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SLOWING DOWN. d-DIMENSIONAL RANDOM WALKS

By K. BRUCE ERICKSON
University of Washington
If {S.} is a genuinely d-dimensional random walk and d = 3, then

with probability 1, n-2|S,| — co as n— oo for every a < 4. This follows
from a recent result of H. Kesten. In this paper we show that, under
certain conditions, there is a constant ao depending on the walk, but 4 —
l/d < as < §, and a deterministic sequence of vectors {v,} such that
lim inf, n~%|S, — v,| = 0 with probability 1 for every « = ao. In discrete
time this phenomenon cannot occur for any a < § — 1/d; in continuous
time it can occﬁr for any a > 0.

1. Introduction. Let {S,} be a random walk in R¢, i.e., S,=0, S, =
X, 4+ -+ X,, n =1, where X, X,, ... are i.i.d. random vectors in R?. Let
¢:[1, co] — (0, o) be a function satisfying r~¥¢(s) | 0 as t — co. If d > 3 and
{S.} is genuinely d-dimensional, then w.p.1 (with probability one)

(1.1) d(n)~S,| — oo as n— oo
whenever
(1.2) (2P0 dt < oo .

This remarkable fact was first established by Erdos and Dvoretsky (1951) (see
also Ito-McKean (1965) page 164) for the case where {S,} is a simple random
walk and, equivalently, for the case where {S,} is a Brownian motion in R? (in
which case n is a continuous time parameter). For these two important special
cases, divergence of (1.2) entails

liminf, ., ¢(n)7YS,| < o w.p. 1.

A result of Erickson (1976), Theorem 7 and Corollaries 1 and 2, implies (1.1)
under (1.2) when {S,} is in a domain of attraction of a nonsingular stable law
in R?. (Erickson imposes some extra, unnecessary for (1.1), regularity con-
ditions on ¢ and the step distribution of the walk.) His result generalizes and
extends those of Erdds-Dvoretsky and some analogous results of Takeuchi
(1964) and others on rates of escape of stable processes in R? (see also Fristedt
(1974), page 365). The complete result that (1.2) imples (1.1) for any genuinely
d-dimensional random walk, d > 3, was only recently established by H. Kesten
(1977). His theorem makes precise the intuitive notion that simple random
walk and Brownian motion escape to infinity more slowly than any other
random walk. It should be noted that when ¢(n) = 1 for all n, then (1.1)
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646 K. BRUCE ERICKSON

reduces to the well-known fact that all genuinely d-dimensional random walks
are transient if d > 3 (see Feller (1971) page 616 for the standard proof of this).
From (1.1)—(1.2) one may easily show that

(1.3) liminf n=%|S,| = co  w.p. 1

for every a < %, d = 3. In light of this it is of some interest to find that under
certain circumstances the left-hand side of (1.3) becomes finite for a small
interval of values of « < % when S, is replaced by S,’ = S, — v, where {v,} is
a deterministic sequence of vectors. The purpose of this paper is to clarify this
fact. .

I wish to thank Professors Kesten and Blumenthal for some useful and stimu-
lating discussions of the problem of rates of escape of random walks and other
Markov processes. Professor Kesten had earlier noticed a related slowing down
phenomenon in the case of simple random walk.

2. Statement of results. AsaboveweletS, = X, + .- 4 X,,n = 1, where
X,, X,, - -+, is a sequence of independent identically distributed random varia-
bles with values in R, real Euclidean space of d-dimensions. Let F be the
common distribution of the X,. We say that the walk {S,} is genuinely d-
dimensional if F is not concentrated on a d — 1 dimensional hyperplane. (A
hyperplane is a set of the form {v e R*: (v, B) = ¢} where B is a given nonzero
vector, ¢ a given real constant, and (., «) is the usual inner product.) The
walk is simple if F assigns mass (2d)~! to each of the 2d points e, —e,, - -, ¢,
—e,, e, = ith unit coordinate vector in R%. For any vector v = (v(1), v(2), .- -,
v(d)) € R* put

[v] = max {{p(1)], [0(2)], - - -, [v(d)]} -

THEOREM 1. Assume d = 3 and that {S,} is genuinely d-dimensional.
(i) For any a satisfying

2.1 a<lt——

we have, for any deterministic sequence {u,} in R?,

(2.2) liminf n=%|S, — u,| = 0o w.p. 1.
(ii) Suppose that for some § < 1 and b < oo

(2.3) lim inf P{n=#|S,| < b} > 0,
then for any « satisfying
2.4) f— o =a<p

there exists a deterministic sequence of vectors {v,} such that |v,| = O(nf) and

(2.5) lim inf n=%|S, — v, = 0 w.p. 1.
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CoRrOLLARY. If EX, =0 (= the O vector) and if the covariance matrix
(EX\()X:()))i,5=1,....a €xists and is nonsingular, then there exists a deterministic

sequence Vy, V,, - - such that |v,| = O(nt) and for any a satisfying L — 1/d <
a< 3
(2.6) liminf n~¢|S, — v, =0 w.p.1.

REMARKS. 1. Under the assumptions of the corollary, one also gets
lim sup n=%|S, — v,| = co w.p.1 forany a < } and any deterministic v, = O(n?).
To see this note that Law (n~3S,) — G where G is a nonsingular Gaussian distri-
bution. Hence, putting C, = sup, (n*~*4 + n~#v,|) < oo, we get

P{n=*|S, —v,| > 4 i.0.} = limsup P{n=2|S, — v,| > A}
= lim P{n~#|S,| > C,} =G{x:|x| >C,} >0.
Consequently lim sup n=¢|S,, — v,| > 4 w.p.1 for every A4 > 0 by the 0—1 laws.

2. The corollary is a good example of the fact that the means are not always
the best centering constants: setting v, = 0 = ES, on the left in (2.6) would give
co on the right by (1.3).

3. In view of (1.3) it is clear that (2.5) is of interest only when we can take
d=3, a <} Also a concentration function argument shows that (2.3) is
impossible for 8 < 4. Thus §is limited to £ < 8 < 5.

3. Proof of Theorem 1. Part i) of Theorem 1 is proved in Erickson (1976)
(see Remark 7 in Section 5), so we only prove ii).

Assume d = 3 and that (2.3) holds for some Se [}, 1]. If we can find {v,}
satisfying (2.5) in the case « = 8 — 1/d, then clearly the same {v,} works for all
larger @. So throughout this section

1
a = _—
P d
Since (2.3) holds we may choose a finite ¢, > 1 so large that for some d, > 0
and alln > 1
3.1 P{n~t|S,| < ¢} = 0.

We will first show that for all integers p sufficiently large there is a deterministic
sequence of vectors {y,*}, depending on p, such that

(3.2) P{n=%|S, — y./| < p7'¢,2% i.0.} =1,
“i.0.” = “infinitely often”), and
(3.3) Vaf = O(nf) uniformly in o .

Write D = 2% and partition the closed hypercube [—c,Df+b, ¢ Dk+D]E —
{xeR?: |x| < ¢, DF*+Y into
r, = p’D*

subcubes C, ,, .- -, C,, With centers U, ,, - -, U, Each subcube has side
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length L, where

Lk — ZCODﬁ(k+1)rk—1/d — 2p-1c0Dak+p .
Thus C;, = {xe R*: |x — U,| < 4L,}. Bring in a sequence {Y,}, n=1,2, ...,
of totally independent random variables in R? independent of the walk {S.}
(but defined on the same sample space) and which satisfy

PlY, = U} = 1/,
for k=1,2,...,i=1,2, ..., 1, ne(D* D*]. (When appropriate, (a, 8]
denotes only the integers in (a, b].) Let '
g = p7'¢,DF = p~lc,2% .
We will now prove that for all £ > 1
(3.4) P{|S, — Y,| < gn* for some ne (D*, D*+1]}
= (9, — $D%%)(D — 1)o~* .
To see this we note first that e,n* > ¢, D** = 1L, for ne (D*, D¥*'], so if we
write
B, = {IS, — Y.| = L.},
we have
P{|S, — Y,| < gn* for some ne (D*, D*+]}
3.5) . . = P{Upk<nzpin B}
g ZD"<7»§D"+1 P(Bn) - ZDk<n1<n2§Dk+1 P(Bnl B'nz) .
By definition of Yn‘and by (3.1) we have
P(B'n) = (I/rk) Z:ﬁl P{IS'n - Ui,kl é lLI':}

Z (Ir)P(UiE (S, — Uiul < 3L))
= (Urn)P{IS,| = ¢, D#*+1}
Z (1/n)P{n~?S,] < ¢}

> 60/rk H
whenever n e (D*, D**']. Hence
(3.6) Zivk<ngpb+1 P(B,) = 0y(D — 1)(D¥[r,) = 6(D — 1)p=2.

Now for any S, € R? at most D = 2¢ of the r, inequalities
ISn—Ui,klé%Lk, i=1’2’...’rk

can hold simultaneously, so, if we let N, denote the number which occur, we
obtain

P(B,,B,) = (1/r)* Lty X5k: PIS,, — Upel < $L4, |S,, — Ujul < 3Ly}
= (1/n)E(N,,N,) < D*Jr’
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and hence
(3'7) ZD"<%1<'»2§D"7+1 P(Bnanz) = J‘D3(D - I)P_zd .
Clearly (3.5)—(3.7) give us (3.4).

From (3.3) we see immediately that if

0 > (D20, = p,
then
P{n=*|S, — Y,| < ¢, i.0.}
= liminf, P{|S, — Y,| < ¢n* for some ne.(D*, D¥+']}
>0.
Consequently by Kolmogorov’s 0—1 law for tail events (Feller (1971), page
124)
(3.8) P{n=S, —Y,|Z¢ i0o}=1.
For any event 4 on the process {S,, Y, }»_,,

P(A) = §iyyea P(AI{Y.) = {3.) dP({3.))

where Q c R? X R® X --- is the range of the process {Y,} and P is the proba-
bility induced on Q by the Law ({Y,}). It follows from this and (3.8) that for
P-almost all sequences {y,} € Q we have

(3.9) Plne|S, — Y,| < ¢ i.0.|Y, =y, Yy =p5 -} = L.

But the two processes {S,} and {Y,} are independent, so we also have for /-
almost all {y,}

(3.10) Law ({S, — Y, }| Y=y, Yo =, -++) = Law ({S, — y.}) -

Now let {y,} be a fixed sequence of constants in R? for which both (3.9) and
(3.10) hold. Then

P{n_al‘sn - ynl é & i.O.} =1 ,

which is exactly (3.2). For this sequence {y,}, note that when ne [D*, D**+']
the vector y,, one of the r, possible values of Y,, is a point in the hypercube
[_con(k+1)’ coDﬁ(k+1)]d, o)

n=fly,| < n~fc,DFFD < ¢ DF = ¢,2%

and thus (3.3) also holds.

It is now a simple matter to complete the proof of Theorem 1. Assume that
(nonrandom) y,” have been chosen to satisfy (3.2)—(3.3). There is no loss in
generality if we suppose (3.2) holds for each p = 1. Now (3.2) is equivalent
to lim,_, P{n~%|S, — y,’| < ¢,/p for some ne (¢, r]} = 1 for every + = 1 where
¢, = 2%c,. Choose inductively a sequence of integers 1, < t, < - - - as follows.
Choose ¢, = 1 and, after the integers ., ¢,, - - -, #,_, have been chosen, choose
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t, = 1 41, to satisfy
P{~n-°‘|S,, —f £ 1 for some ne (2,15 tp]} =1 _1_
P P
We now define a sequence {v,}, which will satisfy (2.5), by
Vo = 28c1 VLo, _e0(n) = 3, for 1, <n<t,, o=12,....

Clearly v, = O(n®) by (3.3). That (2.5) holds can be seen as follows. Let ¢ >0
be fixed but arbitrary. For any p > ¢,/e we have alle + 1) < e, so

P{n=¢|S, —v,| < ¢ for some n >t}

=P {n—“|Sn — < % for some ne (#,» tpH]}
o+ 1

II

Consequently
P{lim inf n~¢|S, — v,| < ¢}
= lim,_, P{n~*|S, — v,| < ¢ for some n > 1)

=1.
Since ¢ > 0 is arbitrary, (2.5) follows and the proof of Theorem 1 is done.

4. Slowing down Brownian motion. Let {Z:}ie 10,y b€ d-dimensional Brownian
motion. By a method very similar to that used in the proof of Theorem 1 (with
B = %), one may prove that for every a ¢ (0, )

4.1 liminf, , t7%|Z, —v,| =0 w.p. 1

for some deterministic function v, e R* which depends on « and is continuous
in z. There is no need to restrict to @ > £ — 1/d. The proof is sketched blow.

Since {Z,} with ¢ restricted to the multiples of a given ¢ > 0 is a random
walk, it would seem that (4.1) contradicts (2.2). However, the only conclusion
(2.2) allows is that for each 6 > 0 and a < 3 — 1/d,

4.2) lim, n~*|Z,; — U,| = 0 w.p. 1.

There are uncountably many null events, one for each § > 0, on which 4.2)
fails. These null events may, indeed do, add up to a nonnull event. So there
is no contradiction. ,

Here, briefly, is how to prove (4.1). In what follows d,, d,, ¢, ¢,, Cpy Cgy = v v
are appropriate finite positive constants (independent of k and 1); their ap-
propriate values are to be determined by the reader. Let P{|Z,| < cott} = 9,
for all #. Let y € (0, $) be fixed and pick D > 1 so that D+-7 is an integer. Put
A = D'-¢4-1 and let T, be the set of time points D* + jAk, j=1,2, ... ¢,
where g, = (D**' — D¥/(D — 1)A* = D¥-vk, Put T = |J=, T,. Note that T
is asymptotically dense in [0, oo) if and only if y < 4 — 1/d. Partition [—c, D*2,
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¢, D¥]* into r, subcubes with centers u,,, - - -, #,,_;, and side length L,, where
r, = ¢,D*¢~1* and L, = ¢,D™. Bring in independent vectors {Y,};.,, as in the
proof of Theorem 1, so that P{Y, =u,,} = 1/r, i=1,.-.,1, teT, k=1,
2, ... Then P{t-7|Z, — Y,| < ¢, for some te T,} = 9, > 0, d, independent of
k, provided all the constants are chosen correctly. This leads, as in the proof
of Theorem 1, to a deterministic sequence {v,},c, so that liminf,_ ., t77|Z, —
v < co w.p. 1 and then liminf, ., #7%|Z, — v,| = 0 w.p. 1 for any &« > 7.
To get a continuous v simply interpolate v, linearly between consecutive points
of T.
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