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TIMID PLAY WHEN LARGE BETS ARE PROFITABLE

By DAVID GILAT* AND WILLIAM SUDDERTH?

University of California, Berkeley and

University of Minnesota, Minneapolis
The total variation of a simple, symmetric random walk with absorb-
ing barrier at zero, is stochastically larger than the total variation of any
other nonnegative, integer-valued supermartingale with the same initial
position. This strengthens a result of David Freedman on the optimality

of timid play for maximizing the time to bankruptcy in certain gambling
situations.

Let S = (S, S,, - - -) be a sequence of random variables and let X, = S, — S,_,
for i = 1. Define the total variation of S by

V(S) = N=, X

To state the main result of this note, associate with every positive integer k
the collection M(k) of all nonnegative, integer-valued supermartingales S which
start at S, = k. Let T(k) be that member of M(k) which corresponds to a simple,
symmetric random walk with absorbing barrier at 0. Recall that a random
variable X is stochastically larger than a random variable Y if PIX=12=
P[Y = ¢] for every real number ¢.

THEOREM 1. When S varies over M(k), the total variation V(S) is stochastically
maximized at S = T(k).

To relate Theorem 1 to a result of Freedman [2], let S be in M(k) and denote
by 7(S) the first time, if ever, at which S reaches 0. The supermartingale S is
said to have no pauses if all its increments are almost surely nonzero prior to

the absorption time z(S). For such an S, ¢(S) is known to be almost surely
finite.

CoroLLARY (Freedman [2]). Let S be in M(k). If S has no pauses, then t(T(k))
is stochastically larger than (S).

ProOF. Observe that z(S) < ¥(S) and conclude from Theorem 1 that V(T(k))
is stochastically larger than 7(S). However, V(T(k)) = (T(k)). O

In gambling terms, Freedman’s result says that for a subfair gambling situa-
tion on the nonnegative integers, timid play stochastically maximizes playing
time. Theorem 1 strengthens this result by asserting that even though large
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bets yield a bigger immediate reward in terms of variation, timid play is still
optimal.

Proor or THEOREM 1. It is convenient to introduce, for each v > 0, the fol-
lowing gambling problem.
On the fortune space F = {(k,¢): k = 0,1, --.; c = 0}, define the utility
function u by
uk,c)=0 c<v
1 e=zv,

and the set T'(k, c) of available gambles at (k, ¢) in F, as the set of all distribu-
tions of (k + X, ¢ 4 |X|), where X is any integer-valued random variable with
nonpositive mean and support in [—k, co). Heuristically, a gambler in state
k with cash ¢, when choosing the lottery X, moves to the new state k 4 X and
his cash becomes ¢ + |X|. The gambler’s goal, as reflected by his utility func-
tion u, is to obtain cash of at least v. How should he play so as to maximize
the probability of reaching his goal? One available strategy is timid play, which
selects at each stage before absorption at 0, the lottery corresponding to the
random variable X which assumes the values + 1 with equal probabilities. The
process T'(k) in M(k) can thus be viewed as the sequence of states of a gambler
with initial state k¥ who plays timidly, while V'(T'(k)) corresponds to the additional
cash accumulated under the timid strategy. Furthermore, every S in M(k) can
be generated, in a similar way, by a strategy available in this gambling problem,
and V(S) will then correspond to the additional cash resulting from this strategy.
Thus Theorem 1 is equivalent to the optimality of timid play for the gambling
problem. To prove this optimality, let

(1) Q(k, ¢) = P[c + V(T(k)) = v]

be the probability of reaching the goal by playing timidly from the initial for-
tune (k, ¢) in F.

Another strategy available to the gambler at the fortune (k, c) consists of
selecting some X at the first stage, and then, from the new position k 4+ X, with
the new cash ¢ 4+ |X|, playing timidly. The probability of attaining the goal
(cash = v) with such a strategy is EQ(k + X, ¢ 4 |X]). If timid play is optimal,
then, clearly,

2) EQ(k + X, ¢ + |X]) < Q(k, ).

Conversely, if (2) holds then, since obviously Q = u, Theorem 2.12.1 of Dubins
and Savage [1] applies to show that timid play is indeed optimal. To prove
Theorem 1, it thus suffices to establish (2) for all (k,c) in F and all integer-
valued random variables X = —k with EX < 0.

The proof of (2) proceeds in two stages. First (2) is reduced to two-valued
X and then it is proved for such X. For the reduction stage, recall that every
distribution with finite mean is an average of two-point distributions with the
same mean. In fact, it follows easily from Freedman [3, Lemma (108), page 68],
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that given a random variable X with finite mean and support in K = {—k,
—k 4+ 1, —k + 2, ---}, there is a sequence, (Xpr=1,2,.--} of two-valued
random variables with support in K and the same mean as X, and a probability
measure g on {1,2, ---} such that,

®) Eg(X) = § Eg(X,) dp(7)

for all bounded, real-valued functions g defined on K. In particular, (3) holds
for all the functions g = g, (k,¢)€F, defined by g(x) = Q(k + x, ¢ + |x]),
xe K. Thus it suffices to prove (2) for two-valued X.

Let, therefore, X be a two-valued random variable with support in K and
EX £ 0. Suppose X = —a with probability « and X = b with the comple-
mentary probability g = 1 — a, where a, b are integers, 0 < a = kand 0 < b.
Since EX <0, a=2>b/(a+b) + 9 and B =af(a+ b)— 0 for some 6 = 0.
Consequently,

EQ(k + X, ¢ + |X|)=aQ(k—a,c+a)+ﬁQ(k-|—b,c+b)
b a
4 , = k—a, k+ b, b
“4) a+bQ( a0+®+a+bQ(+ ¢+ b)
— 6(Q(k 4+ b, c + b) — Q(k — a, ¢ + a)) .

For k, I = 0, almost every path of T(k + I) visits k. Also, the time to reach
k from k + lisat least [. It follows that z(T(k + [)) = V(T(k + 1)) stochastically
majorizes t(T(k)) + | = V(T(k)) + 1. Inparticular, V(T (k + b)) is stochastically
larger than V(T(k — a)) + (a + b). Hence, Q(k + b, ¢ + b) = Q(kk —a,c + a)
and so, by (4),

b a
5 A k—a,c+a
©) a+bQ( +a+
> EQ(k + X, c + |X]) .

Let = be the first time for which the process T(k) reaches either k — a or
k + b and denote by s, the state of the process at time r. Let E, be the event
that s, = k — a and let E, be the event that s, = k + b. Now calculate

Q(k, ¢y = PIV(T(k) = v — c]
= PV(I(s)) 20 — ¢ — 7]

Q(k + b, ¢ + b)

= L PG 20— e =<K
(6) S PVTE) 2 v — e 7| B
z L Pk —a)z0—c—d
+aibpwaw+b»gv_c—m
b a

= Qkk —a,c+a) +

k + b, b).
a+b a+bQ( toeth)
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The first equality is by (1); the second holds because V(T(k)) has the same dis-
tribution as ¢ + V(7(s)); the third is true because s, has the same distribution
ask 4 Y, where Y is the two-valued random variable with mean zero and values
—a and b; the inequality uses the strong Markov property of the process T(k)
together with the facts that ¢ > aon E, and ¢ > b on E,; the final equality is
again by (1). Inequality (2) now follows from (6) and (5). This completes the
proof of Theorem 1.

REMARK. For nonnegative integers k < n, let M, (k) be the collection of all
martingales which start at k and have their values in {0, 1, ..., n}. Theorem 1
and its corollary remain valid if in their statements M(k) is replaced by M, (k)
while at the same time T'(k) is modified so as to be absorbed at » and at 0. In
particular, for S in M, (k), EV(S) < EV(T(k)). This assertion would be false if
supermartingales on the grid {0, 1, .. ., n} were included in M, (k).
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