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MARKOV SYSTEMS AND THEIR ADDITIVE FUNCTIONALS

By E. B. DYNKIN
Cornell University

For certain classes of Markov systems (that is, stochastic systems which
have Markov representations with transition and cotransition probabilities)
considered by the author in previous papers, a correspondence was estab-
lished between additive functionals of any such system and measures on a
certain measurable space. We now prove analogous results for arbitrary
Markov systems. Measures corresponding to the additive functionals are
defined on a certain og-algebra in the product space R x Q where R is the
real line and Q is the sample space (we call it the central g-algebra). The
theory is applicable not only to traditional processes but also to a number
of generalized stochastic processes introduced by Gelfand and Itd. A situ-
ation where the observations are performed over a random time interval
and the measure P can be infinite is considered in the concluding section.
These generalizations are of special importance for the homogeneous case
which will be treated in another publication.

1. Introduction.

1.1. Let a g-algebra (/) in a fixed space Q be associated with every open
interval 7 of the real line R in such a way that:

1.1.A. If I, C I, then & (1)) c F(1,).
1.1.B. If I, 1 I, then & () is the minimal o-algebra which contains the union
of the F(1,).

Let P be a probability measure on a g-algebra &% 2 & (R). A collection
(& (I), P) will be called a stochastic system. We shall assume that the g-algebra
& is complete relative to the measure P.

We put for abbreviation &, = F(—o0, ), F,, = F(t, +o0).

A stochastic system (# (I), P) is called a Markov system if:

1.1.C. For every s < t, the g-algebras % _, and &, are conditionally inde-
pendent given F (s, 1).

We say that the g-algebras %" and <Z’ are conditionally independent given & if
for any Ae &7, Be &#

P(AB|¥) = P(A| €)P(B|¥) as. P.

The following condition is stronger than 1.1.C.:

1.1.D. For every s < t, the o-algebras & _, and &, are conditionally inde-
pendent given F (s, f).

If this is fulfilled, we call (& (1), P) a hyper-Markov system.
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1.2. A number of important g-algebras are associated with each stochastic
system. ,

First we introduce necessary notations. For each g-algebra % in the space
Q, denote by .77 the minimal g-algebra which contains . and all the sets A
such that P(4) = 0. Denote by Z (s, t+) the intersection of & (s, u) over all
u > t and introduce & (s—, ), F (s—, t+), F <4, €tc., in an analogous way.
We call a function &,(») progressive if its restriction to any interval / is measur-
able relative to ZZ(I) x F (I)* where Z(I) is the Borel s-algebrain /. We say
that a function &,(w) belongs to the class &, (&) if it is right continuous (left
continuous) in ¢ for almost all . A function &, is said to be adapted to a family
&7, if €, is %,-measurable for every r. We write 1, for the indicator of a set C
and use the abbreviation & € %7 for the statement & is a nonnegative .%-measur-
able function.

We define four fundamental g-algebras in R x Q. These are the g-algebras
generated by the following families of functions:

(i) functions of &, adapted to .F %, ;
(ii) functions of &_ adapted to & Z,_;
(iii) functions of & adapted to FZ,;
(iv) functions of &7, adapted to FZ,.

Sets and functions which are measurable with respect to the g-algebra (i) will
be called right (Meyer [10] calls them well-measurable or optional). Analogous-
ly we shall use the terms left, predictable and reconstructable in the cases of the
o-algebras (ii), (iii), and (iv).

The o-algebra generated by all predictable and reconstructable functions will
be called solid. Finally, sets and functions which are simultaneously right, left
and solid will be called central. The o-algebra of all the central sets will be
denoted by <.

We say that functions & and » are indistinguishable if P(§, # 7, for some t) = 0.
Functions which are indistinguishable from 0 are said to be evanescent. We
apply the same word to sets with evanescent indicators. Denote by . ., the
minimal g-algebra which contains <Z(R) X #(R) and the evanescent sets. All
the g-algebras introduced in subsection 1.2 are sub-g-algebras of & ;.

Denote by P¢ the integral of a function & with respect to a measure P. Put
& e ¢ if there exists a function 7 such that P|y| < oo and either & < 7 for all
t, wor & =y for all 1, w. ‘

1.3. We need a concept of the right projection (which is identical to Meyer’s
well-measurable projection) and a dual concept of the left projection.

A function r(w) taking values in (—oo, +oo] is a Markov time relative to
M, =FE, if [t <the# foreveryteR. Put Ce Z ifCn{r < t}e #
for every te R. Let £ be an & ,, ,-measurable function of class 77" We say
that 5 is the right projection of ¢ and write y = II*¢ if 5 is a right function and

(1.1) Pl,y. = Pl ¢,
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for every Markov time 7z and every C e _# (by definition é, = 5, = 0 for r =
+o0). For each & € ¢ the right projection exists and any two right projections
are indistinguishable (see Section 3). The left projection of & is denoted by II-¢.
We prove that II*II-¢ = II-II*¢ for each solid function &. This function is
central. It will be called the central projection of ¢ and denoted by II¢.

1.4. A finite additive functional of a Markov system (& (1), P) is a measure A4
on the real line R depending on o in such a way that for each open interval I:

L.4.A. A(l)e ZF2().

1.4.B. P(A(I) = o0) = 0 if I is finite.

1.4.C. A(1) is a solid function of w.

The condition 1.4.C is equivalent to each of the following conditions:

1.4.C’. At} is a solid function of ¢, w.
1.4.C". A{t} is a central function of ¢, w.

(Functionals with the property 1.4.C"” were called normal in [6].)

A function A is said to be a g-functional if it can be represented in the form
A = 3, A, where A, are finite additive functionals.

For any o-functional 4, a measure p on .& ,, is defined by the formula

(1.2) #(C) = P§ 14(t, w)A(dt) (Ce.F p,q) -
Obviously ¢ charges no evanescent set. If the functional A4 is continuous, i.e.,
if P(A{t} + O for some f) = O then x charges no scanty set (i.e., no set C with

the property P(w: (¢, ) € C for an uncountable set of 7) = 0).
A remarkable fact is that

(1.3) wE) = w(I1€)

for any solid & e " (see Section 5). This makes it natural to restrict x to the
central g-algebra- . The restriction will be called the spectral measure of the
o-functional 4 and will be denoted by z,.

We prove that:

(a) The spectral measure of any o-functional is a g-measure, i.e., a sum of a
countable set of finite measures.

(b) A o-functional is uniquely determined by its spectral measure. (We do
not distinguish functionals which coincide for almost all .)

(c) A o-functional is continuous if and only if its spectral measure vanishes
on all the scanty sets. ‘

(d) In the case of a hyper-Markov system (.5 (I), P), every g-measure on &
which charges no evanescent set is a spectral measure of a o-functional.

Thus for a hyper-Markov system, we have a one-to-one correspondence be-
tween o-functionals and g-measures on & which charge no evanescent set.

REMARK. It was stated in [6] that the spectral measure p, is o-finite if the
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measure A is o-finite for almost all w. This follows from Theorem 4.3 there.
But the proof given for Theorem 4.3 is false. It remains an open question
whether or not the statement of the theorem is true.

1.5. Let us discuss the relationship between Markov systems and traditional
Markov processes.

Let a mapping x,(w) of Q into a measurable space (E,, £2,) be associated with
any ¢ € R and let the following conditions be satisfied:

1.5.A. (0: x(w)eTl) e FU)foralltel, I e &,
1.5.B. For each 1, the g-algebras & _, and &, are conditionally independent
given x,.

Then we say that (x,, (I), P) is a Markov process or that x, is a Markov repre-
sentation of the stochastic system (% (I), P). We show in Section 2 that a system
(F(I), P) is a Markov if and only if it has a Markov representation.

For any g-algebra %7 in Q we denote by .9V x, the smallest g-algebra which
contains % and all the sets {x, € I'} where I € &&,. Let a probability measure
P, ,on &, be defined for any x € E, in such a way that for any s < te R, and
a’ny 77 € ‘g—;t

P(y| F oV x) = P,n as. P
and
P,.(n|Z(sst)Vx)=P,,n as. P

N 8,2 °

Then we say that P, , are forward transition probabilities of the Markov process
(x,, &), P) or that (x,, P, ,) is a right Markov representation of (< (I), P). The
dual concepts of the backward transition probabilities P** and the left Markov
representation are introduced similarly. The two-sided representation is a collec-
tion (x,, P, ,, P»*) where (x,, P, ,) is a right and (x,, P**) is a left representation.
The functions
h(t, x) = P, (A) for t<u,
=0 for t=u

where u € R and 4 € &, are called the base functions of the right representa-
tion (x,, P, ). The right representation is called regular if h(t, x,) belongs to S+
for each base function 4.

Assume now that the collection # (1) has the following property:

1.5.a. LetI, 11 Let P, bea probability measure on 5 (1,) and P, = P,_,
on & (I,_)). Then there exists a measure P on & (I) which coincides with P,
on F(I),n=12 .

Under this condition every stochastic system which has a right representation
has also a regular right representation (see [5]).

The definition of regularity and the existence theorem can be extended to left
and two-sided representations.

Let (x,, P, ,, P»*) be a regular two-sided representation of a stochastic system
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(& (I), P). Introduce into the union & of the spaces E, a measurable structure
generated by the base functions of (x,, P, ) and (x,, P»*). We prove in Section
3 that a function ¢ is central if and only if it is indistinguishable from a function
of the form f{¢, x,) with a measurable f. This makes it possible to characterize
additive functionals of (% (I), P) by measures on the state space E which charge
no set inaccessible for x,. This is the way we described additive functionals in
[6]-

1.6. The concept of a stochastic system can be generalized as follows. Con-
sider a collection .5 (I) of g-algebras in Q satisfying conditions 1.1.A—B and a
(possibly infinite) measure P on a g-algebra &% 2 & (R). Assume that to each
w € Q there corresponds an open interval or the empty set A(w). We say that
(F(I), P, D) is a stochastic system on time interval A if the following conditions
are fulfilled:

1.6.A. For every teR {w:telA(w)}e F(t—, t+)and there exist sets C, €
F(t—,t+), n=1,2, ... such that P(C,) < oo and {w: t € A(w)} is the union
of C,.

1.6.B. For every I, the set {w: A(w) N I = @} is an atom of F(I).

1.6.C. P{A(w) = @} < oo.

The fact that {A n I = @}e F(I) follows from 1.6.A. Intuitively, 1.6.B
means that nothing is observed outside the time interval A. Condition 1.6.C
does not affect generality essentially since {A = @} is an atom of F(R) by
1.6.B. Conditions 1.6.A—C imply that P is a ¢-finite measure.

Put A(w) = (a(w), B(w)) if A(w) + @ and a(w) = +oo, B(®) = —oo if
Aow) = @.

For a system on a random time interval, the condition 1.4.B in the definition
of an additive functional has to be replaced by the following one:

l.6.a. Pla<s<u<p, A(s,u) = oo} = 0 for all s < ueR.
In addition, we suppose that:

1.6.5. The measure A(—, w) is concentrated on the interval A(w).

Obviously, the spectral measure of any additive functional is concentrated on
the set {(f, w): t € A(w)}. With this reservation, all the results formulated in
subsection 1.4 can be extended to Markov systems on random time intervals.
The proofs need some modifications which are described in Section 7.

The concept of a stochastic system on a random time interval is of special
importance for investigating Markov processes with stationary forward transi-
tion probabilities. Many problems concerning such processes can be reduced
to problems concerning the processes (x,, % (1), P) with stationary forward and
backward transition probabilities. The last property implies that P is invariant
up to a constant factor, relative to the shift operators f,. However, generally,
the measure P is infinite and x, is defined on a random time interval.
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2. Markov systems.

2.1. In this section we study various formulations of Markov and hyper-
Markov properties. We describe also an example due to Mol¢an (cf. [11], page
27) of a Markov system which is not hyper-Markov.

We make use of the following elementary lemma (see e.g:, [9], 25.3.A, or
[10], Chapter II, T51): ' ;

LeEMMA 2.1. Two g-algebras 7 and % are conditionally independent (c.i.) given
& if and only if for every & € &

(2.1) PE|Z)=PE| ¥ V&) as.

The last condition is equivalent to the following one: for every & € &7, there exists an
fe & such that

(2.2) PE|SFV @) =f as.

2.2. THEOREM 2.1. Each of the following four conditions is equivalent to the
Markov property 1.1.C:

2.2.A. F_,and F,, are c.i. given F (t, t+).

2.2.B. There exists a Markov representation x,.

2.2.C. P{E|.F .} = PlE| F(t, t+)} forall E e T,
2.2.D. Fors<t, & ., and F,, are c.i. given F (s, t+).

REMARK. The statement of Theorem 2.1 remains valid if we replace con-
ditions 2.2.A—D by the dual conditions obtained by timc reversal. We use
asterisks for references to dual statements. For example, 2.2.A* means: “.F 5,
and & _, are c.i. given F (t—, 1).”

PrOOF. Let us agree to denote by r a variable taking rational values and to
omit the letters “a.s.” in our calculations. ]

1°. Let 1.1.C be fulfilled. Then P{¢|.& ., vV Z(1,r)} = P{§|F(t, r)} for
t<r<u £eZ,, Denoteby ¥ an intersection of & _, vV F (¢, r) over all
r >t Letting r | t, we have P{§| ¥} = P(§| . F (¢, t+)}. Since ¥ 2 .F, V
F(t, t+) 2 F(¢t, t+), this implies that P{¢|. &, V . F (1, t+)} = P{§| ¥} =
P{&| Z(t, t+)}. In view of 1.1.B the last equality is true forall ¢ e & ,,. Thus
2.2.A is fulfilled.

2°. In order to deduce 2.2.B from 2.2.A it is sufficient to put E, = Q, <&, =
Z(t, t+) and x(0) = .

3°. If 2.2.B is true, then ‘ '

Pi¢|F .,V x,} = Pé&|x,} for t<r<u, £e65,,.

Letting | ¢, we have P{¢|. 5 _,,} e F(t, t4)". Hence 2.2.C is fulfilled.

4°. Condition 2.2.Cimplies 2.2.D since the g-algebra .7 = &,V .F (s, t+)
contains .& (1, t4) and is contained in & _,,, and therefore, for é € &,

P§| A} = PIPE|F i} | A ] = PIPE[F (1, t4)}| A ]
= PE|F(t, t+)} e F (s, t4)".
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5°. Finally, 2.2.D implies that P{¢ | & _, vV F (s, r+)} = P{§| F (s, r+)} for
s<r<tand ée .5, Lettingr1t, wehave P[6| 5 _, VvV F (s, 1)} e F (s, 1)F.
Thus 1.1.C is fulfilled.

2.3. THEOREM 2.2. Each of the following conditions is equivalent to the hyper-
Markov property 1.1.D: :

2.3.A. Foralls < tandne &
Pl F (s, )} = P[P{n| L} F ] as.
2.3.B. Foralls<tandne &
Ply| F (s, t4)} = P[P{n| 5} F <i] ass.
2.3.C. Fors £ t, the g-algebras &, and F ,, are c.i. given Z (s, t+).
Proor. If 2.3.A is fulfilled, then
Pip| Z (s, 0} = Pn| . F o} for peF,,.
By Lemma 2.1 this is equivalent to 1.1.D. On the other hand, § = P{y|.& ..} e
F,, for every ne 5. Therefore, if 1.1.D is true, then P{¢| & _}=

P{¢| Z (s, t)}. The right side is equal to P{n|.Z (s, )}. Hence 1.1.D implies
2.3.A.

The equivalence of 2.3.B and 2.3.C can be proved in an analogous way. The
equivalence of 2.3.A and 2.3.B is proved by a simple passage to the limit using
the fact that F(s,r) | F (s, t+)asr | tand F(s,r+)1 . F(s,t)asrTt.

2.4. A Markov system is hyper-Markov if the collection & (/) satisfies the
following condition:

24.A. Foralls<t, F,, = F(5,t+)V F,,.

Indeedif &, € F (s, t4)and §, e F,,, then P[¢,&,| &, } =& P&, F (t, t+)} e
& (s, t+). Therefore 2.3.C is true.
In particular, condition 2.4.A is fulfilled for all systems with the following

property:
2.4.B. There exists a family x, of mappings of Q into measurable spaces
(E,, £%,) such that any g-algebra & (I) is generated by x, for 1€ I.

2.5. An important class of stochastic systems can be described as follows.
Let S be a linear topological space whose elements are real-valued functions on
R, let a continuous linear functional x (w) of ¢ € S be given for each v € Q, and
let & (I) denote the g-algebra in Q generated by x, with ¢ = 0 outside /. The
collection & (I) satisfies conditions 1.1.A and 1.1.B. It also satisfies condition
2.4.B if S is the space of all functions whose supports are finite sets.

Now let S be the Schwartz space of all functions ¢ € C= with compact support
(or tending sufficiently rapidly to 0 at oo). Then (x,, P)is a generalized stochastic
process according to Gelfand or a random distribution according to It6. The
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most important example is white noise which is characterized by the following
properties:

(i) ex, + -+ + ¢,x, is normally distributed for any ¢,, ---, ¢, €S and
any constants ¢;, - - -, C,;
(if) Px, = 0 for all p € S;
(iil) Px,x, = § o(u)p(u) du for all ¢, ¢ e S.

It is possible to extend the mapping ¢ — x, to all the functions ¢ € LR) while
still preserving these properties.

The derivative %, = — x,, of the white noise generates a Markov system which is
not hyper-Markov. In fact, if s < ¢, ¢(u) = 0 for u > s and ¢(u) = 0 for u < ¢,
then x, and x, are independent, and hence 1.1.C is fulfilled. On the other hand
we shall show that for any ¢ € L*(R)

(2.3) P{x,| F (s, t)} = x, a.s.,
where
P) = lo,o@fp@) — o) dv (t — 5)7'} .

By passage to the limit, we obtain

P{x, | F 5} = x Plx,| o} =x

Lu>s? Ly<t?’

and hence

P{P[x, | F5 01 F ) = %, o # Plx, | F (s, 1))

if §!¢(v)dv + 0. Thus 2.3.A is not true. In order to prove (2.3), we have to
establish that:

(a) If g € Sand ¢ = O outside (s, #), then P(x,X,) = P(x,%,);
(b) x,e F(s )",

Indeed (a) implies that if ¢,, - - -, ¢, vanish outside (s, ), then an arbitrary linear
combination € Xy 4 o0 Fc,xy s independent of x, — x,; therefore X, — X
is independent of (x,, - -, x, ) and hence independent of F (s, 7).

The statement (a) follows from an obvious equality

§oddu = ¢ du .

In order to prove (b), it suffices to remark that if ¢ € L*(R), ¢ = 0 outside (s, ?),
{ ¢ du = 0 and if the restriction of ¢ to (s, ¢) belongs to C=, then ¢ can be ap-
proximated in L*(R) by functions of class C= which vanish outside (s, #) and
have integrals equal to 0.

¢

3. Fundamental g-algebras. Projections.

3.1. In this section the fundamental s-algebras introduced in 1.2 are investi-

gated and some properties of the right, left and central projections will be
established.

First we prove a general lemma.
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LeEMMA 3.1. Let & be a class of nonnegative functions on a set X such that:

(i) iff,9e &, then f 4 ge &;
(ii) if fe«and 0 < g < f, then ge &.

Putée Zif ¢t =6v0e&oré~ = (—§)voeg.
Let 57 denote the class of real-valued functions on X which satisfy the following
conditions:

3.1.LA. If & € &7, then c& € S& for every constant c.

3.1.B. If ¢ and 1) are nonnegative and belong to 57, then § + neZ. If, in
addition, & or y belongs to 5%, then § — ne SZ.

3.1.C. If0< ¢, 16 and &, e 57, then & e 7.

Let .57 be a class of bounded nonnegative functions on X with the properties:

3.1.D. Iff, ge 7, then fge 7.
3.1.E. There exist functions f, € 7 such that f, 1 1.
3.1.F. W&

If &7 C 5F, then _# contains all the functions of _#7 which are measurable with
respect to the g-algebra o(.7") generated by 7.

Proor. Let H, denote the class of bounded functions 4 such that fh ¢ 57 for
every fe 7. It is easy to verify that 57 contains all the constants, is closed
with respect to the linear operations and that, if 0 < &, 1 &, k, € 57, for n =
1,2, ... and % is bounded, then ke 57]. It is easy to deduce from these prop-
erties that 577 is closed with respect to uniform convergence. Since .7 C 57,
¢, thus contains all the bounded ¢(-%")-measurable functions (see [10], Chap-
ter I, T20).

Let £, be functions which are defined as in 3.1.E; then for every bounded
o(-%)-measurable function # we have f,# 1 hand f,h ¢ 5#. Hence e 5#. Re-
lying on 3.1.B and 3.1.C, it is not hard to conclude that 57 contains all ¢(.%)-
measurable functions of 27"

We shall apply Lemma 3.1 to functions £ on the space X = R x Q. Putée&
if there exists a function » such that 0 < &,(») < 7(w) for all ¢, w, and Py < co.
Obviously & satisfies conditions (i)—(ii) and the corresponding .%¢" coincides
with the class introduced in 1.2. From now on & and .5~ designate these specific
classes unless otherwise stipulated.

Let %% be one of the following four. families of functions:

Lt Liccu where s<ueR, ¢9eF, Pp< oo;
Lol where seR, ¢eF_,, Pp< co;
Ll ¢ where ueR, ¢eF,,, Pp < oo;
Lol where s <ueR, e F_, YeF,,,
Pp <o, Pp<oo.
Put fe &7 if fis indistinguishable from some function f’ ¢ .%° which satisfies
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the inequality f” < 1. Obviously .9 possess properties 3.1.D, E, F. If o7° —
& then o(Y) = F ... We show that, for &0 — &, o()is the predict-
able g-algebra. It suffices to prove that every function & ¢ & adapted to & Z,
is measurable with respect to ¢(-%). But it is easy to see that & is indistinguish-
able from the ¢(_%")-measurable function

§i(0) = lim,__ 3, Lijn<tsiersymEarm -

It can be proved analogously that, for %° = &7,, g(% ) is the reconstructable
c-algebra. Hence, for " = &7, o(57") is the solid c-algebra.

Applying Lemma 3.1 to the four classes .% described above, we obtain the
following proposition:

LEMMA 3.2. Let a class 57 of functions on R x Q satisfy conditions 3.1.A—C.
If S contains all the evanescent functions and the family £, (&£, &, or &),
then 27 contains all the F ,,-measurable (respectively, predictable, reconstructable
or solid) functions of class 5¢".

As the first application of Lemma 3.2, we prove that all the predictable func-
tions are right. Indeed the function §i(w) = ol,., € £ is equal to the limit of
the right functions

£M(0) = 1y g p(@) .

Hence it is a right function. According to Lemma 3.2, all the predictable func-

tions of class .27 are right functions. Therefore all the predictable functions
are right.

3.2. We remark that if &’ = II*&, then every function &” indistinguishable
from &’ is also a right projection of £. On the other hand, if & and &” are right
projections of £, then, for each Markov time z, the integrals of &’ and &.” over
an arbitrary set C e _# coincide. Hence £/ = £.” a.s. Consequently &’ and &”
are indistinguishable (see [1], Chapter IV, T13).

We now list some properties of right projections. (Here we write & = p if &
and 7 are indistinguishable.)

3.2.A. If II*¢€ = &', then II*(c§) = c¢&’ for every constant c.

3.2.B. If ¢ and 7 are nonnegative and ¢ = II+¢, 5/ = II+y, then & + 7 =
II*(¢ + 7). If, in addition & or 7 is majorized by a summable function, then
¢ — 7 =1I"¢ — 7).

32C Ifo<¢,1€éand I+, =&/, n=1,2, - .., then &) 1 II+¢.

3.2.D. II+*¢ = 0 if £ is evanescent.

3.2.E. If Iis an arbitrary interval and ¢ is a summable function then the
function

§/(0) = lim,“ P{@’y—<r+}11(t)

(where r takes rational values) is a right projection of the function ¢,(0) =
p(@)1,(7)-
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3.2.F. If £ = 0 and II*§ = & then for any right nonnegative function 7z,
I*(9é) = &'

Property 3.2.E can be easily deduced from [10], Chapter VI, T4 (cf. [1]
Chapter V, T9). The other properties are obvious.

3.3. THEOREM 3.1. The right projection exists for every F . q-measurable func-
tion § €
Let (57 (I), P) be a Markov system. Then:

3.3.A. If ¢ is reconstructable, then I1*& = &' is reconstructable, central and
progressive. There exists a version of &' such that, for each t, &/ is F(t, t+)-
measurable.

3.3.B. If a reconstructable function & belongs to ., N &7, then I+ € &,

3.3.C. Let ¢, be predictable, &, be reconstructable and let & = £,&,. If II-¢, =
7 11%€, = n,, then

II*II-¢ = II-1I*¢ = 7,7, .

3.3.D. II*II-¢ = II-II*¢ for each solid function § € %"

Proor. Put & e 57 if there exists a right projection of §. Properties 3.2. A—
C imply 3.1.A—C. By virtue of 3.2.D—F 5# contains . and all the evanes-
cent functions of 227 By Lemma 3.2 5# contains all & ,,,-measurable func-
tions of class 2%

Now denote by 5# the totality of all functions ¢ for which 3.3.A is fulfilled.
Obviously % satisfies 3.1.A—C and contains all evanescent functions. Ac-
cording to Lemma 3.2, the statement 3.3.A will be proved if we show that
S 2 &,. But the right projection of the function §, = 1,., ¢ € &, is given

by the formula
§/(0) = limru Plo| Z(r, r+)H,,

in view of 3.2.E and 2.2.C and (2.1). It is evident that &’ € &, and &,/ e F (1,
t+) for each r. Hence & is right, reconstructable and progressive. But all
reconstructable functions are solid. They are also left (the dual statement was
proved at the end of 3.1). Thus § € 7. '

Now let £, n & and II*§ = §’. According to [1] (Chapter 1V, T28),
3.3.B will be proved if we show that P | P& for arbitrary Markov times
7, . But P§ | P¢, and by virtue of (1.1), P&, = PE, , P§ = P¢..

Let us prove 3.3.C. As we know, any predictable function &, is right. Hence
3.2.F implies that II*¢ = &,7,. But 7, is a left function according to 3.3.A.
Therefore II-II*¢ = #,7,. Analogously, II*II-¢ = 7,7,

3.3.D can be easily deduced from 3.3.C and Lemma 3.2.

Relying on 3.3.D, we define the central projection of a solid function & e %~
by the formula

II¢ = II*II-¢ = II-1I*¢ .

In accordance with 1.2, denote the class of all central sets by <”. Let &, (&)
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be the totality of all reconstructable (respectively, predictable) central sets. The
classes &, &, and &_ are g-algebras in R x Q.
The following propositions hold:

3J4A. =%,V Z..

3.4.B. All central functions are progressive.

3.4.C. Each function in &, is indistinguishable from a function & with the
property: for each ¢, £, € F (¢, t+).

3.4D. If €., and §,€ F(t, t+) for each ¢, then £ ¢ &,.

In fact, 3.3.C and Lemma 3.2 imply that, for any solid ¢ € 7, the function
II¢ is measurable with respect to the o-algebra generated by 7,7, where 7, is
predictable and 7, is reconstructable. But & = II¢ for any central §&. Therefore
3.4.A—B follow from 3.3.A—A*. If £ ¢ &, then & = II*¢, and 3.3.A implies
3.4.C. Proposition 3.4.D is evident.

3.5. Let £ be an &, ,-measurable function of class %" and let .9 be a sub-
o-algebra of the g-algebra .%. Then there exists a function 7, such that

PE,|.) =7, as.

for each .%7-measurable function ¢; 7 is determined uniquely up to indistinguish-
ability; we denote it by P_ ¢ and call it the regular conditional mathematical
expectation of §. The operators P, have the following properties:

3.5.A. P_(c§) = cP_ ¢ for every constant c.

35B. P (§+1n) =P ¢+ P,y for nonnegative § and ». If, in addition,
§ or 7 belongs to &, then P_(§ — y) = P_& — P, 1.

35.C. f0<é, 14, then P E, TP, E.

3.5.D. P_ & = 0 for evanescent &.

3.5.E. If ¢ and 7 are nonnegative and 5 € ZZ(R) X .7, then P_(£n) = yP_ .

35F. P teS forée s n .

All these assertions follow easily from [8] or they can be deduced from 3.2—
3.3. In fact the operator P, coincides with the operator II* for the stochastic
system (-~ (I), P) where & (I) = . for all I.

3.6. We associate with every open interval I the operator
¢z:$‘—’¢1§=Pf(I)(€II)’ §e 7.

The operators ¢, and ¢, correspond to intervals (— oo, #) and (¥, + oo).
If & is predictable, then

Indeed the function ¢, 1, ., is measurable with respect to <Z(R) x & Z,. There-
fore (3.1) follows from 3.5.E.

THEOREM 3.2. Let (#(I), P) be a hyper-Markov system and let £ ¢ 97 If & is
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reconstructable, then y = ¢_, & is also reconstructable and

(3.2) Iy = I*(£1,.,) -
If € is solid, then 7 = ¢ & is solid too and
(3.3) Iy = (1)) .

Proor. In view of Lemma 3.2 and 3.4.A—D, the equality (3.2) is true for
all reconstructable & e 2" if it is true for § € &, N & (since &7, < &, N &).
By 3.5.F, » = ¢_,6 € &,. By virtue of 1.1.D and (2.1),

7. = P{§,| F ) = Pl F(hule &,
for t < u. Since 5, = 0 for ¢t = u, 7 is reconstructable.

By virtue of 3.3.B, the functions ¢’ = II*(£1,.,) and 9’ = II*y belong to &, .
Both functions vanish for ¢+ > u. Therefore (3.2) is true if £’ = 7,’ a.s. for each
t < u. But (1.1) and 2.2.A imply that for t < u

n = P{’?tl'-g;u} = P{P{Stlgd(t’ u)}|ﬁ‘(¢, t+)} = P{Etly-(t’ t+)}
= Pl&,| F .} =&/ as.

In order to prove (3.3), it is sufficient to verify it for & = ¢,&, where ¢, and
¢, are nonnegative, & is predictable and &, is reconstructable. Let I = (s, u).
By 2.3.A, = ¢,,9.,§ By (3.1) 6,6 = §,6.,6, and the second factor is re-
constructable. It follows from (3.1)* that y = ¢.,£, 6., &, and the first factor
is predictable. Now 3.3.C implies the equalities

H77 = H—(¢>s€1)n+(¢<u§2) ’
H(SII) = H.—(Sl 1t>s)H+(§2 1t<u)

and the right sides are equal in view of (3.2) and (3.2)*.
3.7. We formulate a simple criterion of solidity. Put & ,, = & _, v .F,.

THEOREM 3.3. If & is solid, then & is & 4, o-measurable and &, is F I,-measur-
able for each t. The converse is true if each g-algebra Z (I) is generated by . F (t—,
t+), tel

The first assertion is deduced easily with the help of Lemma 3.2. The second
assertion is proved in [6] (Section 2).

3.8. Now we justify the description of the central c-algebra formulated in 1.5.

Denote by 5# the class of all functions f on the state space E for which f{z, x,)
is central. Evidently, 57 contains all the constants and is closed under addition,
multiplication and passage to the limit. According to 3.4.D—D* and the defini-
tion of regular representation, &#” contains all the base functions. Therefore
&# contains all measurable functions.

Now we prove that each central function is indistinguishable from a function
f(t, x,) with f measurable. It suffices to establish this for functions II¢ with
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solid £. By virtue of Lemma 3.2 it suffices to consider only functions & € &,
i.e., functions &, = ¢1,.,.,¢ Where p e F _,, ¢ € F,, Pp < oo and P$ < co.
In view of 3.3.C

I1¢ = (H'§01,<,)(H+¢1,>u) .

The strong Markov property and the dual property imply that
m*el,,, = 1t>uPt,zt¢ s
gl = 1, Pooep
(see [3], Theorem 3.1). Thus II¢ is indistinguishable from f{z, x;), where
[t x) = Lo P oP" "
4. Finite additive functionals.

4.1. We proceed to investigate additive functionals.

LEmMMA 4.1. Under conditions 1.4.A—B, the properties of 1.4.C, C', C" are
equivalent.

Proor. For any se R the function &,(f) = 1,., A(s, t) is predictable and the

function »,(f) = 1,.,A4(t, ) is reconstructable. We have
1x<t<uA(S’ u) = ls<t<uA{t} + 1t<u$s(t) + ls<tnu(t)
forevery s < u € R. Therefore under conditions 1.4.B—C the function 1,_,, 4{t}
is solid. Letting s —» —oo and ¢ — + oo, we prove that A{r} is also solid. Thus
1.4.C is satisfied. On the other hand if 1.4.C’ is true, then 1,_,., A(s, u) is solid,
and 1.4.C follows from the relation
lthA(s’ ll) = limrls 1t<rA(r’ ll)

and the corresponding dual relation.

The formula

A{t} = lima—-»—co limelo la<t A(S, t] - ls<t—eA(S’ r— 6]

shows that A{r} is a right function. By symmetry it is also left. Hence 1.4.C’
and 1.4.C” are equivalent.

LeEMMA 4.2. Let A be a o-functional and let f be a nonnegative progressive func-
tion. Then

B(o, ') = {; f(@)A(w, d1), T e Z(R)
satisfies 1.4.A; if f is central and finite, then B is a o-functional.

Proor. The restriction of a progressive function f'to the set Iis <#(I) x & (I)?-
measurable and for every I' € ZZ(I) the function A(w, I') is & (I)*-measurable.
Therefore (see, e.g., [2], Lemma 1.7), the function

Flw,, 0,) = {; f(0)A(,, dr)

is F(I)* x & (I)’-measurable and B(I) = F(w, 0) is & (I)’-measurable. The
first assertion of the lemma is proved.
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Obviously B satisfies condition 1.4.C” if f is central. For bounded f, the
validity of 1.4.B for A4 implies its validity for B. Therefore the second assertion
is also true.

4.2. The main result of this section is:

THEOREM 4.1. If A is a finite additive functional, then there exists a positive
central function ¢ such that
4.1) P§ ¢, A(dt) < oo .
In other words, the spectral measure of any finite additive functional is o-finite.

This result was first proved by Sur[12]ina slightly different form. We adapt
his proof as follows:

Proor. Without loss of generality we can assume that
At} < o for all ¢
where p is a constant. Indeed in view of Lemma 4.2 the formula
A(dt) = 1,15, A(d1)

defines a finite additive functional. Let ¢,” be a positive central function such
that
P§orlA(dt)y =c, < .
Then the function
P = D=1 G270 Ly
is positive, central and satisfies (4.1).
Consider a finite set A = {t, < 1, < ... < ¢,} and put

&, = A(t, t;] for t,_, St<y,,
7, = F(&,) where Fu)=1—e*,

£ = 15@1 = lwgmn :

These functions are reconstructable. Let ) = II*p, g =t,_,, r = ¢t,, y = F(1)/2.
Put

B(dt) = 1, . A(dr)

7Sy
and consider the Markov times
T, =¢; Ty = inf{t: ¢t > 7, B(t,, t] > 1} for k=0,1,2,....
We prove that for each k > 0
4.2) 7., =71 as. ontheset {r, < oo}.

Indeed 5 ¢ &”,.. Hence 7e¢.%,. If 7, < oo, then B(r,_,, t] < 1 for t < 7, and
B(t,_;, t] > 1 for t > 7. Therefore B(r,_,, 7,) < 1 and B[z, t] > 0 for ¢t > z,.
Consequently, each segment [z, t] contains #' for which 7,, < 7.

We have

Pty <1} Plr, <1, Bz, 1] > l}éP{7k<r’Erkg 1}=P1rk<rc.—k'
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But { < F(1)~'» and by virtue of (1.1) and (4.2)
Py, <1} = F)7PL oy, = F(D)TPL 07, < 277P(7, <1}

As we know B(z,_,, 7,) < 1. Hence B(r,_;, 7,] < p + land B(z, 7,] < n(o + 1).

Therefore
P{B(g,r] > n(p + 1)} < Plr, <r} = 2"

and PB(q, r] < co. We have thus proved that (4.1) is fulfilled for ¢, = 1t0<’§tw7ts .
Let A,, be an increasing sequence of finite sets with everywhere dense union and
consider the corresponding sequences »™ and ¢™. Observe that », | 0 for all ¢
a.s. Putc, = | ¢,"A4(df). The function

(4.3) ¢ = Xim=1 27"CaTIO"
is positive, central and satisfies (4.1).

4.3. Theorem 4.1 implies that each o-functional can be represented as a sum
of functionals 4, for which PA4,(R) < co. Consequently, the spectral measure
of each o-functional is a o-measure.

It is sufficient to prove this assertion for finite functionals 4. Put A°(dr) =

1, 2, A(df) where ¢ satisfies condition (4.1). We have
PA(R) < P e, A(dt) < oo .
Lete,=2",n= ..., -2, —-1,0,1,2, .... Then 4 is a sum of the functionals
A, = A% — A1
5. The fundamental identity and its implications.

5.1. Let p be the measure defined by formula (1.2). Our aim is to prove the
fundamental identity (1.3). In view of 4.3 we can assume that x is finite. We
wish to apply Lemma 3.2 to the set 5# of all solid functions & satisfying (1.3).
Conditions 3.1.A—C are fulfilled for 5# by virtue of 3.2.A—C and 3.2.A*—C*,
In view of 3.2.D—D*, 57 contains all evanescent functions. It remains to
prove the inclusion 52 2 &

Let

§o= ol qcn? > where e F,, deF,,, Pp<oeo, Ph<oo.

By 3.3.C
IE = 7¢ where 7, =II-(pl,.,), & =1I*(1,.,¢).
By (1.1) and (1.1)* forevery s < g < r < u
P{¢ I ﬂ<r+} = Cr ’ P{SD I “g?;q—} = 7711 a.s.

Therefore »
(5-1)  PpA(g, ¢ = PleA(q, NP¢|-F <.i}} = PpA(g, 1)C, = Py, A(g, )G, -

Let A ={t, < #, < --- < t,} be a finite subset of the interval (s, u) such that
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PA(A) =0. Putty=s, t,., = u and introduce the functions

() = .y oty =1, for re[t_,t,).
By (5.1)
(5:2)  pl6) = PY &A@ = X PpA(ti—is )¢ = 3 Pyy_ Aty 1)G,,

=P 77rmCm>A(df) .

Let A,, be an expanding sequence of finite sets such that |J A,, is everywhere
dense in (s, u). Consider the corresponding functions r,, and 4, and observe
that 7,,(f) T tand d,(f) | . According to 3.3.B—B*, e % and { € &,. There-

fore u, s,y — 7:C; and the right side of (5.2) converges to p(II§). Hence
& < S#. By Lemma 3.2, 5 contains all solid functions of class %"

5.2. THEOREM 5.1. Two o-functionals with identical measures are indistinguish-
able.

Proor. 1°. Let the measure p, = p; = p be finite. The fundamental identity
(1.3) implies that if & is solid and independent of ¢, then

PEA(I) = PEB(I) = p(£1,)  forall [.

The function ¢ = A(I) — B(I) issolid by 1.4.C. Hence P&* = P£[A(I) — B(I)] =0
and A(I) = B(I) a.s. But as two finite measures coincide if they coincide on all
the intervals (r, r,) with rational r, and r,, we must have 4 = B. (The equality
sign = means here and later indistinguishability of functionals.)

2°. If the spectral measure g, is finite and if

dp; = fdp,
with a central function f, then
A(df) = f, A(dr) .

In fact the right side of the last formula defines an additive functional with the
spectral measure p; (cf. Lemma 4.2).
3°. Every o-functional 4 can be represented in the form

(5.3) A(dt) = f,A(dr),

where 4 is an additive functional with a finite spectral measure and f is acentral
function. The measures r4 and p; charge the same sets (i.e., assign positive
measure to the same sets).

Indeed according to 4.3, 4 = 3} A, where PA,(R) = ¢, < oo. Put

/I:ch—lZ—'nAn, Pa= > pi=f, Pa, = to-

The measures ¢ and j charge the same sets, p, and 7 are finite and the y, are
absolutely continuous with respect to 2. By the Radon-Nikodym theorem
dp, = f~dpg where f* is a central function. By 2°, 4,(dtf) = f;"A(dt). Hence
(5.3) is fulfilled with f = > f~.
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4°. Now let 4 and B be arbitrary o-functionals with identical spectral meas-
ures p, = pp = p. By 3°

A(dr) = f,A(dr) , B(dr) = g,B(dt) ,

where f and g are central functions and 4 and B are additive functionals with
finite spectral measures p; and p5. The measures g, z;, and p; charge the same
sets. Hence dy; = h dyj and, according to 2°, A(dt) = h,B(dr). Hence A(dr) =
f:9,B(dt). ‘
We thus have
dyp = fhdp; = gdy; .
Now put C = {fh = g} and D = {fh # g}. Obviously,
1o A(dt) = 1, fhB(dt) = 1,9B(dr) = 1,B(dt) .
On the other hand, p3(D) = 0. Hence

P 1,(0AW) = py(D) =0, P 1,(0)B(dr) = pp(D) = 0
and
1,(t)A(dt) = 1,(t)B(dt) = 0.
Thus A4 = B.

5.3. THEOREM 5.2. A o-functional A is continuous if and only if its spectral
measure p, charges no scanty set.

Proor. The set C = {(1, w): A{r} > 0} is scanty and central. Therefore
£4(C) = 0if p, charges no scanty sets. But

pa(C) = P§ 1,4y50A4(dt) = P 3] A{t}.
Hence P{A{t} > O for some ¢} = 0.
The remaining part of the theorem is trivial.

6. Construction of additive functionals.

6.1. The aim of this section is to prove that every g-measure on the central
c-algebra which does not charge any evanescent set is a spectral measure of a
o-functional. This result will be established for hyper-Markov systems.

In fact, a stronger proposition will be proved. Let us say that (& (1), Py is
subordinate to (- (I), P) if, for any finite interval I and any Ce .& (I) the
equality P(C) = 0 implies the equality P(C) = 0. Starting from a measure g,
we construct 4 which is a ¢-functional not only of (& (I), P) but also of all
subordinate stochastic systems.

6.2. Put Ce (I) if Ce F(I) and the set R x C is solid. Let us prove that
& e F (s, u) belongs to <(s, u) if and only if £1,.,, is solid. It suffices to prove
that the functions ¢1,_, and £1,,, are solid if é € & (s, ). By virtue of 1.1.B
we can assume that § € & (¢, r) where s < g <r < u, and in this case £1,, =
€l,.,1,s, is reconstructable and ¢€1,,, = £1,,,1,,, is predictable.
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6.3. LEMMA 6.1. Let (5 (I), P) be a hyper-Markov system and let p be a finite
measure on the central g-algebra & which does not charge any evanescent set. Then
for each open interval I, there exists a function a(I) e (1) such that

6.1) Pa(Dé = § 1I(£1;) dp
if §(w)1,(¢) is a solid function.

Proor. The integrals of indistinguishable functions with respect to the meas-
ure u coincide. Hence

(6.2) 0,(C) = § L[1(0)1,(1)] dps

isuniquely determined for every C € .#(I). Inview of 3.2.A—Cand 3.2. A*—C*,
Q, is a finite measure on Z{(I). By 3.2.D—D*, 0,(C) = 0if P(C) = 0. By the
Radon-Nikodym theorem, there exists a function a(7) € G(I) such that

(6.3) Q.(§) = Pa(l)¢

for each ¢ € Z(I). Formula (6.1) now follows from (6.2) and (6.3).
Consider next the case when ¢ is not . (I)-measurable but £1; is solid, and let

(6.4) & =PE|ZF()}-
It is clear that ¢, & = £’1,. By Theorem 3.2, &'l is solid and
(6.5) II¢'1;) = I(¢1,) .

Therefore, according to 6.2, & is solid. Hence & ¢ Z{(I) and (6.1) is fulfilled
for &’. By virtue of (6.4) and (6.5) this formula is true also for &.

6.4. THEOREM 6.1. Let (& (I), P) be a hyper-Markov system. Suppose. that a
finite measure p on the central g-algebra does not charge any evanescent set. Then
t is a spectral measure of a finite additive functional A. This functional can be con-
structed in such a way that there exists a set Q, with the properties:

(i) P(S) = 0;

(ii) Q, is the union of a countable family of sets which belong to the c-algebras
F(I) for the finite I,

(iii) A(I) coincides with a . (I)-measurable function outside Q,.

Proor. Put we B, if

(6.6) a(ry, r) = a(gss q5)
for all rational ¢, < r, < r, < g, € I and

(6.7) lim, ,a(s, r) + a(t, u) = a(s, u)

for all rational s < t < uel. (Passage to the limit in (6.7). as well as in sub-
sequent formulas (6.8)—(6.11) is performed over the set of rational numbers.)
Consider the complement C, of B; and the union Q, of C, over all finite inter-
vals I with rational endpoints. It is obvious that B, and C, belong to .& (1) and
that P(Qo) = 0.
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Now suppose » ¢ Q,. Then (6.6)—(6.7) are fulfilled for all rational ¢, < r, <
r, < g;and s < t < u. For any rational s consider the function on the half-line
[s, + o) defined by the formula
(6.8) F(u) = lim,, a(s, r) .
The function F, is nondecreasing and right continuous and F,(s) = 0. Hence
there exists a measure 4, on (s, +oo) such that F,(u) = A,(s, u] for all u > s.
By (6.7),

A(s, t] + Ayt u] = A(s, u]

for all rational s < ¢ < u. Therefore the measures 4, and A, coincide on (¢, + o0)
and there exists a measure 4 on R such that
(6.9) A(s, t] = lim, , a(s, 1)
for all rational s < ¢. It follows from (6.9) that
(6.10) A(s, 1) = lim, |, . ¢, a(rs 1)

forall s < teR.
Put A(w, I') = 0 for € Q,. It is clear that A satisfies conditions 1.4.A and
C. The function

(6.11) A(s, 1) = lim, |, , 1, a(ry 7,)
belongs to . (s, 1) and 4 = A4 outside Q,. The equality
(6.12) w(IIg) = P § &, A(dr)

is satisfied for & € & by virtue of (6.1) and (6.10). By Lemma 3.2, it is also
true for all solid functions é € " In particular, if & is central, then II§ = ¢
and (6.12) implies that A satisfies 1.4.B and that # is the spectral measure of A4.

6.5. THEOREM 6.2. Let (F (1), P) be a hyper-Markov system and let p be a o-
measure on the central g-algebra which charges no evanescent set. Then a o-functional
A of (F (I), P) can be constructed with the spectral measure p such that A is also a
o-functional of every system (Z (I), P) which is subordinate to (Z (1), P).

Suppose that the density dP|dP on Z (s, t) is equal to g,(w)h(w), where g and h
are bounded, g ¢ &, and he 7. Then

(6.13) P\ g, A(dl) = P\ &9,k A(dr)
for every function & which is progressive relative to (& (I), P).

Proor. The general case can be elasily reduced to the case of finite p and
bounded £. Consider the finite additive functional 4 with the spectral measure
p described in Theorem 6.1. The equality P(I'") = 0 implies that Z(T") = 0.
Hence A(I) € .# (I)® and 1.4.A is fulfilled for the measure P. Obviously, 1.4.B—
C are fulfilled too.

In order to prove (6.13) we put B(dt) = &, A(df). According to Lemma 4.2
B(I)e & (I)*. Hence .

PB(s, t) = Pg, B(s, )k
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for every s < r. It suffices to prove (6.13) for & vanishing outside a finite interval
(s, u). Consider the set A and the functions y and § introduced in 5.1. We have

(6.14) By &, A(dl) = P g, k", A(dr) .

Formula (6.13) can be deduced from (6.14) in the same way as (1.3) was deduced
from (5.2) in 5.1.

7. Markov systems on a random time interval.

7.1. We now extend the results of the preceding sections to systems on a
random time interval introduced in 1.6.
First of all we establish some properties of such systems.

7.1.A. For each teR, {a =t} is an atom of . _,, {a > ¢} is an atom of
F <, and {t E[a, P)} is an atom of F (¢, t+).

The first assertion follows from 1.6.B with / = (— oo, f). Now let¢, | t. Then
{a = t,}1{a >1t}. Hence {a >1}e F,,,. If §e F,, then ¢ is constant on
each set {a > t,}. Therefore ¢ is constant on {a > ¢}. This proves the second
assertion. To prove the third, let B, denote the intersection of {r ¢ A(w)} over
all rational r ¢ (1, t,). Clearly B, e & (t,t,) and B, = {a <t < f, < f}. Hence
{re[a, B)ye F(t, t+). IfEe F (L, 14), then, by 1.6.B, ¢ is constant on each
set C, = {(a §) N (1, 1,) = @). But C, 1 {tE[a, B)}.

7.1.B. {w:I< A(w)}e F(I) for every open interval /.
Indeed A contains 7 if and only if A contains all rational points of the interval
I. Therefore 7.1.B follows from 1.6.A.

7.1.C. The function 1,., is predictable. Every predictable function ¢, is in-
distinguishable from the sum y + {, where 5, = 0 for ¢ < a and {, is measurable
in ¢ and does not depend on w.

The first statement follows from the fact that {a < t}e . _,. The second
statement will be proved if we prove it for £ € &_. Since {a = r} is an atom of
F ., there exists a constant ¢, such that §,1,,, = ¢, 1,z,. Put {, =lim, ¢, (r
irrational). The functions {,1,,, and &, 1,,, are indistinguishable. Hence ¢, is
indistinguishable from 5, 4 ,, where », = (§, — {,) 1o,

7.1.D. The function 1, is a right function. Each right function §, is indis-
tinguishable from 7, + {,, where 5, = 0 for t < « and {, is measurable in ¢ and
does not depend on w. ’

The proof is analogous to the proof of 7.1.C.

7.1.E. The function 1,(7) is a central function. Each central function is in-
distinguishable from 5, + {,, where 5, = 0 for ¢ € [a, 8] and {, is measurable in
t and does not depend on w.

In fact 1, is solid according to 7.1.C—C*. Denote by ¢, the indicator of the
set {a¢ <t — n~' < t < ). The function ¢ belongs to &,. By 7.1.A the sets
{a £t —n'< p)and {a <t < B} belong to & ,,. Hence p"ec.& _,, and ¢*
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is a right function. The function 1, is also right since ¢* 1 1,. By symmetry,
1, is also left. The second part of 7.1.E can be easily deduced from 7.1.D—D*.

7.2. We say that the g-algebras % and <7 are c.i. on Q, given € if Qe &
and, for every 4e % and Be &7,

P(AB| @) = P(A| Z)P(B| ) a.s. P, Q.

(The abbreviation a.s. P, Q, means for all o € Q, except a set of P-measure 0.)
In Sections 1 and 2 we considered c.i. relative to the g-algebras & (1), F (t,t+),
(s, t+). For each of them we now fix an element Q, according to the follow-
ing list:

& FI) F(t+) F(st+)

Q: {1 A} {refa P} {(s 11 [a B}
(In view of 1.6.A and 7.1.A, B, Q, e € in all three cases.) We now modify the
conditions 1.1.B, C, 2.2.A, C, D and 2.3.C by replacing c.i. with c.i. on Q, and
use the subscript r when referring to the modified formulations. For example,
the modified version of 1.1.C is:

1.1.C,. For any s < t, g-algebras & _ and &, are c.i. on {(s, ) & A} given
F (s, 1).

Conditions 2.3.A—B represent P{y| &’} for the two g-algebras & by iterated
conditional expectations. We now suppose that this representation holds only
on the ; specified in the list (7.1) and arrive in this way at the conditions
2.3.A,—B..

A Markov representation of a system (% (I), P, A) is a function x,(») defined
for t € A(v) and satisfying 1.5.A and the following condition:

1.5.B,. &, and &, are c.i. on {t ¢ A} given x,.

Apart from this modification, Theorems 2.1 and 2.2 remain true for systems
on random time intervals. The proofs rely on the criterion of c.i. on Q, (equali-
ties (2.1) and (2.2) in Lemma 2.1 have to hold only on Q).

7.3. Section 3 needs the following comments.

In 3.1 we associated a class % with each of the families &, &<, -, and .&".
For systems on random time intervals, % satisfies, just as before, the conditions
3.1.D, F but not necessarily 3.1.E. We say that X € R x Q belongs to the class
7 if there exists fn€ ¥ such that f, 1 1,. In the case %° = ¥, R x {w:
re A(w)} e % for all r by 1.6.A and R x {A = @} € . by 1.6.C. Hence R x
Q e %7 and Lemma 3.2 remains valid. Analogously {a < t}e ¥ for &= &,
{a > t}e ¥ for & = &, and {te A} e 5 for " = &, Condition 3.1.E
is fulfilled if we set X equal to {a < t}, {a > 1}, and {t € A} respectively. Taking
into account 7.1.C—C* we arrive at the following version of Lemma 3.2.

LEMMA 3.2,. Let 5 be a class of functions on R x Q which satisfies the con-
ditions 3.1.A—C and which contains all the evanescent functions. If all the functions
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of t which are independent of w belong to 57, and if & C S (&, S ), then
S contains all the predictable (respectively, all the reconstructable) functions of %"
If all the functions which vanish on A belong to S and & C 2%, then S contains
all the solid functions of %" ,

All the results of 3.2 and 3.3 remain valid. The proofs are based on the generalr
propositions established in [1] and [10] for a finite measure but these proposi-

tions hold also for o-finite measures. Lemma 3.2 has to be replaced by Lemma
3.2,

The operators ¢, introduced in 3.6 have now to be defined by the formula
$:€ = P.?"(I)(EIIQI) ’
where Q, = {0: A(w) N % @}. In particular,

$é = Pﬁ"<u($1a<u,t<u) and 65,8 = Pf<a(€1ﬂ>s,t>s) .
Instead of (3.1) and (3.3) we have the following formulas:

(3'1r) H+W = H+(§1t<u,a<u) ’
(3.3,) Oy = I(£1,Q,) .

The results of 3.7 do not change. The characterization of the central g-algebra
established in 3.8 has to be reformulated as follows: .

The class of central functions vanishing outside A coincides with the class of
functions which are indistinguishable from

(7.1) &, = f(t, x,) for te(—oo,u)N A,
=0 for t€(—oo,u)n A,

where f is a measurable function on &".

7.4. In the case of a random time interval, the proof of Lemma 4.1 is more
complicated. Associate with every finite set A=<t < - < t,} two ran-
dom variables '

(7.2) ay, =1, for t,_ S a<t,; Bo=1t, for t, <Pt

(here t, = —oo, f,,,, = +o0). The functions ¢, = 1,, ., and §, = ¢, A(ay, t) are
predictable and the functions ¢, = 1,,,and », = ¢, A(t, B,) are reconstructable.
We have

luA<t<ﬁA A(ay, Br) = 1aA<t<ﬁAA{t} + @ + i€

Therefore conditions 1.6.a and 1.4.C imply that 1, _,,, A{t}is solid. Condition
1.4.C is fulfilled because 1,,,<;, 1 1 as A runs over an expanding sequence of
finite sets with everywhere dense union. On the other hand, 1.4.C’ implies the
solidity of 1,, .,c,, 4@y, By). Let A run over an expanding sequence of subsets
of (s, u) whose union is dense in (s, ). Then 1, .,.,, A(@, Ba) T Licicu A(S u),
and condition 1.4.C can be checked just as in n° 4.1.
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Let us show that 1.4.C’ implies 1.4.C”. For every ¢ > 0 and every finite A
laA<t—s,t<,9AA(t —&l]= laA<t—e,t<ﬂA{A(aA’ 1] — A(ay, t — €]}

is a right function. Passing to the limit first over ¢ and then over A, we see that
1 << A{t} = A{t} is a right function. By symmetry it is also a left function.

The conclusions of Lemma 4.2 and Theorem 4.1 remain true. The most
essential change in the proofs is caused by the fact that A(z, #'] can be infinite if
t = a and therefore it does not necessarily tend to O as #/ | . However, 1,7, | 0
for all ¢+ where »™ are the functions introduced at the end of 4.2. Therefore we
can define ¢ by (4.3) for e A and put ¢ = 1 for 1€ A.

7.5. Section 5 needs no comments. Section 6 has to be changed as follows.
Put Ce & (s, 1) if Ce F(s,1) and C < {a < 5,¢ < B}. Denote by £(I) the
class of sets C e .5 (1) for which R x {C, A n I & @} is solid. We substitute:

(i) () for Z(I) in the definition of subordination;
(ii) 1,Q, for 1,in the statement of Lemma 6.1 and formulas (6.2) and (6.5);
(iii)y Z(I) for (1) in the proof of Lemma 6.1.

We include in the statement of Theorem 6.1 the condition that p is concentrated
on {(t, ): t € A(w)}. (By virtue of 1.6.83 this condition is fulfilled for all spectral
measures.)

To prove Theorem 6.1, we introduce a class 5#7(/) of functions &, for which
&1 cocicu<p is solid for all s < weI. Consider a,, 8, defined by (7.2) and put
ay, = a(ay, B,) if ay < B, and a, = O for the other A. It is easy to check that:

(a) aye (1, 1n);

(b) a, is F (1, t,)-measurable;

(¢) Pay& = [ II(£1,, c1ep,) du for € € A1, 1,).

Consider an expanding sequence A, <  whose union is dense in 7. It follows
from (a) and (c) that a, increases. Hence it tends to a limit b(/). It follows
from (a) and (b) that b(I) € (1) and we can assume that b(I) ¢ & (I). Passing
to the limit in (c) and taking into account that (a,, 5,) 1 I n A, 1, is central and
¢ is concentrated on {r e A}, we get

(1.3) Ph(1)e = § TI(E1,) dp

for £ e Z2(I). Using b(I) instead of a(/) and relying on (7.3) instead of (6.1),
we prove the theorem in the same way as in 6.4. (Q, is defined as the union of
sets {a < g3, Cy, 4,0» 92 < B} Over all rational ¢, < 9s-)

In Theorem 6.2 we have to replace & (s, t) by & (s, ¢).

Some of the results of this paper were announced in [7].
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