirling’s formula applied to (1.15) and by letting » = 4[n!] we obtain
inequality (1.12) of the lemma.

For the second half of the lemma, we first observe that Dilworth’s theorem
implies that A,*(n)A,~(n) = n. This shows that A,~(X,, X,, ---, X,) < n/8 im-
plies A,*(X,, X,, - -+, X,) = 8(n)? so by the first half of the lemma we obtain
(1.16) PN (X Xoy -+, X,) < n¥/8) < 7t

But the distribution of A,~(Xi, X,, - .., X,) is the same as the distribution of
AH(Xy, X, - -+, X,) s0 (1.16) implies the second half of the lemma.

The inequalities of Theorem 1 and Lemma 1 can now be applied to yield a
results on the limit behavior of A,*(n).

THEOREM 2. For d = 2 we have with probability one that
(1.17) limlog, ., A,*(n)/logn = 2'-¢.

Proor. We first consider d > 3. For any sequence of positive integers
‘Bv ﬂz’ T .Bd we have
(1.18) PNt (n) = Bi) — P(Afo(n) Z Bi-y) = nP(A*(Bey) = Br)
by Theorem 1. On adding these inequalities for k = 3, 4, ..., d we obtain
(1.19)  P(As*(n) = Ba) — P(As"(n) 2 ) = 1 Zkea P(As"(Br) Z Bi) -

Now by choosing 8, > 8(n)? and B, = 8(B,_,)! we have by Lemma 1 that
P(Ay*(Bpr) = Bi) < r'®e-vifork = 3,4, ..., d. So(1.19) provides the estimate

P(AH(m) = B) < 7" + n Doyt
and consequently
(1.20) T P () 2 29077") < o0 .

The same procedure based on the second inequalities of Theorem 1 and Lemma 1
provide

(1.21) Nz P(AH(n) < 2777 < oo
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The Borel-Cantelli lemma thus gives us that 2-% < liminf A,*(n)/n* ¢ <
lim sup A,*(n)/n*™* < 2° with probability one. The result (1.17) of Theorem 2
now follows by taking logarithms and dividing by logn. For the case d = 2
we can go directly to (1.19) from Lemma 1 and thus obtain the analogous result
to that obtained for 4 > 3, but as noted in the introduction more precise results
have already been obtained for d = 2.

COROLLARY 1. For d = 2 we have
(1.22) lim inflog, ., A,~(n)/logn = 1 — 2'~¢
with probability one.

Proor. By Dilworth’s theorem we have log A,*(n) 4 log A,~(n) = log n so
(1.22) is an immediate consequence of Theorem 1.

2. Application to discrepancy functions. We will now focus our attention on
the discrepancy function for the class of lower layers defined in the introduction.
The next result shows in a strong way that the law of the iterated logarithm is
quite far from the nature of the =, in R?%, d = 3.

THEOREM 3. Let X;i = 1,2, - .. bei.i.d. uniformly distributed random variables

in[0, 1%, d = 2. For the generalized discrepancy z,, = sup ., |(1/n) 237_; 1 4(X;) —
P(X, € A)| where L is the class of lower layers we have

1
(2.1) T, = Sn Ay (n)
and consequently
(2.2) liminf, ., n* %1, = 27° a.s.

Proor. For any 4 e L we can define for 0 < § < 1 another element of L by
04 ={y:y = 0x,xe A}. We note thatlim,_, P(X, € 04) = P(X, € A). Further,
if we choose A4 such that A has piecewise linear boundary and such that A,~(n) of
the elements of {X;(w), Xy(w), - - -, X, (w)} are boundary points of 4 then we have

(2.3) 2t LX) — X LX) = Ay (n)
By (2.3) we immediately obtain that
(2.4) nr, = 271N, (n)

Thus the first half of the theorem is proved. Finally.(2.2) follows from (2.1),
(1.20) and (1.21).

The preceding result shows that for d > 3 there is no log log law for z,. This
can also be obtained by a completely different method as has recently been
proved by W. Schmidt [12, page 387]. If 2 is used to denote Lebesgue measure
in R?%, and x,, x,, - - -, x,, is any sequence of pointsin R*, W. Schmidt has proved
that

(2.5) SUPLe s | S (X — A(A)| = egne
n
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where ¢, is a constant depending only on d. The rate of growth of nz, given by
Schmidt’s result is not as great as that provided by (2.2) but, of course, that is
more than to be expected since his result pertains to any sequence of points
Xy, X, -+ - No matter how favorably chosen. In the case of d = 2 both Schmidt’s
result and the result of (2.2) are compatible with the log log law.

Our next inequality provides an upper bound for z, in the case of R*. This
result was suggested by an inequality of Hlawka (see [8, 229-233]) for the class
of convex subsets of R?. Letting 7, = sup,.. |[(1/n) X1y L,(x;) — A(A4)| and &
the class of convex subsets of [0, 1]4, Hlawka proved essentially that 7, <
&y(#,)¢. 1t would be futile for us to seek to prove that =, < &/(#,)"* for all
d = 2 since by Kiefer’s theorem #, = O((n~* log log n)!) whereas by (2.2) we
know that r, is not O((log log n)/n)** ifd > 5. We therefore provide the analog
for the class of lower layers of Hlawka’s inequality only in the case d = 2.

THEOREM 4. For R* with d = 2 we have the inequality
(2.6) 7, < 7w < A7)
Proor. The first inequality of (2.6) is, of course, valid for d > 2 and is
trivial. To prove the second inequality we first define
2.7) n&t, = Sup,ep | 2N 14(X) — P(X € 4)|
where R is the class of all rectangles of the form [0, 7] X [, f’]. Since any such

rectangle can be written as [0, y] x [0, 8/]\[0, 7] X [0, 8] we have 7, < 27,.
Next let r be any positive integer and suppose A4 is a lower layer. It is easy to
prove (but tedious to write down) that for any lower layer A there are polygons

P,, P, with the following properties:

(i) Each P, is the union of r rectangles of the form [0, ] X [j/r, (j + 1)/r],
(iiy ,c AC P, and
(iii) P(X,e P\P)) = 1/r.

From these properties we have that
max,_, , % St lp(X) — P(X, e P)| < r2,! < 2rt, .
Further by (iii) we have
% S (X)) — P(X,€ P) + P(X, € P) — P(X, € )

<Ly 1,00 — P e 4)
n

1 :
"I—Z?=11P2(Xi)—P(XleP2)+ P(X,e P,) — P(X,€ A).

IA

This shows as a consequence of (iii) that

LR L) — P )| S 2y - -
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Since 4 was arbitrary we have proved that

(2.8) r,o <2+ L forall r.
r

By taking r = [#,~!] the inequality (2.6) is established.

At this point a note should be made about the generality of the results given
here. The assumption that the X, are uniformly distributed has been used
through this paper only to avoid making repeated reductions to this case. Since
the class of lower layers is preserved under mappings of R¢ which are monotone
in each coordinate, the study of arbitrary X; with a density can be reduced to
the case of the uniform distribution (see e.g. Rosenblatt [11]). Indeed, all of
the results of this paper are valid under the assumption that the X, have a density.

3. Two conjectures. In this final section we offer two conjectures.

CONJECTURE 1.
lim, ., Ay (n)/n*"* =c < .

CONJECTURE 2.
lim

700

nir,[/(loglog n)t = oo a.s. when d=2.

The first conjecture is, of course, a stronger version of our Theorem 2 and is
the “one rightful heir” of the beautiful theorem of Hammersley-Kingman-
Kesten which solves Ulam’s problem. The second conjecture would complete
the answer to the question raised by Richardson and Wright. One should note
that Philipp [9] has proved the log log law in R* for the convex sets; so, although
the second conjecture is not as central as the first, there is still, perhaps, some-
thing subtle to uncover.
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