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APPLICATIONS OF DUALITY TO A CLASS OF
MARKOV PROCESSES!

BY DIANE L. SCHWARTZ
University of Southern California

Let S be a countable set and let & be a Markov process on the subsets
of S. Harris has given criteria for the existence of a dual process £¢* on
the finite subsets of S. By extending Harris’s notion of duality the class
of & which have dual processes is enlarged. The dual processes are then
used to study the ergodic behavior of &;. Also treated is a class of &; which
have growing dual processes.

1. Introduction. In recent work the study of the ergodic behavior of certain
infinite particle systems has been carried out by studying corresponding finite
particle systems (e.g., Liggett (1973), (1974), Spitzer (1974), Holley and Liggett
(1975), Harris (1976), Holley and Stroock (1976), Griffeath (1976)). The situa-
tion can be described as follows. Given countable sets S and Y, let X = {0, 1S
with the product topology, let C(X) be the continuous functions on X with the
sup norm and for each 4 ¢ Y let F, be a real valued bounded continuous func-
tion defined on X. Then given a Markov process &, on X, does there exist a
continuous time Markov process 4, on Y satisfying

(1'1) E[F,¢)] = EA*[FAt(S)]

forall§ e X, Ae Y, t = 0?7 Here we use E(E*) to denote expectation with respect
to £,(4,) and refer to 4, as the dual of &,. If {F,(+)},.y is a determining class
of functions for the process &, then A4, can be used to study &, via (1.1).

We always assume that £, is a strong Markov process corresponding to a
strongly continuous semigroup of contractions on C(X) and further assume that
§, has right continuous paths with left limits. Let % be the infinitesimal gen-
erator of £, and assume that the infinitesimal jump parameters of A4, are g(4, B).
Then we can attempt to solve for ¢(4, B) by taking the derivative with respect
to ¢t of both sides of (1.1) to get for each £ e X and Ae Y

(1.2) SEFL(E) = Dper 9(A, BF () — Fu(6)].

If the resulting g(4, B) are infinitesimal jump parameters for a nonexplosive
Markov chain on Y then E, *[F, (¢)] and E[F,(¢,)] are bounded solutions of

du(t, A) ‘

:’Mu t, A
p (, A)

with initial condition u(0, 4) = F,(€). Since the bounded solutions to this
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differential equation are unique up to given initial conditions it follows that
(1.1) holds.

In order to further specify the problem we now fix the definitions of ¥ and
F,. Let Y={4C S|A is finite}. Identify each & ¢ X with the subset {x e
S|&(x) = 1}andlet F (§) = 1if§ n 4 + @ and 0 otherwise. With these defini-
tions of Y and F,, Harris (1976) develops a formula for g(A4, B) in the sense of
uniquely solving (1.2) subject to the conditions |S| < oo, ¥F, (@) = 0 and
Yizer 9(A, By = 0 for all A€ Y. The formula is g(4, B) = ¢.F ,(B) where

W) = Lec, (=1 v §).

(1.3) THEOREM (Harris). Let S be finite. Then &, has a dual process A, on Y
satisfying (1.1) if and only if ¢.>7'F,(B) = O for all A + B and S7F (@) = O for
all A. The infinitesimal parameters of A, are given by q(A, B) = ¢ 7F ,(B) for
A + B.

The condition %F (@) = 0in (1.3) implies that the empty set is an absorbing
state for £,. That the empty set must be absorbing if &, has a dual process A,
satisfying (1.1) follows from (1.1) and the definition of F,(¢). In order to elimi-
nate the condition %7F, (@) = 0 from Theorem (1.3) welet Y, = Y U {A}, define
Fy(§) = 1 for all £ € X and ask for a Markov chain 4, on Y, satisfying

(1.4) E[F4(E)] = EJf[Fu (9] feX, deY,.

We note that E,[F,(§,)] = P,*[4, = A], and hence the empty set is not neces-
sarily absorbing for §&,. On the other hand the empty set is absorbing for 4, as
is A.

(1.5) THEOREM. Let S be finite. Then &, has a dual process A, on Y, satisfying
(1.4) if and only if .7F,(B) = O for all A+ B, A, Be Y. The infinitesimal pa-
rameters of A, are given by

q(A, B) = ¢.7F (B) A+ B, A,BeY,
q9(4, 8) = F (@) AeY,
9(4,B) =0 BeY,.

The proof of Theorem (1.5) will be given in Section 2 along with an extension
to the case where S is infinite. Applications of these results to the ergodic theory
of certain infinite particle processes are also given. In Section 3 we show how
to relax the hypothesis in Theorem (1.5) that ¢.%/F ,(B) = 0 for all 4 + B.

In Sections 4 and 5 we illustrate a technique that can be used to prove ergodic
theorems for certain processes £, on X which have increasing dual processes 4,
on Y, that is, dual process 4, for which P, *[lim,_, sup |4, = co] > 0 where
|A| denotes the number of elements in 4. Most previous applications of du-
ality treat those processes with duals satisfying P, *[|4,] < |4| for all /] =1 or
P, *[A, = @ for some f] = 1. (An exception is found in Harris (1976), Section
9.)
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In order to state our results we need the following definitions. For each
probability measure ¢ on X we let T(¢)¢ be the probability measure on X defined
on cylinder sets by

(TOefele() = Li=1, o np = (g P[6(x) = Li=1, .-, n]dp() .

Then T'(f)p represents the state of the process &, at time ¢ when the initial state
is p. A measure v is invariant for &, if T(f)y = v for all + = 0 and we will say
that &, is ergodic if there exists a measure v (necessarily invariant) such that
T(t)p converges weakly to v as t — oo for all initial states . Denote by d, and
0y the probability measures on X which concentrate on § = 0 and § = 1 respec-
tively. Considering & € X as a subset of § we will write § U {x} as § U x and
&\{x} as &\x. A Markov process 4, on Y will be called monotone if there exists
a Markov process (4,', 4,%) on {(4, B)ye Y x Y| A C B} such that the marginal
processes each have the same finite distributions as 4,, that is, 4,' and 4, can
be coupled so that 4,' ¢ 4 for all + = 0 whenever 4, C A4’ and so that 4,
and A4,” have the same finite distributions as A4,.

(1.6) THEOREM. Let &, be a Markov process on X with a dual process A, on 'Y
satisfying (1.1). Suppose that A, is monotone and that for each Be Y, Ac Y, A% @

(1.7) P,*[B C A, for some t =0]=1,

then any invariant measure for &, is of the form 20, + (1 — 2)d for some 0 < 2 < 1.
Suppose that for each BeY, AcY, A+ @, B+ @

(1.8) lim, ., P,*[4, N B+ @]l=1,
then lim, ., T(H)p = p(@)0y + (1 — p(@))ds for every initial distribution 1.

 Theorem (1.6) is proved in Section 4. Applications of this theorem are found
in Section 5. Theorem (1.6) is similar in spirit to Theorem (9.2) in [4] in which
Harris gives conditions which imply that any translation invariant stationary
measure for &, is of the form 20, + (1 — 2)ds. Harris does not assume (1.7).
Our theorem says that any stationary measure is a convex combination of 4,
and dg whenever 4, is monotone and (1.7) holds. In particular there is no sta-
tionary nontranslation invariant measure for the process (cf. Theorem (3.24) in

[6D)-

REMARK. It can be shown that A, is monotone whenever A4, is the dual of &,
and S = {x, y}, a two point space. This result immediately extends to dual
processes which are sums of two point generators. In addition we note that
branching processes with interference which are duals of certain spin flip pro-
cesses are also monotone (cf. Holley and Liggett (1975)).

2. Eliminating the condition %F,(») = 0. In this section Theorem (1.5)
is proved and then used to obtain a general ergodic theorem. Examples are
given.
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ProOF oF THEOREM (1.5). To prove Theorem (1.5) we need only show that
for each 4 e Y,, the given ¢(4, B), g(A, A) uniquely solve the set of equations

SFLE) = Lines (A4 B)[F5(8) — Fu(O)] + q(4, D[Fu(6) — Fu(5)]  €eX

subject to 3} 5.y, 9(4, B) = 0. That g(4, A) = F (@) and g(A, B) = 0 follows
immediately. To see that Harris’s formula still applies for g(A4, B) when 4, BC S
let &, = &,,. where ¢ = inf{t > 0|¢, = @} and let % be the generator of ,.
From Harris (1976) we know that (4, B) = ¢.%/F ,(B) uniquely solves the set
of equations

(2.1) SEFLE) = Tpes (A BIF(E) — Fy(8)]

subject to ;5 4(4, B) = 0. Let (4, B) = §(4, B) if B S and let (4, S) =
4(4, S) — F,(@). Then for & #+ @

SIF ,(8) = S7F ,(8)
= Ypes 9(4, BIF5(E) — Fy(§)] + 7F (@)1 — F (6)].

Clearly 3i;.y, 9(4, B) = 0 and so to finish the proof we need to show that
$FF,(B) = ¢.F ,(B) for BE Sand that ¢ F (S) = $pFF (S) + F (D).
But this follows from the definition of ¢ and the fact that %F,(§) = &F (&)
whenever £ = @. The uniqueness of the ¢(4, B) follows from the relationship
between ¢(A4, B) and (A, B) and the fact that the §(4, B) are the unique solutions
of equations (2.1).

As in Harris (1976) we can extend this result to the case of infinite S by con-
sidering generators of the form .% = Y, .o, where each &7, is the infinitesimal
generator of a Markov process &,* on {0, 1}° with the property that there exists
a finite set C, S such that the distribution of C, n £, depends only on C, n &
and such that £, n (S\C,) = & n (S\C,) for all # > 0. If each .57, has a dual
generator .97, * (i.e., .97, * generates a process 4, on Y, which is a dual of &),
and if 7% = 3, .97 * generates a nonexplosive continuous time Markov chain
A4, on Y,, then 4, is the dual of &,.

(2.2) THEOREM. Let &, be a Markov process on X with a dual process A, on
Y, satisfying (1.4). Suppose that

(2.3) P*[A,e{®, A} some f]=1  forall AcY.
Then there exists a unique invariant measure v for &, and from any initial state p
lim,, T(f)¢ = v. In particular the hypothesis holds ifinfy.y,p.0 Fy (@) > 0.
Proor. From (1.4) 7
lim,_, E[F,(£)] = P,*[4, = A eventually],

which implies the first statement of the theorem. The second statement follows
because F, () is the rate at which 4, jumps to the absorbing state A. The
condition infy.y, 5., FFy(@) = 2 > 0 will give an exponential rate of conver-
gence to v since P,*[4, ¢ {A, @}] < e
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EXAMPLE. Let Qf(€) = 3.5 Z(X)[f(€ U x) — f(€)] where <#(x) = 0 and
SUp,cs F(x) < co. Then Q generates a process £ on X with birth rates <Z(x)
at site xe S. The dual of &, is a process on Y, with infinitesimal parameters
q(A4, ) = 3,4 “#(x) and 0 otherwise. Let %" and .%7* be any dual generators
from [4]. Then Q 4 % will generate a process &, satisfying the hypothesis of
(2.2) whenever inf, s <#(x) > 0. For an extended discussion of Q 4 % when
&7 is the generator for symmetric simple exclusion see [10].

ExaMPLE. Contact processes with spontaneous birth at one site. Let S = Z,,
the one dimensional integers, N = {1, —1}, 0 = 4, < 4, < 4, < 24,. Define
() = HEOLAE0) — O] + Ayne(l — EQO)[AE U0) — f(§)] and let 5 =
s ¥, Where 7, is 97 translated by x. .97 is the generator of the contact
process studied in [3], [4] (i.e., % generates a process &, on the subsets of Z,
which corresponds to death at site x with intensity x and birth at site x with
intensity 4, where k = |, n {x — 1, x 4 1}|). The conditions on 1,, 4, guarantee
the existence of a dual process A4, on the finite subsets of Z, which satisfies (1.1).
The process 4, has the following transition rates. For each x e 4

A—; AU {x 4+ 1}
A—y 5 AU {x — 1}
A=y, AU {x+ 1, x — 1}
A—, Ax

where 4 —,; B means the process jumps from 4 to B with intensity 1. From
symmetry and translation invariance considerations we see that either 4, = @
for some ¢ or A, spends an infinite amount of time in {B|B C S, 0 ¢ B}. Now
consider the process é, with generator % 4 Q where

Qf(€) = /(€ V 0) — f(9)]

for 2 > 0. Hence £, is a contact process with spontaneous birth at one site and
has a dual process A, on Y,. This dual process will behave like A, with the
added transition probability of a jump to A at rate 2if O e A,. From the recur-
rence property of A, P,[4, = @ or 4, = A eventually] = 1, hence ¢, satisfies
the conclusions of Theorem (2.2).

3. The condition ¢.%/F,(B) = 0. Holley and Stroock (1976) introduced the
following device to handle a situation ‘where the “natural” dual process has a
negative transition intensity, a situation that occurs when the solution of equa-
tions (1.2) for g(A, B) yields q(A4, B) < 0 for some 4 = B. Assume that § is
finite. The extension to infinite S is carried out as in Section 2. Let Y’ =
{(AK)|ACS, A% @,k = 0,1} U (A} U {3} and define F\, 4,(1) = (= )*F, (1),
Fy(n) =1, Fy(n) = 0. We ask for a Markov chain 4, on Y’ satisfying

@3.1) EF ()] = EfynlFa €]
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forall § e X, (4, k)eY’, 1t = 0. Foreach (4,k)eY’, nC S we try to solve

F 40(0) = Lper 9((4, k), B)F(n)
(3.2) = Zoes [9((4; k), (C, 0) — (4, k), (C, 1))]F,(n)
+ 9((4, k), 4)

so that ¢((4, k), B) = 0 for (4, k) + Band Y., q((4, k), B) = 0. From The-
orem (1.5) we must have ¢((4, k), (C, 0)) — ¢((4, k), (C, 1)) = (—D*¢.o7F ,(C)
whenever C = @. Hence for 4 # C and C # ¢ let

4((4, 0), (C, 0)) = q((4, 1), (C, 1)) = §7F,(C) v 0

9((4, 0), (C, 1)) = (4, 1), (C, 0)) = —[$F,(C) A 0]
and let ¢((4, k), A) = %/F (). Finally let

(3.3) (4, k), @) = — Dicesionao [9SFF(C)| — ¢S7F (A) .

If this last quantity is nonnegative for all (4, k) € Y’ then this set of infinitesimal
parameters will satisfy (3.2) subject to the given conditions. The resulting
process 4, can be described as follows. The first coordinate of 4, can be viewed
as a process on the finite subsets of S with the intensity of a jump from 4 to C,
C # @ given by [¢.%F,(C)|. If $.F (C) < 0 then a jump from A to C results
in a change in the second coordinate. The process 4, will jump from 4 to @
with intensity (3.3) and from 4 to A with intensity %7F,(@). For applications
of this result to spin flip models see Holley and Stroock (1976). For formula
(3.3) in a more general setting see Griffeath (1976).

EXAMPLE. Pure jump with births and deaths. Let S = {z, y} and

(3.4) HE) = @I — EMILAYY — fAD] + £LfE\2) — £9)]
+ FZLAEV 2 = f9)].
Then .97 corresponds to a process in which a particle can jump from z to y with

intensity 1 and which has a birth rate < at z and a death rate ¢ at z. Then
F (@) = Bif ze 4, 0 otherwise, and ¢F ,(C) has the following form:

c
2 {z { {2y}
@ 0 o o o
{z} v —e| 1] -1
() 0 1 =1 o
{z:y}| © 0| p|—p

If # > 2 then (3.3) holds and consequently a dual process satisfying (3.1) exists.
We note that ¢((4, k), @) = ¢ — 2if 4 = {z} and 0 otherwise and that g((4, k),
A) = B if ze A4 and 0 otherwise. ‘

4. Increasing dual processes. In this section Theorem (1.6) is proved and
sufficient criteria are given for the hypotheses of Theorem (1.6) to hold. Here
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we are assuming that £, has a dual process 4, on Y; if 4, needed to be defined
on Y, then the hypothesis (1.7) of Theorem (1.6) could not hold since A is ab-
sorbing and P,*[4, = A for some ] > 0 for some 4 C S.

Proor oF THEOREM (1.6). Assume that 4, is monotone and that (1.7) holds.
That d, is invariant follows automatically from (1.1). That dy is invariant fol-
lows from

PS[EtnAqﬁ@]:PA*[AtnS?& @]ZI_PA*[At: @]

and the hypothesis (1.7) which implies that P,*[4, = @] = 0 whenever 4 = (.
Next let 4 be any invariant measure for §,. Integrating (1.1) with respect to p
yields

EXefnlnn A, # @ = p{nln N A+ @}

so that pf{n |y N A, # @} is a bounded martingale and hence converges a.s. P *.
Let BC S, |B| < oo and let = inf{r = 0: 4, D B}. Then

Hnlnn A+ @} =lim,_, EX[pln|n 0 A # @]

= lim,_., E,*[EL [p{n |7 0 A, #+ O]

= lim,_, EJ*[Ep*[p{n]n 0 A, #+ @]]]

=pn|n N B+ @},
where the inequality follows from the monotone property of A4, and the fact
that 4, D B. Therefore for any two nonempty subsets B, 4 we have pfn|» N
B+ @} = p{yp|n n A+ @} whichimplies that p = 40, + (1 — 2)ds. To prove
the last statement of Theorem (1.6) we assume that (1.8) holds. Then we have,
for any initial distribution g,

(TOMEIE N A+ @} =[x P60 A# @] dp(S)
= (x P[4, 0 &+ @ldu§)
which goes to 1 — p(@) as t — co whenever 4 is nonempty. []

Before giving an application of Theorem (1.6) we give criteria for the hypothesis
(1.7) to hold. .

4.1) PROPOSITION. Let A, be a monotone continuous time Markov chain on Y.
Suppose that A, can be coupled with a recurrent Markov chain X, on S in such a way
that X, € A, for all t = 0. Then (1.7) is equivalent to

4.2) P[4, D B for some t] >0
for some x € S and all |B| < oo.

Proor. Fix xeS, A+ @. Let r;, =inf{r > 0|xe 4,} and 7,,; = inf{t =
7, + 1]xe A}. Since X, e 4, for all t > 0 and X, is recurrent it follows that
7, < oo as. forallk=1,2,.... Let BC S, |[B| < oco. Using the monotone
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property of A, and (4.2) we have that

Pﬁzk[At D B for some ¢ < 1]
= Pk [4, DB forsome t<1]=1—p>0 as. P,*.

Hence P, *[A4, D B for some ¢t < 7,] = 1 — p* which goes to 1 as k goes to co,
proving the proposition. []

5. Applications of Theorem (1.6).

a. Recurrent simple exclusion with variable birth rates. Let p(x,y) be a sym-
metric irreducible probability transition function for a recurrent Markov chain
on S. Letr(x,y)=0and }, sr(x,y) = 1. Finally let the infinitesimal gener-
ator of §, be given by

(.1) HfE) = Zoyes S — EMIpCx, YAE) — f(9)]
+ Zowes EWIL — E@)Ir(x, NIAEL) — fO)]

where &§,(u) = §(u) if u #+ x and §,(x) = 1 — §(x) and where &, (u) = §(u) if u £
x, y, &,,(x) = &(y) and &, (y) = (x). Then &, is a simple exclusion process with
one particle motion determined by p(x, y) modified so that a particle at x is
created at a rate 3, ...,,-1 7(x, y). By expressing F,(§) as 1 — [[,., (1 — &(x))
and substituting into (5.1) we can solve equations (1.2) for the parameters g(4, B).
The parameters are given by

94, (Ax) U y) =p(x,y) if xed, yed
9(4, AV Y) = Toes1(%, ) -

The resulting dual process A4, has the following description. Think of 4, as a
finite collection of particles on S. The particles move as a simple exclusion
process using p(x, y) but modified so that at each empty site y a particle is created
at the rate 3,4, r(x,y). If p(x,y) or r(x,y) is recurrent then A, satisfies the
hypotheses of Theorem (1.6) (via Proposition (4.1)) and hence the only invariant
measure for &, is of the form 26, + (1 — 2)ds for some 0 < 2 < 1. Further results
in the case where p(x, y) is transient and ] . .. (x,y) = O for all but finitely
many x are found in the author’s Ph.D. thesis (UCLA, 1975).

b. Biased voter model. Let S = Z,, the d dimensional integers, let 3 = 0
and forxe Z,let N, = {ue Z;||u — x| = 1}. Let

f(n) = (1 4+ B) Zaezy (1 — 9N Zuew, 7)) f(n U x) — f(n)]
+ Daezy 1N Zuen, (1 — 2@)[ fn\x) — f(n)] -

&7 generates a process §, with the following interpretation. Consider the sites
of Z, as occupied by two opposing factions, the ones and zeros. Suppose at any
time ¢ the ones occupy the set £, and the zeros the set §,°. A one will replace a
neighboring zero with a one with an intensity 1 4 3 while a zero will replace
a neighboring one with a zero with an intensity 1. If 8 = 0 this is the voter
model for which Holley and Liggett (1975) characterized the invariant measures
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and their domains of attraction by studying the dual process of &,. It is also the
fair invasion process considered by Clifford and Sudbury (1973). If 8 = 0 the
dual process 4, has the property that P,*[|4,| < |4| for all > 0l=1.1Ifg>0
the dual process has probability one of growing infinitely large, hence we treat
this case using Theorem (1.6).

The infinitesimal jump parameters of A, are derived in Section 7.c (Harris
(1976)) and are given by ¢(4,C) = 1if xe 4, ye N, and C = (A4\x) U y and by
9(4,C) =pif xe A, yeN, and C= AU y. Thatis, 4, is a particle process
in which each particle jumps to a neighboring site with intensity one (independent
for each particle and site). If the site is occupied the two particles coalesce,
otherwise the particle occupies the new site. In addition, each particle in A,
produces a particle in an unoccupied neighboring site with intensity §.

(5.2) THEOREM. Suppose 8 > 0. Then the set of extreme invariant measures
of & is {0y, 0z,}. If p is a translation invariant measure then lim,_ Tty =

w( D)oy + (1r— #(@))Bzd'

Proor. It is clear that A4, is monotone and that P,*[A4, D B] > 0 for any
|A] > 0and 0 < |B| < co. We now show that the hypotheses of Proposition
(4.1) hold. Let ||x|| be the Euclidean distance between x and the origin. Define
a partial ordering on Z, by x < y if ||x|| < ||y||. For x, ye Z, let 9., = 1 if
x—yll=1and x < y and let q,, = 1 + B if [[x — y|]| = 1and x > y. Then
the set g,, are the infinitesimal parameters of X,, a recurrent Markov chain on
Z,;. To couple X, with 4, let X, make the same transitions as a tagged particle
in A, until this tagged particle produces another particle in a neighboring site.
If the neighboring site is a step towards the origin, X, jumps to this neighboring
site and follows the newly created particle. If the neighboring site is a step
away from the origin, X, does not jump and continues to follow the original
tagged particle. The motion of X, continues in this way. Hence Proposition
(4.1) and Theorem (1.6) imply that the extreme invariant measures are {04, 05,}-
To prove the second statement let g, be the distribution of &, when the process
is started in the translation invariant state p. Then p, is translation invariant,
hence

%m{él&x) =1} = — yen, #dE 1609 = 1, £(y) = 0}

(3:3) T A+ B) Dyew, vd§1€(x) = 0,6(y) = 1}

= B Zyew, #dE16(0) = 0,8()) = 1} 2 0.
Therefore x,{¢|§(x) = 1} increases to a number 1 — 2. Lety be any weak limit
of {#:}i2o- Wenow show thatv{é |&(x) = 0, &(y) = 1}=0forallxe Z,,ye N, and,
hence, that v = 25, 4 (1 — 2)d5. Let f(t) = p,{€|&(x) = 1}. By (5.3) f/(t) = 0
and a direct calculation will yield sup,., | /”(f)| < co. Since {0 f'(s)ds < oo, an
application of the mean value theorem gives lim,_, f’(s) = 0 and, hence, (5.3)

yields lim, .. 1 {£]£(x) = 0, 6() = 1} = »{£ [6(x) = 0, £() = 1} = 0.
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To see other types of results possible if duality is used we give the following
propositions. We continue to assume that &, is the biased voter model with

B> 0.
5.49) ProposITION. Let H = {ze Z,|z = (2, ---,2,),2 = 0}. Let&e Xand
suppose that §(u) = 1 for all ue H. Then lim,_, P,[§,(x) = 1] = 1 for all x.

Proor. From duality we need only show that P¥,[4, N H + @] goes to 1 as
¢ goes to co. But this is a consequence of coupling 4, with a random walk W,
on Z;sothat W, e A, for all rand so that Pr [W, e H for all sufficiently large /] = 1.
The jump parameters of W, are given by
s(x,y) =1 if [x—yll=1 and x, =y
=1+38 if ”x_y”:l and X < )
where x = (x,, - -+, x;) and y = (7 A R |
In the statement of Proposition (5.5) X, is a simple random walk on Z, if X,
is a Markov process on Z, with jump parameters p(x, y) = 1 if ||x — y|| = 1 and
0 elsewhere.
(5.5) PROPOSITION. Let d = 3 and let X, be a simple random walk on Z,. Let
¢ C Z, satisfy
inf,.,, liminf,  Pr{X,eé|X,=x]=p>0.
Then lim,_, P.[§,(x) = 1] = 1 for all x.

Proor. This proposition is an immediate consequence of the duality relation-
~ship between &, and A4, and the next lemma.

(5.6) LEMMA. Suppose that d = 3 and that X, and & satisfy the hypotheses of
Proposition (5.5). Then lim,__, P,*[4, N & = @] = O for all x.

ProoF. Fixn > 2and ¢ > 0. Let XHi=1,....,nben independent copies
of X,. Let

F={X,+ X7 forall r=0, forall i=j}.
From the transience of the simple random walk on Z,(d = 3) we can find a
subset 4 = {x,, ---, x,} C Z, such that 2,[<#] > 1 — ¢ where B, refers to the
joint probability distribution of (X, -+, X;*) started in (%15 -+ 5 x,) (cf. Liggett
(1974)). Next start both processes 4, and (X}, - - -, X.") on the set 4 and couple
them so that 4, o {X,}, ..., X} for as llong as possible, that is, until two initial
particles of A4, coalesce. Let
t=inf{r = 0|4, does not contain {X,, ..., X .
From the choice of 4 and the coupling of 4, and {X,, ..., X,"} we see that
P,*[t < o] £ ¢. Then
PAANE= QIS PAANE= @, c> 1]+ Pr < 1]
SPXi¢&i=1,...,n + PHr<1].
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Taking limits as ¢t — co we obtain

lim,_,sup P,*[4, N €= @] < (1 — p)* +¢.

Since P,*[A4, D A for some ¢] = 1 and since A, is monotone we have that
lim, ,sup P,*[4, N § = @] < (1 — p)* + . We complete the lemma by letting
e—0and n— co. []
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