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INTERPOLATION OF MARTINGALES

By Davip HEATH
Cornell University

We show that every discrete-time martingale can be interpolated to
give a continuous, continuous-time martingale, and provide a necessary
and sufficient condition for the existence of an interpolated martingale
with no flat spots.

1. Introduction. This note presents two results; they represent slight gener-
alizations of Theorems 11.1 and 11.2 of Chacon [2], but the proofs presented
here are quite different from those of [2].

THEOREM 1. Suppose (X, & ,, k = 0,1, -..) is a martingale on (2, &, P).
There is then (on a possibly enlarged version of (Q, &, P)) a martingale (Y,, &,,
t = 0) such that:

(i) Y, has continuous sample paths
and
(il Fork =0,1,...,Y, =X, and &, &Z,.

THEOREM 2. (i) If P{X,,, #+ X, |5 .} is zero with positive probability, then any
martingale (Y,, &,, t = 0) satisfying the conclusion of Theorem 1 must, with positive
probability, be constant in t for te [k, k + 1].

(i) If P{X,,, #+ X, | F} > 0 a.e. forallk = 0,1, - .., then almost every path
of the martingale (Y,, &,, t = 0) constructed in the proof of Theorem 1 has no inter-
vals of constancy.

REMARKS. 1. It is interesting to let (X, & ,,k =0, 1, ...) be a simple ran-
dom walk, for then the distribution of Y, as constructed, is absolutely continuous
if ¢ is not an integer and is discrete if 7 is an integer.

2. The above results, together with the representation of continuous martin-
gales as time-changed Brownian motion (see [3]) yield another construction for
the “Skorokhod embedding.”

2. Proofs of the theorems. To construct the martingale (Y,, &,, t = 0) for
the proof of Theorem 1, we assume (by construction of a product space if neces-
sary which we then rename Q) that there are countably many standard Brownian
motions (B,*), k = 0 on (Q, &, P), independent of each other and of V., % .
Let ¢ be any continuously differentiable function on (0, 1] for which ¢(0+) =
+ o0 and ¢(1) = 0, with ¢’ < 0 (for example, take ¢(s) = s~* — 1), and set

Go= TV olBii0<5< 00,0 <k} if k=0,1,2, -
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and
Co =GV o{Xpn + B, 0 < s <t —[1]} if £+>0, ¢ notan integer.

([¢] denotes the greatest integer not exceeding r.)

Let Y, be a separable version of the process given by E(X,;,,| Z,). (The sub-
script on X is unimportant provided it is an integer not less than 7.)

Clearly (Y,, &,, t = 0) satisfies condition (ii) of Theorem 1. To check (i) and
to investigate “intervals of constancy,” we reduce the problem to the following
special case: consider the martingale (X,, .5, k = 0, 1) where X, is identically
0 and & is trivial. Since we shall use only one standard Brownian motion
(assumed independent of &), we eliminate the superscript.

In this case,

Y, =0 if +r=0
=EX X+ B,,,: 0< s 1) for te(0,1].

Since o(X, + B,,), 0 < s < 1) = o(X, + B, ) V 0(B,,, — B,,,0 < s < f)and
9(By) — By, 0 < s < 1) is independent of X, and X, + B,, we obtain Y, =
E(X,| X, + B, for te(0, 1], and thus by an elementary computation Y, =
H(t, X, + B, ) for t € (0, 1), where H is defined by

) H(t, 2) — A% X OXP(— (2 — x[2(0)) dF(x)
=, exp(—(z — x)29(1)) dF (x)
where F is the distribution function of X;.

This formula shows that Y, is continuous for all 7€ (0, 1). Clearly ¥, = X;
we must show that lim,,,Y, = X,. Since (Y,) is a uniformly integrable martin-
gale it has a limit as ¢ 1 1; this limit is E(X| V., o(X; + B,,,: 0 < s < 1); from
the continuity of Brownian motion at 0, we conclude that X, + B,,, = X, is
measurable with respect to the conditioning ¢-field, so lim,;, Y, = X;.

A similar argument, using the fact that Y, is a reverse-martingale as¢ | 0 and
that (50 0(X + By, 1 0 < 5 < 1) is trivial gives lim,,, Y, = 0.

To reduce the general case to this special case, it is clear that we need consider
only the time-interval [0, 1]. Then Y, = X, + E(X, — X,| %, V o{B,-1_,: 0 <
s < t}). Call the second term on the right Z,. We now construct a martingale
with the same finite-dimensional distributions as Z, which is continuous. This
implies that Z, is also (since we, of ¢ourse, choose a separable version).

Let B, be a Brownian motion on (', &, P") and set

Q" =Qx R x Q
FN = F x Bx F',
where <% denotes the Borel sets in R. Construct P by:
Pr(Ay x Ay x M) = (3, F(w, A,) dP(@))P'(Ay)

where A, e &, Aye B, Aye &' and F(+, +) is a regular conditional probability
for X, — X, given &7, (see [1], page 264). For w € Q" we write = (,, 0,, »,).
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For each fixed w, we have a probability measure P, on (R x Q, Fx F)
given by
Pml(Az x Ag) = F(o,, Ay)P'(A) .

Keeping o, fixed, we have a random variable X, defined on R x Q' by
X(w,, 0;) = w,. Moreover E(X;) = 0. We can therefore construct a continuous
martingale Z, (for each fixed w,) as in the special case. It is then trivial to verify
that as a function of w = (w,, ,, ;) Z, is a martingale, has continuous paths,
and has the same finite-dimensional distributions as Z,. Thus Z, and hence Y,
have the desired properties. This completes the proof of Theorem 1.

To prove Theorem 2, set A = {w: P{X,,, + X, | F ,}(w) = 0}; suppose that
P(A) > 0. Let T be the stopping time defined by T = kon Q\Aand T =k + 1
on A. Set Z,=Y,,,—Y, for k <t < k-4 1, undefined elsewhere. Since
Z,,, = 0, Z must always be zero.

Suppose now that P{X, ., + X,|.5,} > 0 a.e. for k =0,1, --.. We must
then show that Y, has no intervals of constancy. As in the proof of Theorem 1,
we need only consider the special case (X, #,, k = 0, 1) where X, = 0 and &,
is trivial; the hypothesis then reduces to the assumption that F is not concen-
trated at 0. Suppose now that for a particular w, Y (w) = ¢ on (a, b) < (0, 1).
This means that H(z, z) — ¢ = 0 for t € (a, b); we wish to use the implicit func-
tion theorem of [5], page 241 to show that z can then be written as a differenti-
able function of 7 (for some sub-interval of (a, b)), for then the Brownian path
must have been differentiable, and the probability of this is 0 (see [4]). The
only hypothesis of the implicit function theorem not obviously satisfied is that
0H[0z # 0. Elementary calculations yield that § H/dz = 0 implies

V2. X" eXp(—(z — X)*26(1)) dF (x) _ <S°_°m X exp(—(z — x)’/24(1)) dF(X))*
1= exp(—(z — x)}[24(t)) dF(x) = exp(—(z — x)}[24(1)) dF(x)

which is easily seen to imply that F is concentrated at a point—in contradiction
to our assumption.
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