The Annals of Probability
1977, Vol. 5, No. 4, 586-590
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Let X1, Xz, - - - be independent, identically distributed, nondegenerate
random variables, let w; be a sequence of positive numbers and for n =
1,2, let Sy = X% we Xy and Wy, = 317_; wx. The weak (strong) law
is said to hold for {X%, wi} if and only if S,./W, converges in probability
(almost surely) to a constant. Jamison, Orey and Pruitt (1965) (Z. Wahrsche-
inlichkeitstheorie und Verw. Gebiete 4 40-44) studied conditions related to
these laws of large numbers. In considering the strong law, only distribu-
tions with finite first moments are discussed. However, Theorem 2 of this
paper shows that a sequence of random variables and a sequence of weights
can be chosen so that the strong law holds and so that the random variables
have arbitrarily heavy tails. This result also answers some interesting ques-
tions concerning the weak law.

1. Introduction. Let X, X;, X, --- be a sequence of independent, identically
distributed, nondegenerate random variables, let {w,} be a sequence of positive
numbersand forn =1,2, ... 1let S, = > 7w, X, and W, = %, w,. Jamison,
Orey and Pruitt (1965) considered weak and strong laws of large numbers for
{X:, w,}. The weak (strong) law is said to hold for {X,, w,} if and only if S,/W,
converges in probability (almost surely) to a constant. They have shown that
in order for the weak law to hold the weights must satisfy

1) W, — oo and w,/W,—0 as n— oo

or equivalently, max, .., w,/W, — 0 as n — co. Thfoughout this paper we will
refer to a sequence which satisfies (1) as one which qualifies.

Restricting attention to whose X’s for which E|X| < co, they proved that the
strong law holds whenever the tail probabilities of X and the function

) N(x) = card. {n: W, |w, < x}

grow slowly enough so that a certain integral is finite. (See condition (4) of
this note.) Because of this interaction between N(x) and the tail probabilities
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of X, it is possible for the strong law to hold for {X,, w,} but not for {X,, w,'}
even though {w,’} qualifies. While the classical strong law (w, = 1) is a first
moment result, one might, in view of the last remark, wonder if there is a se-
quence {X,, w,} for which the strong law holds even though the first moment
of X does not exist. We construct an example to show that, given any function
g defined on the nonnegative reals with g(x) — co as x — oo, there isa sequence
of random variables {X,} and a sequence of weights {w,} for which the strong
law holds and Eg(X*) = Eg(X~) = oo. Corollaries 1 and 2 of Chow and Teicher
(1971) also provide examples for which the strong law holds and E|X| = oo but
in both cases lim,_, x"P[|X| = x] = 0 for all 0 < r < 1 which implies that
E|X|" < oo forall 0 < r < 1. However, choosing g(x) = (log x)* in the example
presented here we see that the strong law holds for a sequence {X;, w,} with
E|X|" = oo for all r > 0. It should be noted that there are sequences {X,} for
which the strong law fails for every sequence of weights. One such example is
obtained by letting the X, have a Cauchy distribution.

In the case of the weak law, Jamison et al. have shown that if the weak law
holds for {X,, 1} and if {w,} qualifies then the weak law also holds for {X,, w,}.
One might speculate that if the weak law holds for some qualified sequence of
weights then it holds for all such sequences. However, by choosing g properly,
the example mentioned above also shows that it is possible for the weak law
(and, in fact, the strong law) to hold for {X,, w,} but not for {X,, 1}. So the
examples presented here demonstrate that the classical weights, w, = 1, play a
special role in the weak law of large numbers.

Chapter 4 of Stout (1974) contains a more detailed discussion of the work of
Jamison et al. and Chow and Teicher.

2. Examples. Denoting the distribution function of X by F, we establish the
following result which is Theorem 2 of Jamison et al., modified slightly to allow
for random variables which do not have a first moment.

THEOREM 1. If {w,} qualifies, if

3) o<z X dF(x) — p as T— oo
and if
) § 2§y N(y)y~* dy dF(x) < oo,

then the strong law holds for {X,, w,} and in fact W,~'S, converges almost surely to
e '

Proor. The proof is like that given by Jamison et al. except in showing
W,E(T,) — p. In our case, E(Y,) = E(XI x1<w /w,1) — ¢ by (1) and (3) and so
W, E(T,) — p.

In constructing the examples of this section, it is convenient to obtain the

weights, w,, via the function N(x). (However, it should be noted that the func-
tion N(x) does not uniquely determine a sequence {w,}.) Let {x,} be a strictly
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increasing unbounded sequence of real numbers with x;, = 1, let {r,} be a strictly
increasing sequence of integers with n, = 1 and let N(x) = n, for x, < x < x,,
and k = 1,2, - ... It is possible to construct weights w, so that they correspond
to N(x) according to definition (2) and so that w,/W, — 0 as k — oo (but it may
be the case that W, - co). One way to do this is to set w, = 1, choose w; so
that W;/w; = x, for j = 2, ..., n,, then choose w; so that W;/w; = x, for j =
n, 4+ 1, ..., n, etc.

We note for future reference that given a sequence of weights {w,} with
w,/W,— 0 as k — oo there exist sequences {x,} and {n,} satisfying the conditions
above such that the N(x) corresponding to {w,} satisfies N(x) = n, for x, < x <
X,and k =1,2, -... Next we characterize those functions N(x) which cor-
respond to weights {w,} with W, — co.

PrOPOSITION. Let {w,} be a sequence of positive numbers satisfying w,/W, — 0
and let N(x) be defined by (2), then W, — co if and only if I = (¥ N(x)x~*dx is
infinite.

Proor. We first note that if 7 < oo then N(x)/x — 0 as x — co. This follows
from the inequality {3 N(x)x~?dx = N(M)M~.

With ¢ chosen so that 1 < ¢ < inf,,, W,/w,, we see that

lim,_, log W, — log W, = X7, log (W,/W,_,)
= {5 log (x/(x — 1)) dN(x) .

Integrating (¢ log (x/(x — 1)) dN(x) by parts and observing that log (x/(x — 1)) <
(x — I)~* for x > 1, we see that W, is bounded if / < oo and, on the other
hand, W, — oo if I = oo.

The following is a corollary to our Theorem 1 and contains Theorem 3 of
Jamison et al. as a special case (r = 1). Its proof is like the one they have given
and hence is omitted. We do comment, however, that the proof of the necessity
is based on the following implication: if the strong law holds for {X,, w,} then
EN(|X|) < 0.

COROLLARY. Let 1 < r < 2 and let {w,} be a fixed sequence of weights which
qualifies.  The strong law holds for all X with E|X|" < co if and only if
lim sup, ., N(x)/x" < oo.

It is interesting to note that there are no qualified sequences of weights which
satisfy lim sup, ., N(x)/x” < oo with Q < r < 1. If there were such a sequence
the corresponding integral 7 would be finite, contradicting the proposition.

We now show that sequences {X,, w,} can be constructed so that the strong

law holds and X has arbitrarily heavy tails; that is, we prove the following
result.

THEOREM 2. Let g be a nonnegative function defined for nonnegative real numbers

with g(x) — oo as x — oco. There exists a sequence {X,, w,} for which the strong
law holds and Eg(X*) = Eg(X~) = oo.
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Proor. We construct a function N(x) and a random variable X such that
E[g(X*)] = E[g(X™)] = co. We then obtain our weights from N(x) as in the
discussion preceding our proposition and show that they qualify by arguing that
I = co. Finally we use Theorem 1 to obtain the strong law. Set n, = 1; choose
a, > n; with n)/g(a;) < 1 and then n, an integer with n, > a4, choose a, > n,
with n,/g(a,) < 2-'and then choose an integer n, > a,’; continuing in this fashion

we obtain sequences {n,} and {a,} which for k = 1,2, ... satisfy
(%) a, > Ny, ml9(a,) < k™ and My = a7
Since ny,, > n? for k =1,2, ..., n, — co and nn.., — 0 as k — co. Now
define N(x) by setting N(x) = n, forn, < x < mpandk =1,2,.... We obtain

a sequence of weights {w,} from N(x) using the techniques discussed in the para-
graph preceding the proposition and then use the proposition to show that they
qualify. Since n,/n,,; — 0,1 = Y7 n(n, " — n;l) = 2 (1 — my/ny 1) = oo.

By (5), 9(a,) = kn, = k, and so we can choose ¢ a positive constant so that
P, = c(kg(a,))* satisfies

2P =1, 2i%-19(a)P, = oo and 271 9(@)k TP, < oo .

Let X be a symmetric random variable with P[X = q,] = P,/2. The proof is
completed if we can show that (4) holds for this choice of X and {w.}. Since
n,,;; > n? we note that for k = 1,2, ...,

2k 1y (n, 7 — nl) < 2ivmkr 1, < X (”k+1)_2(v—k_1] < Zvam
= (M — Ht< ny(ny — 1)7'ng,,
and so

§%* § a1 N(y)y=* dy dF(x)
=27 X alPdn (@ — mit) + Mo n(n, ot — nt)}
< i m Py + nmy(n, — 1) T a 2P, Nicix
= 21 9(a)k P, 4 my(ny — 1) Y12 P, < oo .

It has already been noted that if X has a Cauchy distribution then the strong
law does not hold for any sequence of weights. This is, in fact, true for any X
for which liminf, _ xP[|X| = x] > 0 (see Theorem 1 of Chow and Teicher
(1971)). With g(x) = (log x)*, Theorem 2 shows that there exists a sequence
{X.,, w,} for which the strong law holds and E(log |X|)* = co. So in thisexample, |
lim sup, ., x"P[|X| = x] > 0 for each r > 0 but lim inf,__, xP[|X| = x] must be
zero.

Furthermore, Theorem 2 shows that the choice of weights also has an effect
when considering the weak law. Theorem 1 of Jamison et al. states that the
weak law holds for all qualified sequences of weights if and only if (3) and

(6) lim,_,, TP[|X| = T] = 0
hold. This result and Theorem A on page 278 of Loéve (1963) show that with
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the distribution of X fixed the weak law holds for all qualified sequences of
weights if and only if the classical weak law (w, = 1) holds. Using Theorem 2
with g(x) = x” with r < 1, one can obtain a sequence {X,,w,} for which the
weak law (and in fact, the strong law) holds but (6) does not (it is well known
that (6) implies E|X|" < oo for all r < 1) and so the weak law does not hold for
(X, 1}.
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