INTERPOLATION OF MARTINGALES

BY DAVID HEATH

Cornell University

We show that every discrete-time martingale can be interpolated to give a continuous, continuous-time martingale, and provide a necessary and sufficient condition for the existence of an interpolated martingale with no flat spots.

1. Introduction. This note presents two results; they represent slight generalizations of Theorems 11.1 and 11.2 of Chacon [2], but the proofs presented here are quite different from those of [2].

THEOREM 1. Suppose $(X_k, \mathcal{F}_k, k = 0, 1, \cdots)$ is a martingale on (Ω, \mathcal{F}, P) . There is then (on a possibly enlarged version of (Ω, \mathcal{F}, P)) a martingale $(Y_t, \mathcal{G}_t, t \geq 0)$ such that:

- (i) Y_t has continuous sample paths and
 - (ii) For $k = 0, 1, \dots, Y_k = X_k$ and $\mathscr{F}_k \subseteq \mathscr{G}_k$.

THEOREM 2. (i) If $P\{X_{k+1} \neq X_k | \mathcal{F}_k\}$ is zero with positive probability, then any martingale $(Y_t, \mathcal{G}_t, t \geq 0)$ satisfying the conclusion of Theorem 1 must, with positive probability, be constant in t for $t \in [k, k+1]$.

(ii) If $P\{X_{k+1} \neq X_k | \mathcal{F}_k\} > 0$ a.e. for all $k = 0, 1, \dots$, then almost every path of the martingale $(Y_t, \mathcal{G}_t, t \geq 0)$ constructed in the proof of Theorem 1 has no intervals of constancy.

REMARKS. 1. It is interesting to let $(X_k, \mathcal{F}_k, k = 0, 1, \cdots)$ be a simple random walk, for then the distribution of Y_t , as constructed, is absolutely continuous if t is not an integer and is discrete if t is an integer.

- 2. The above results, together with the representation of continuous martingales as time-changed Brownian motion (see [3]) yield another construction for the "Skorokhod embedding."
- 2. Proofs of the theorems. To construct the martingale $(Y_t, \mathcal{G}_t, t \geq 0)$ for the proof of Theorem 1, we assume (by construction of a product space if necessary which we then rename Ω) that there are countably many standard Brownian motions (B_t^k) , $k \geq 0$ on (Ω, \mathcal{F}, P) , independent of each other and of $\bigvee_{k \geq 0} \mathcal{F}_k$. Let ϕ be any continuously differentiable function on (0, 1] for which $\phi(0+) = +\infty$ and $\phi(1) = 0$, with $\phi' < 0$ (for example, take $\phi(s) = s^{-1} 1$), and set

$$\mathscr{G}_k = \mathscr{F}_k \vee \sigma\{B_s^j : 0 \le s < \infty, 0 \le j < k\} \quad \text{if } k = 0, 1, 2, \dots$$

Received April 5, 1976.

AMS 1970 subject classification. Primary 60G45.

Key words and phrases. Martingale, interpolation.

and

 $\mathscr{G}_t = \mathscr{G}_{[t]} \vee \sigma\{X_{k+1} + B_{\phi(s)}^k, 0 < s \le t - [t]\}$ if $t \ge 0$, t not an integer. ([t] denotes the greatest integer not exceeding t.)

Let Y_t be a separable version of the process given by $E(X_{[t]+1} | \mathcal{G}_t)$. (The subscript on X is unimportant provided it is an integer not less than t.)

Clearly $(Y_t, \mathcal{G}_t, t \ge 0)$ satisfies condition (ii) of Theorem 1. To check (i) and to investigate "intervals of constancy," we reduce the problem to the following special case: consider the martingale $(X_k, \mathcal{F}_k, k = 0, 1)$ where X_0 is identically 0 and \mathcal{F}_0 is trivial. Since we shall use only one standard Brownian motion (assumed independent of \mathcal{F}_1), we eliminate the superscript.

In this case,

$$Y_t = 0$$
 if $t = 0$
= $E(X_1 | X_1 + B_{\phi(s)} : 0 < s \le t)$ for $t \in (0, 1]$.

Since $\sigma(X_1+B_{\phi(s)},0 < s \le t) = \sigma(X_1+B_{\phi(t)}) \vee \sigma(B_{\phi(s)}-B_{\phi(t)},0 < s \le t)$ and $\sigma(B_{\phi(s)}-B_{\phi(t)},0 < s \le t)$ is independent of X_1 and $X_1+B_{\phi(t)}$, we obtain $Y_t=E(X_1|X_1+B_{\phi(t)})$ for $t \in (0,1]$, and thus by an elementary computation $Y_t=H(t,X_1+B_{\phi(t)})$ for $t \in (0,1)$, where H is defined by

(1)
$$H(t, z) = \frac{\int_{-\infty}^{\infty} x \exp(-(z - x)^2/2\phi(t)) dF(x)}{\int_{-\infty}^{\infty} \exp(-(z - x)^2/2\phi(t)) dF(x)}$$

where F is the distribution function of X_1 .

This formula shows that Y_t is continuous for all $t \in (0, 1)$. Clearly $Y_1 = X_1$; we must show that $\lim_{t \uparrow 1} Y_t = X_1$. Since (Y_t) is a uniformly integrable martingale it has a limit as $t \uparrow 1$; this limit is $E(X | \bigvee_{t < 1} \sigma(X_1 + B_{\phi(s)}) : 0 < s \le t)$; from the continuity of Brownian motion at 0, we conclude that $X_1 + B_{\phi(1)} \equiv X_1$ is measurable with respect to the conditioning σ -field, so $\lim_{t \uparrow 1} Y_t = X_1$.

A similar argument, using the fact that Y_t is a reverse-martingale as $t \downarrow 0$ and that $\bigcap_{t>0} \sigma(X + B_{\phi(s)}) : 0 < s \leq t$ is trivial gives $\lim_{t \downarrow 0} Y_t = 0$.

To reduce the general case to this special case, it is clear that we need consider only the time-interval [0, 1]. Then $Y_t = X_0 + E(X_1 - X_0 | \mathcal{F}_0 \vee \sigma\{B_{s^{-1}-1} : 0 < s \le t\})$. Call the second term on the right Z_t . We now construct a martingale with the same finite-dimensional distributions as Z_t which is continuous. This implies that Z_t is also (since we, of course, choose a separable version).

Let B_t be a Brownian motion on $(\Omega', \mathcal{F}', P')$ and set

$$\Omega'' = \Omega \times \mathbb{R} \times \Omega'$$
 $\mathcal{F}'' = \mathcal{F}_0 \times \mathcal{B} \times \mathcal{F}'$

where \mathcal{B} denotes the Borel sets in \mathbb{R} . Construct P'' by:

$$P^{\prime\prime}(\Lambda_{\scriptscriptstyle 1} \times \Lambda_{\scriptscriptstyle 2} \times \Lambda_{\scriptscriptstyle 3}) = (\smallint_{\Lambda_{\scriptscriptstyle 1}} F(\omega,\,\Lambda_{\scriptscriptstyle 2})\, dP(\omega)) P^\prime(\Lambda_{\scriptscriptstyle 3})$$

where $\Lambda_1 \in \mathcal{F}_0$, $\Lambda_2 \in \mathcal{B}$, $\Lambda_3 \in \mathcal{F}'$ and $F(\bullet, \bullet)$ is a regular conditional probability for $X_1 - X_0$ given \mathcal{F}_0 (see [1], page 264). For $\omega \in \Omega''$ we write $\omega = (\omega_1, \omega_2, \omega_3)$.

806 DAVID HEATH

For each fixed ω_1 we have a probability measure P_{ω_1} on $(\mathbb{R} \times \Omega', \mathscr{B} \times \mathscr{F}')$ given by

 $P_{\omega_1}(\Lambda_2 \times \Lambda_3) = F(\omega_1, \Lambda_2)P'(\Lambda_3)$.

Keeping ω_1 fixed, we have a random variable X_1 defined on $\mathbb{R} \times \Omega'$ by $X_1(\omega_2, \omega_3) = \omega_2$. Moreover $E(X_1) = 0$. We can therefore construct a continuous martingale Z_t' (for each fixed ω_1) as in the special case. It is then trivial to verify that as a function of $\omega = (\omega_1, \omega_2, \omega_3)$ Z_t' is a martingale, has continuous paths, and has the same finite-dimensional distributions as Z_t . Thus Z_t and hence Y_t have the desired properties. This completes the proof of Theorem 1.

To prove Theorem 2, set $\Lambda = \{\omega \colon P\{X_{k+1} \neq X_k | \mathscr{F}_k\}(\omega) = 0\}$; suppose that $P(\Lambda) > 0$. Let T be the stopping time defined by T = k on $\Omega \setminus \Lambda$ and T = k + 1 on Λ . Set $Z_t = Y_{t \wedge T} - Y_k$ for $k \leq t \leq k + 1$, undefined elsewhere. Since $Z_{k+1} \equiv 0$, Z must always be zero.

Suppose now that $P\{X_{k+1} \neq X_k \mid \mathscr{F}_k\} > 0$ a.e. for $k=0,1,\cdots$. We must then show that Y_t has no intervals of constancy. As in the proof of Theorem 1, we need only consider the special case $(X_k,\mathscr{F}_k,k=0,1)$ where $X_0\equiv 0$ and \mathscr{F}_0 is trivial; the hypothesis then reduces to the assumption that F is not concentrated at 0. Suppose now that for a particular ω , $Y_t(\omega)\equiv c$ on $(a,b)\subset (0,1)$. This means that $H(t,z)-c\equiv 0$ for $t\in (a,b)$; we wish to use the implicit function theorem of [5], page 241 to show that z can then be written as a differentiable function of t (for some sub-interval of (a,b)), for then the Brownian path must have been differentiable, and the probability of this is 0 (see [4]). The only hypothesis of the implicit function theorem not obviously satisfied is that $\partial H/\partial z\neq 0$. Elementary calculations yield that $\partial H/\partial z=0$ implies

$$\frac{\int_{-\infty}^{\infty} x^2 \exp(-(z-x)^2/2\phi(t)) dF(x)}{\int_{-\infty}^{\infty} \exp(-(z-x)^2/2\phi(t)) dF(x)} = \left(\frac{\int_{-\infty}^{\infty} x \exp(-(z-x)^2/2\phi(t)) dF(x)}{\int_{-\infty}^{\infty} \exp(-(z-x)^2/2\phi(t)) dF(x)}\right)^2$$

which is easily seen to imply that F is concentrated at a point—in contradiction to our assumption.

REFERENCES

- [1] ASH. ROBERT B. (1972). Real Analysis and Probability. Academic Press, New York.
- [2] Chacon, R. V. (1975). Potential functions and martingales. Preprint, Univ. of British Columbia.
- [3] Dubins, L. E. and Schwarz, G. (1965). On continuous martingales. Proc. Nat. Acad. Sci. U.S.A. 53 913-916.
- [4] Freedman, David. (1971). Brownian Motion and Diffusion. Holden-Day, San Francisco.
- [5] TAYLOR, AUGUS E. (1955). Advanced Calculus. Ginn, Boston.

DEPARTMENT OF OPERATIONS RESEARCH CORNELL UNIVERSITY COLLEGE OF ENGINEERING UPSON HALL ITHACA, NEW YORK 14853