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SAMPLE-CONTINUITY OF SQUARE-INTEGRABLE PROCESSES

By MARJORIE G. HAHN AND MICHAEL J. KLAss!
University of California, Berkeley

Let {X(¢): t € [0, 1]} be a stochastic process and fa nonnegative function
on [0, 1] which is nondecreasing in a neighborhood of 0. Under the as-
sumption that E(X(¢) — X(s))? < f(|t — s|), we find best possible conditions
for determining whether or not X(¢) is sample-continuous.

1. Introduction. Let {X(¢), t € [0, 1]} be a stochastic process with the property
that for some ¢ > 0

(L.1) E(X(t) — X)) < f(lt — s)) -5l <e,

for some nonnegative function f on [0, 1] which is nondecreasing on [0, ¢]. We
consider the problem of determining the sample-continuity properties of X(¢, w)
solely from the information stored in (1.1). It was shown in Hahn (1975) that
X(t) is sample-continuous, i.e., there is a version of the process with continuous
sample paths, if

(1.2) Sy ifH(y)dy < oo

In Section 2, Theorem 1 improves the above result by weakening the hypo-

thesis to require that (1.2) holds for a new function f which is derived from f

and minorizes f. An example is given in Section 5 which shows that the new
result is strictly stronger than previous results, specifically (1.2) and results of
Garsia and Rodemich ((1974), page 104).

Furthermore, we show that if the only known information about a process
X(t, w) takes the form of condition (1.1), then Theorem 1 is the best possible
result which can be obtained. This is shown in Section 4, where for each
function f whose associated function f does not satisfy Theorem 1, we construct
a discontinuous process X() such that

E(X(r) — X(s) = f(|t — s1) -
Not only does X(f) fail to be sample-continuous but it also does not have a
version with finite right and left limits at all points. This is unavoidable due
to a theorem of Kallenberg (1973).

One reason for desiring sufficient conditions under which (1.1) implies
sample-continuity is that such conditions are also sufficient for uniform tightness
of the measures induced by a family of processes all satisfying (1.1) with the
same f. Thus, for instance, we can now conclude that if X, X,, ... are
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independent, mean 0, stochastic processes on [0, 1] with the same distribution,
say Z£(X), and if X satisfies (1.1) with an f satisfying Theorem 1, then

(i) Z,(t, ) = n~ 17 X,(t, w) is a sample-continuous process for each n;
(ii) there exists a continuous Gaussian process Z with the same covariance
as X such that

A(Z,) — L(Z) weakly in  C[O0, 1];

ie., if P=(Z) and P, = £(Z,) then for every bounded continuous real
function F on C[0, 1]

Soto,11 F(x) P, (x) — §opo,11 F(x) dP(x) .
For more specific details concerning this last application, see Hahn (1975).

2. Sufficient conditions for sample-continuity. We begin by associating to
each nonnegative function f which is nondecreasing on [0, ¢] another function
f defined by

2.1 f(s) = infz, y'f(s(y) if se[0,e¢]
= f(s) if s>e.

Clearly, f(s) is nondecreasing on [0, ¢].
Using f, a particularly simple condition for sample-continuity of a stochastic
process can be formulated as follows:

THEOREM 1.* Let f be a nonnegative function which is nondecreasing on [0, e].
Suppose that

(2.2) Sy ifi(y)dy < oo .

If {X(1), t € [0, 1]} is a stochastic process with

(23) E(X(r) — X(9))* = At = sl) , lt—sl =,
then X(t) is sample-continuous.

Proor. In Hahn (1975) (Theorem 2.5) it was shown that condition (2.2) with
[ replaced by f is a sufficient condition for the sample-continuity of X(r). We
‘will show that
E(X(r) — X(s) = 4f(lt — s) » lt—sl=e.
Then the result just quoted from Hahn (1975) yields the desired conclusion.
If |t — 5| < ¢ then for any integer k = 1,
(X(1) — X(9))" = (X X(s + j(t — 9)[k) — X(s + (j — D(r = 5)/k))?
< k Thes (X5 + j(t — )/K) — X(s + (j — D)t — 5)/k))*.

2 By defining f,(s) = infyz1y7f(s/y), it can be shown in an analogous manner that E|X(z) —
X(s)r < f(Jt — s]) and §oy-tr+0/rfUr(y)dy < oo imply X(¢) is sample-continuous.
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Taking expectations and using (2.3),

(2-4) E(X(1) — X(9)) = k Z5-uf(lt — s1/k)
= (|t — s|/k) .
Since (2.4) holds for all k > 1,
(2.5) E(X(t) — X(s))* < inf, .y K’f(|t — s|/k) .
Ifue[0,¢]and yissuch that k <y < k 4+ 1, ke N, then
(2.6) Wfuly) z 4 flu/(k + 1)) = 4Kf(u/(k + 1))
Z (k + 1f(u/(k + 1)) .
Hence, using (2.5) and (2.6),
E(X(1) — X(s)) = infien k(|1 — s]/k)
2.7 < 4infye, yA(r — sly)
’ = 4f(lt — s) . 0
The virtue of the above theorem over the one in Hahn (1975) is that (2.2)
may be satisfied even though {,y~#f#(y) dy = oo (see Section 5). The examples
to be constructed in Section 4 will show that, under the given hypothesis,
Theorem 1 provides an optimal sufficient condition for sample-continuity.

For applications the following corollary may be more useful because the
conditions involve the given function f somewhat more directly.

COROLLARY 2. Let f be a nonnegative function which is nondecreasing on [0, ¢].
Suppose that either

(2.8) Yoy ifi(y)dy < o
or -
(2.9) lim inf,_, y=*(y) < oo .

If {X(1), t € [0, 1]} is a stochastic process with
E(X(1) — X(5))* = f(lt = s0) » t—sl=e,
then X(t) is sample-continuous.

Proor. Since f(s) < f(s) for all s, condition (2.8) implies condition (2.2),
hence sample-continuity of X(#).

Assume (2.9). Since f(y) < f(y), f satisfies condition (2.9) also. An important
property of f to be used here and later is:

(2.10) () is nonincreasing on (0, ¢] .
Suppose not, then there exists ¢ > 1 and 0 < y, < y, < ¢ such that

yz_if(}’z) > cyl_if(yl) .
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By the construction of f, there exists 1 < y < oo such that

() 2 Yfnly) = yFal(yyaly)) Z aly) () -
This gives the desired contradiction.
Using (2.10) and the fact that f satisfies (2.9), we see that V() 1C < ooas
y 1 0. Thus, f(x) < Cx’ for all x, and condition (2.2) is satisfied. []
Note that by change of variables, (2.2) is equivalent to

(2.11) §Fey tf(1fy)dy < oo .

3. Properties of f. In order that Theorem 1 be best possible it is necessary
that f distills essentially all of the information regarding E(X(f) — X(s))* given
by f. The obvious candidate is not /> but the function f* defined by

[H) = inf{n 35, f(t): it =y, 20,n 2 1}
because f* is the smallest function determined by f which is guaranteed to
upper bound E(X(r) — X(s))*. To see this note that for any y > 0and 0 = ¢, <
H< ... <t,suchthat 37 1, =y,
(X(s ) — X(9))* = (X5 (X(s + Tioot) — X(s + iz 1))
S X5 (X + Xiat) — X6 + Zizn)
Taking expectations, E(X(s + y) — X(s))* < n 3", f(t;). Hence taking the in-
fimum over all n and all appropriate s, -
E(X(s + y) — X(5)) < [*() -

In order that f* result in an improvement over condition (2.2) it is necessary
that {y: f*(y) < f(y)} be nonempty. This is not the case, however, as the
following argument indicates: Take any y and writeitasy = »"_ ¢, t; = 0.

n 25 ft) = n 0% f(t)
Z n L= (LYY f(y) by (2.10)

= () i (:,. -t l)z

h

=y f(y) Dt ((’j - %)2 +2 <t" - %) % + (7)2)
= my~f(y) <y"’"‘1 + Z?‘ﬂ (’f - ‘,y,‘>>
= f(y).

Moreover, f itself cannot be improved by again applying _ or *. To see that
f is stable under these operations let g = f It is obvious that g = g, and we
‘also have the inequalities g = g < g* < ¢.

The main reason Theorem 1 improves (1.2) is because [ is more cons1stent
than f in reflecting the magnitude of E(X(r) — X(s))* as ¢ and s vary. For
example, we know that E(X(f) — X(s))* < f(|t — s|). This gives us information

<
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regarding the magnitude of d = E(X(2f) — X(2s))>. Specifically, d < 4f(lt — s]).
Thus if (2|t — s|) > 4f(|t — s|) then f is forgetting some of the information it
has previously given us regarding how large d could be. Observe that f does
not suffer from this flaw since f(2|t — s|) < 4f(|t — 4|). )

Since f will be used to construct the examples of Section 4 we list here three
properties that will be needed:

If f isa nonnegative, nondecreasing functionon [0, 1]
which is continuous at 0 with value 0 then
3.1 (1) H(x) = x*f(1/x) is nondecreasing on [1, co];
(2) H(x) is continuous [1, o0);
(3) f(x) is continuous on [0, 1].

In (2.10) it was shown that y~*f(y) is nonincreasing on (0, 1] so the change of
variables x = y~* implies that x*(1/x) is nondecreasing on [1, co).

Since H(x) is nondecreasing its discontinuities must consist solely of upward
jumps. Being the product of two functions neither of which has upward jumps,
H(x) is continuous.

f(x) = x*H(1/x) being the product of continuous functions is thus continuous
on [0, 1]. By construction f(0) = f(0) = 0. Since 0 < f(x) < f(x) which tends
to 0 as x goes to 0, f is continuous at 0. -

4. Construction of the examples. Let f be a nonnegative function which is
nondecreasing on [0, ¢] and such that f does not satisfy (2.2). The aim of this
section is to construct a discontinuous process X(¢, w) on [0, 1] X [0, 1] such that

E(X(t) — X)) < (1 — sI) -5 <.

Since the behavior of f(x), hence f(x), does not matter for x > ¢, we may
assume that f is nondecreasing on [0, 1] and that f(1) = 1. We assert that it
suffices to assume f is continuous and has value 0 at x = 0; whence, of course,
f has the same property. For if this is not the case there exists a > 0 such that
lim,_g+ f(x) = a. Therefore f(x) = a for x € (0, ¢]. Hence it suffices to construct
a process for A(x) = ax/e.

Let X(, w) be a real-valued stochastic process defined on [0, 1] X [0, 1] such
that for each ¢

4.1) X(1, w) = (22)t7)™" Y421 by cOs 27k(t — ), O<|t—ol <1
=0, t —w| =0 or 1
where the sequence {b,} will be constructed to have the following properties:
(1) b, = b,y
(4.2) (2) Ziarbp = o0

() Zia kbl + P Xiasn 04 = JF1/));
(4) kb, is bounded.
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For a monotonically decreasing sequence {b,} the series in (4.1) converges
and is continuous for 0 < |t — w| < 1 (Zygmund (1959), pages 4, 184), insuring
the existence of X(¢, ).

Properties (1), (2) and (4), together with the following lemma show that
X(t, w)isdiscontinuous at # =  and possesses no finite-valued continuous version.

Lemma 3. Let h(x) = 37, ¢, cos kx, where c, decreases to 0. Then for
n 4 1) < |x| < Un,
(4'3) h(X) = a, ZZ=1 clc 'I' ‘ancn
where } < a, < 1 and |B,| < 10. Hence, if nc, is bounded and 3., ¢, = oo, then
lim,_, A(x) = oco.

Proor. Since A(x) is an even function we may suppose 1/(n + 1) < x < 1/n.
Let D, = 0 and for k > 1 let D, = Y}%_, cos jx. Classical arguments show that
.2t
|D,| < min {k, _2__2_} < min {k, 5n}.

x

Now choosing N » n and summing by parts,
S ccoskx = N ¢ o8 kx + ey Dy + 250 (¢ — )i — Cuia Dy

The first term equals a, > %, ¢, where 4 < a, < 1 since § < cos kx < 1. For
k = n, |D,| < 5n, so the last two terms are in absolute value each < 5nc, and
the second term goes to 0 as N — oco. Hence, letting N — oo,

h(x) = Yo ¢, cos kx = a, Ty ¢, + Bonc, . 0

The third property will be used to show that E(X(r) — X(s))' < f(|t — s)-
Notice that sin®x < min {1, x*}. Soif 1/j< |t —s| = 1/(j — 1) forj= 2, then

E(X(1) — X(5)) = (4n*)™" T4z b)F sin® k|t — 5|
< (4n)H{(t — 97" Dl Kby + Dizsa b’}
(4.4) = ()}t — $)(x/j)* i1 Kb + Zwzinr b’}
< @r)7(IG = DYeJ~" Zia K0 + Tizji 047}
S JH DI kb + P Dazin 7}
< f(1/j) by property (3).

All that remains is the construction of a sequence {b,} satisfying the four
properties in (4.2). Observe that for any sequence {c,} satisfying (4.2)(1)—(3)
we can easily construct a sequence {b,} satisfying (4.2)(1)—(4) by letting
(4.5) b, = cc/ Xk c;

The following lemma contains the basic ideas needed in the construction of

the sequence {c,}:

LemMA 4. If (2.2) does not hold, then there exists a random variable Y with
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values in [1, oo) such that
(@) E(Y Ay) =< y¥(1)y), and
(b) §ey HP(Y Z y)tdy = co.

Proor. Let Z denote a random variable such that for y = 1

(4.6) P(Z > y) = f(1]y) .

This is possible since f is continuous, monotone, f(0) = 0 and f(1) = 1.

Construct a sequen—ce of real numbers by letting #, = 1 and for n > 1 let
(4.7) t, =sup{x: H(x*) = x*P(Z > x*) < 4"}.

Since H is a continuous nondecreasing function, (3.1)(1)—(2), H(t,’) = 4.
Moreover, t,,, = 2%,, because if one takes any C such that 7, < C < 2¥t,

C'P(Z > C?) < C*P(Z > (C[2))
= 4(C[24*P(Z > (C[2}))
< 4H() by (3.1)(1)
— 41,

Let Y denote a nonnegative random variable such that

Hence, t,,, = C. Since C is arbitrary, ¢,,, = 24,.

(1) t!P(Y >t} =42,
(4.8) (2) for 12=<y<2t}? let
P(Y > y) = P(Y > t,5)(28," — y)[t," + P(Y > 65,)(y — L)/t .
Notice that for all 2¢,2 <y < 12,,.
P(Y >y)=PY >12,).

In order to prove that Y is a random variable note that 4*~%*,~* = P(Z > t,%)/16
is nonincreasing and tends to 0 as n increases.
Fort!'<y < i

E(Y ANy =2 xP(Y > x)dx
22

L+ 2 3 (P > 0 dx 4 {5 xK(Y > 9 d)
i-1 -

-1
L+ 255 (P(Y > 65385, + 1*P(Y > 17%))

1+3P(Y > 1)+ 435t P(Y >t + 5, P(Y > 13,,)
=14 %+ 21,47 4+ 4

<4 for n=>1.

IA

(4.9)

A

So for 1,2 < y < 12,,, using (4.9) and (3.1)(1),
EY Ny) <4 =1'PZ > 1,7) S y'P(Z > ).
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Hence, for all y > 1,
(4.10) EY ANy < yP(Z > ),
verifying (a).
Continuing with (b),
STy P(Y Z y)tdy = (7 (P(Y = w*))tdu
= xS (P(Y > w?)t du
= Zoa (t, — L)(P(Y > t,h)t
= (1 —1/2%) Zoo, t(P(Y > t,7))
= (1 — 1724 3= 1,722
(4.11) = (1 = 1729272 30, 6,7 (tn, f(53))
2 (1 — 12927 T, B, fH)(0 ™ — ik
= (1= 12927 B2 Sians LGy dy
> (1 — 12027 S, Vs S
since  H(x) increz;ises
= (1= 17282723 f(y~*) dy
= (1 — 1224 §a x ¥ fH(x) dx = oo . 0
We also need the following inequality whose proof can be found in Jain and

Marcus ((1973), page 275).

Boas’ inequality. Let h, = ) ;,, e where e; is a nonnegative nonincreasing
sequence. Then

(4.12) ZamnhES23 06,
The two series in Boas’ inequality actually converge and diverge together.
To see this note that

2ikz1€ = Dkz1 Dimzk M ey
(4.13) < Deat bt (Dmee m?)}
< 24 Dl kit

The sequence {c,} can now be obtained as follows:

Set a, = (P(Y = n))}, then a, decreases and by Lemma 4(b) }; a,/nt = co.
Let {g,’} be the largest convex minorant of {a,’}. A simple argument (e.g., Jain
and Marcus ((1973), page 294) shows'that }; g,/n? = oo also. Set ¢’ =g9,’ —
g3.,. By convexity of {g,’}, ¢, decreases. Using Boas’ inequality, }; ¢, = co.
Finally, :

Thia kel + P Xizin el
(4.14) =3 Rk—1)g < i, 2k — a2 < 3i, 2§, xP(Y = x)dx
= E(Y A j)* < j*(1]j) by Lemma 4(a),

thus {c,} satisfies (5.2)(1)—(3) as desired.
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Hence we have proven the following:

THEOREM 5. If f is a nonnegative function which is nondecreasing on [0, ¢] and
such that

Yoy ifi(y)dy = oo,

there exists a stochastic process {X(t), t € [0, 1]} with discontinuous sample paths
and no real-valued continuous version satisfying

E(X(t) — X(9) < f(Jt — ) -5 <.

5. An example to show that Theorem 1 is an improvement over those in
Hahn (1975). One of the essential features of the class of counterexamples con-
structed in Section 4 is the existence of a sequence {6,} which is not in /' but
such that

(5.1) D=1 Kb + J' Yz 0 = Ff(1)) for all ;.
In particular, it is necessary that
(5.2) i kb < jz_f(l/j) for all j.

It is the failure of the existence of such a sequence when lim inf,_, x~%(x) < oo
which originally led to the formulation of condition (2.9) and hence ultimately
to Theorem 1.

PROPOSITION 6. There exists a monotone function f such that

(5.3) Loy ifi(y)dy = o
but
(54) Loy ifi(y)dy < co.

Proor. Letn, = 1, n,,, = [e™n,] 4 1 for k = 1 where[ ]denotes the integral
part. Define a; = (jn,)~ for n, < j < m,,,. The sequence {a,} is not in [* since
D8, = Niam! Z?’éﬁk—l 7

(5.5) = Diamt (et xdx
= it 1og (nyya/my)
= Nrantlogem = co

Let

(5.6) () = Zeas, k21

and define f(x) to be linear in between.
By the computations in (4.13) we obtain

Yoy 4 (y) dy
= (T fA(10) dv Z Fiaa k74 H(LK) Z 270Dz e — A1)

= 00 .
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In order to verify (5.4) it suffices, by the proof of Corollary 2, to show that
lim inf,_ x~f(x) < oo. This is easy to see since

nf(1/m,) = n;? 2ijzn, a
=t Yea, (Jm)™?
= max dx

which tends to 0 as k — co. []

Since a large number of the functions f which arise in applications are convex,
we remark that the function f constructed in Proposition 6 is convex. This
shows that condition (2.2) is necessary even under more stringent hypotheses
about the function f.
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