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INEQUALITIES FOR CONDITIONED NORMAL
APPROXIMATIONS

By D. LANDERs AND L. ROGGE
University of Cologne and University of Konstanz

Let X, be a sequence of i.i.d. random variables with mean 0 and vari-
ance 1. Let Sy* =n-t 3"_, X,. We investigate in this paper the conver-
gence order in conditioned central limit theorems, that Is, the convergence
order of sup;e g |[P(Sy* < t|B) — ¢(2)|.

1. Introduction and notations. Let (Q, 7, P) be a probability space and X, :
Q->R,neN, bea sequence of independent and identically distributed (i.i.d.)
random variables with mean 0 and variance 1. Let S, ¥ =n"tyr_ X,

The conditioned central limit theorem of Rényi [2] states that

a,(B) = sup,.y |P(S,* < t|B) — D) — 0 as n— oo

for all Be & with P(B) > 0.

For B = Q the theorem of Berry—Esseen yields that nia,(Q) is bounded. It
would be worthwhile to determine a sequence d, — co—and if possible the
“best”—such that 4, a,(B) is bounded for each B ¢ .% with P(B) > 0. Unfortu-
nately it turns out (see Example 1) that no sequence of i.i.d. random variables
admits such a sequence 9, — oo, i.e., each rate of convergence for a,(B) can be
destroyed by a suitable B e .97, Therefore only convergence rates depending on
the set B are available. We prove an inequality for conditioned sums which
yields the following corollaries:

(i) A uniform inequality:
3
(B S e PE) (L) Bes = o, Xy, rz2
n

which can be applied to obtain general limit theorems as well as convergence
rates for a,(B), even for sets B varying with ne N. (c, is an appropriate con-
stant only depending on r.)

(ii) A result on convergence a.e.:

n b N
(k(n) log log k(n)) SUpP;eg |P(S,* < t|~/07k(m) — (D(t)l

is P-a.e. bounded if the sequence k(n) fulfills the condition k(r) log log k(n)/n — 0
as n — oo.
(iii) The conditioned central limit theorem of Rényi.

Denote by o(X;,iel) the o-field induced by the random variables X, iel
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Write P(4, ¢) for §, ¢(w)P(dw) and denote by P(¢|.5,) the conditional expec-
tation of ¢ given &, = a(X,, - - -, X,) with respect to P. Denote the g-norm by

llell, = (Plejo)ve.

2. An inequality for the distribution of conditioned sums with applications.
At first we give an example which shows that for each sequence of i.i.d. random
variables and each sequence ¢, — 0 the rate of convergence for

¥(A) = Supreg [P(S,* < 1]4) — $(1)|
is worse than O(e,) for a suitable chosen 4 e 7. The rate of convergence can

even be destroyed for a single e R.

EXAMPLE 1. Let X, X, --. be i.i.d. with P(X,) = 0 and P(X,’) = 1. We
construct for each sequence ¢, — 0 as n — oo a set A ¢ (X, : k € N) with

* |P(S,* < 0|4) — $(0)| = ¢,
for infinitely many n.

ProoF. W.l.o.g. we assume P(X; = 0) = { and { >¢,| 0. Now we con-
struct inductively d(n), k(n) e N and 4, € o(X,: k € N) with k(n) < k(n + 1),
d(n) < 6(n + 1) and k(n) = é(n), 4, C A,,, and

(i) P(4,)=4%— €s(m)

(i) P(Si;) < 0,4,) < §— €5y — €m) fOr j < n.

As o(X,: k € N) is countably generated and P(4) = 0 for all atoms A4 of (X, :
keN), P|o(X,: ke N) is a nonatomic measure. Hence there exists according
to the theorem of Ljapunoff a set 4,  {S,* = 0} = {X, = 0} with P(4) =% —
¢;. Take 6(1) = k(1) = 1, then (i) and (ii) are fulfilled.

Now assume that k(j), (), 4; are defined for j < n with the desired proper-
ties. According to the theorem of Rényi

P(S,* <0, 4,) - 3P(A4,) = % — Le,, as m—s oo
and ' _ )
P(S,* =2 0,4,) > 4P(4,) =} + Le;, as m-—oco.
Choose d(n + 1) > d(n) with 2¢,,,.,, < &, We can choose consequently
k(n + 1) > max (k(n), d(n)) with
(1) P(SHnin <0, 4,) S § — 26,044
(2) P(Sfny 2 0,4,) 2 §.
By (2) there exists according to the theorem of Ljapunoff a set B, € o(X,: k € N)
with
(3) Bn c {S;ck(n+1) ; 0} n A-n

(4) P(B,) = &;a) — €5n11) +

Define A4,,,, = 4, + B,, then P(4,,,) = P(4,) + P(B,) = % — €341y 1-€., (1) is
fulfilled for n 4 1.
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From (1) and (3) we obtain

P(S}i1) < 0, Ayp) = P(SFnin < 0, 4,) =%} — 2¢50n41)

27 &) — Co(nty s

i.e., (ii) is fulfilled for j = n + 1.
Furthermore we obtain for j < n from (4) and the inductive assumption

P(S;ck(j) < Oa A‘Ib+1) é P(S;:(j) < 0’ A‘n) + P(B'ﬂ)
< 1

= Sy T Camy T Camy — Eaiman)
i.e., (ii) is fulfilled for j < n.
This concludes the inductive construction.
Let A=z, 4, ¢ 0(X,: ke N). Then according to (i) we have P(4) = 1.
According to (ii) we have for all JjeN:

ry
1 _ ¢, —¢
ry 8(5) 3(n+1) o

P(Si; <0, A =<i-— €h
and hence
#(0) — P(S;cku) < OlA) = zed(j) = 2€k(j) .
This proves (+).

From the following theorem we get our corollaries. Especially we get an
inequality for a,(B).

THEOREM 1. Ler X, X,, - .. be i.i.d. with P(X,) = 0 and P(X,?) = 1. Define
F=0X, X, -, X)), S,* =n"tYr_ X, and F. (1) = P{S,* < t}. Then for
k < n we have P-a.e.:

SUPcp [P(S,* <. 1| ) — ¢(1)| o
= SUpie 1P = 601 + )¢ (5 ) iy
k

8me)~t .
+ (87e) p—

Proor. (i) Since X, ..., X, are i.i.d. the function

@ Fas ((n f k)ét B (n f k)%S,,*(w)>

is a version of the conditional expectation P(S,* < t|.&,).
(i) We have ‘

(2 = (5) 80) - 90
Foes ((n = k)it B (n f k)g S"*) —7 ((n = k)it B (n f k)is"*)
H(G2) - L)' se) - s0)

sup,

< sup,

+ sup,
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= sup, |F,_(1) — ¢()|
woup o () 1= ) s ) — o (G2) )
+aups ()" 0) - 90)

< sup, [F,oi(t) — (0] + (27) ¢

k

n —

n—k

3
k) IS,%| + (8ze)~*

where the last inequality follows, since

[p(u —v) — p()| = 2r)7*], w,veR

() ) - w00 = @ () - )

and

Now (i) and (ii) imply the assertion.

CorROLLARY 1. Let X, X,, --- be i.id. with P(X,) =0, P(X;’) =1 and
P(|X,|?) < oo for some q = 3. Then for each r with 2 < r < q there exists a con-
stant ¢, such that for all Be &, = o(X,, - -, X;;) with P(B) > 0

Sup,x [P(S.* < 1]B) — @) = ,(PB) ™ (X'

Proor. Let w.l.o.g. kK < (n/2). We have according to the Holder inequality
sup, [P(S,* < 1, B) — ®()P(B)|

= sup, [P([P(S,* < 1]F3) — @()]15)]

< P(B)'=" sup, P(IP(S,* < t| ) — @)
Hence it suffices to prove

k\t

() lsup, [P, < 1|5 — 90l S e () -
Since sup,.y ||S;*||. < co according to Doob [1], page 225, (*) follows from
Theorem 1 using the triangle inequality and the theorem of Berry-Esseen.

REMARK. It is not possible to obtain in Corollary 1 an inequality of the form
3

(*) sup, [P(S,* < 11B) — ®()| = d(%)
where d is a constant not depending on Be.% ,: If for instance P(X; < 1) < 1
for all ¢, then lim,__ P(S,* > 0|X; > s) = 1 which contradicts (*).

COROLLARY 2. Let X, X,, - - be i.i.d. with P(X,) = 0 and P(X,’) = 1. Let
k(n) be a sequence of integers with k(n) log log k(n)/n — 0, then

(i fim, .. sup,eg [P(S,* < 1| Fh) — D)) = 0 ass.
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and if P(|X,|*) < oo, then

(&) (k(n) fog fog K(7) ) SUPee IP(S,* < 1] F i) — D)

is a.s. bounded.
PRrOOF. (i) Since k(n)/n — 0, the central limit theorem implies
limln—»oo Supt |F'n—k('r‘)(t) - ¢(t)| =0.
Since k() log log k(n)/n — 0, the law of the iterated logarithm implies

(2m) (K

3
—7 ) |S¥, 0 a.s.
) 1Sl

The assertion follows now from Theorem 1.
(ii) Since k(n)/n — 0, the theorem of Berry-Esseen implies

n % n LI
<k(n) log log k(n)) SUPe [Focion (1) — 9] = C(k(n) og log k(n)> -

Since k(n) log log k(n)/n — 0, the law of the iterated logarithm implies that

" Famyr (k) Vg s .
<k(n) log log k(n)) (2m) é<,,—_7;(,§> IS:*| = c(log log k(r))~4|S,*|

is a.s. bounded.
The assertion follows now from Theorem 1.
We also obtain as a corollary the conditioned central limit theorem of Rényi

(see [2]).
CoOROLLARY 3. Let X, X;, - - be i.i.d. with P(X,) = 0 and P(X,?) = 1. Let
Be &7 be a set with P(B) > 0, then

lim, ., P(S,* < t|B) = ¢(?) .
Proor. Let & = (X, : ne N). There exist % ,-measurable functions ¢,
with 0 < ¢, < 1 and ‘
limln—»oo P(|P(B|ﬂ-oo) - $0%|) = 0 *

Let ¢ > 0 be given there exists k ¢ N with

P(P(B|-5) — ¢l < .
Using Theorem 1 we obtain therefore '
|P(S,* < 1, B) — ¢(1)P(B)|

= |P(S,* <1, P(B| ) — P(S,* < t, 9,)]
+ [P(S,* < 1, 0) — $(O)P(¢y)| + |9(1)(P(91) — P(B))]

< ,2_ + P(IP(S,* < 1] F) — ¢(D)|es)
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< % + 1P(S,* < t| %) — ¢ (D)l

k

e
n—k

< £+ supFu) — $0) + @0 (K)o (smey

n
for sufficiently large n, using the central limit theorem.
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