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RANDOM VARIABLES BARELY WITH OR
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One-sided iterated logarithm laws of the form lim sup (1/b,) 7 Xi = 1,
a.s. and limsup (1/bs) $7 X; = —1, a.s. are obtained for asymmetric inde-
pendent and identically distributed random variables, the first when these
have a vanishing but barely finite mean, the second when E|X] is barely
infinite. In both cases, liminf(1/b,) 3,7 Xi = —co, a.s. The constants ba/n
are slowly varying, decreasing to zero in the first case and increasing to
infinity in the second. Although defined via the distribution of |.X], b, rep-
resents the order of magnitude of E| ¥} X:| when this is finite. Correspond-
ing weak laws of large numbers are established and related to Feller’s notion
of “‘unfavorable fair games’’ and in the process a theorem playing the same
role for the weak law as Feller’s generalization of the strong law is proved.

1. Introduction. Following along the lines of Feller, independent, identically
distributed (i.i.d.) random variables {X,,, n = 1} will be said to obey a generalized
law of the iterated logarithm (LIL) if there exist constants {6, n = 1}, 0 < b, 1 o
for which

*) (i) limsup;)_l_ " X,=1, as. or

n

i=1“"i

(i) lim supbi L, X, = —1, as.
According to Theorem 4, the second alternative is nonvacuous.

When EX = 0, EX? = ¢° < oo, the renowned theorem of Hartman-Wintner
[8] asserts that (i) obtains with b, = ¢(2n log, n)t. For symmetric i.i.d. random
variables, Feller [6] has shown that (i) holds with® b, = 2¥(n?/ H(n) log, n)~! pro-
vided EX* = oo, E(X*)’/H(X*)log, X* < oo where H(x) = EX*I;;,; and so
b,/(nlog, n)* — co. According to a result of Heyde [9] and Rogosin [13] for
symmetric i.i.d. random variables to obey a generalized LIL (i) it is necessary
that the distribution of X belong to the domain of partial attraction of a normal
distribution and according to Kesten [10] this is sufficient.
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862 MICHAEL KLASS AND HENRY TEICHER

The situation for asymmetric i.i.d. random variables with barely finite (and
vanishing) mean or barely infinite mean turns out to be completely different.
Here it will be proved (Theorem 3) that for suitable distributions with EX = 0,
a one-sided generalized LIL (i) obtains, but not the corresponding two-sided
LIL [15, 16]. Moreover, b,/n is slowly varying and decreases to zero. Likewise,
for suitable distributions with E|X| = oo, a one-sided generalized LIL (ii) but
not a two-sided LIL obtains (Theorem 4). In this case, b,/n increases to infinity
and is again slowly varying. In both situations the distribution may lie outside
the domain of partial attraction of a normal distribution.

Furthermore, in contradistinction to the symmetric case where (i) entails [10,
Lemma 4]

1
b'—‘Z?Xi‘_’PO’

n

in the asymmetric case (*) is compatible with

(%) (i) biZ;‘Xi-—»PI or (i) L XX —p—1,

1
} b,
according to Theorem 2 and Corollary 3.

The normalizing constants b, which ensure (*) and (**) are simply defined
via the distribution of | X]| (see (6)). These are also connected with the correspond-
ing random walk S, = Y7 X;, n = 1 and Theorem 5 reveals in case (i) that the
same conditions which guarantee (1/b,) 317 X, —p (c — 1)/(c + 1), likewise ensure
(1/6,)ES,* — max[1/(1 + ¢),¢/(1 + ¢)]. Thetwo limits agree only in the extreme
case ¢ = oo (see Theorem 2 for the meaning of c).

2. Weak laws of large numbers. The proofs of Theorems 3 and 4 are facilitated

by first establishing corresponding weak laws of large numbers as in Theorem 2.

In fulfillment of the latter, it is convenient to prove a result (Theorem 1) which

_bears the same relation to the classical weak law of large numbers as Feller’s
generalization [3] does to the strong law of large numbers.

THEOREM 1. Let {X, X,, n = 1} be i.i.d. random variables and let {b,,n = 1}
be constants such that 0 < b, T co and either

() bjnl0, bjitooo and X1, <éf;)2 - 0(5’"_2> or

j n
(i) b,/nT.

Then

(1) [% (D51 X5 — nEXIyx15,0) —» 0

iff

@) nP{X] > b,} = o(1).

Proor. The weak law of large numbers for independent random variables
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reduces in the i.i.d. case to the statement that (1) holds iff (2) and

n

(3) ¥l o XIyx,1) = 0(1)

obtain. Thus, it suffices to show under (i) or (ii) that (3) is a consequence of (2).
Now setting b, = 0 and noting that b,/n* — oo in either case, the left side of (3)
is dominated by '

n
b2

n

2 _ h 2
EX°Iyx150, = BE 251 EX7y,  cxiss )
n

A

S L3 6P > b5 — P(X] > b))
= 5 [B2P(1X] > 0} — bP(IX] > b))

+ L3 (B — 6P X] > by}
1

= IR0 + D — PPN > b} + o(1)
= 2 D3R — ) + 3GLPIX] > b + o(1)

where ¢, = b,/n. However, a,; = (1/nc,)[j(ct,; — ¢;®) + 3c3,], 1 £j<n,
a,, = 0isa nonnegative Toeplitz matrix since lim,__a,; =0, alljand }}7_,a,; < 4
in case (ii) while }}7_, a,; < (3/nc,?) 217, ¢, = O(1) in case (i). Thus, the last
displayed expression is o(1) in view of (2). []

CoROLLARY 1. If b,/n is slowly varying at co and decreases to zero, then (2) is
necessary and sufficient for (1).

Proor. Slow variation yields >}%_, (b,/j)* ~ n(b,/n)*>. Moreover, the well-
known representation [5, page 274] of a slowly varying function L ensures that
for L positive, increasing log L(x) = o(log x) as x — oo and hence L(x) = o(x*),
all « > 0. Thus, n/b, = o(nt) or b,/n* — co. []

For any unbounded random variable X, define
4 (i) p(x) = §7 P{|X] > y}dy  when E|X] < oo
(i) p()=SiPIX|>yldy  if EX|=oo.
If F,,, denotes the distribution of |X|, integration by parts yields*

5) (i) £(x) = —xP{|X] > x} + §7y dF x(y)
' (i) p(x) = xP{|X] > x} + §§y dF x(y)

¢ Relation (5) holds for all x > 0 provided the Lebesgue-Stieltjes integral from a to 4 is inter-
preted as being over the half open interval (a, b].
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and moreover both x/ga(x) and x/u(x) are increasing. Thus, if

. x \7t
(6) () b, = (ﬂ(x)) when E|X| < oo
.. x \71! .
(i) b, = <;1(x)> if EX| = oo,

the function b, is well defined for x > some constant x, (depending on F), nec-
essarily 0 < b, 7 oo, and the fundamental relationships '

(7) () b, =xpb) or (i) b, =xub,)
follow immediately. Note, however, via (7), that (b,/x) | O in case (i) whereas
(b,/x) 1 oo in case (ii).

COROLLARY 2. Let {X, X,, n = 1} be unbounded i.i.d. random variables with f1
or p slowly varying at oo according as E|X| is finite or infinite. If {b,, n = ny} are
constants defined by (6), then

1
b (Xl X — "EXI[|X|$b,,)) —p0

Proor. In case (i), as already noted, b,/n | 0. Moreover,

8) f(x) slowly varying = g(b,) slowly varying,
since if ¢ > 1, b,, < b, implying
g Hbe) 5 Ay
b)) — (b

and clearly also f(b,,) ~ fi(b,) when ¢ < 1. Thus (8) guarantees that b,/n is
slowly varying.
Furthermore, slow variation of s also ensures

©) A(x) ~ ElX|Iyz>a >
or equivalently, via (5),
oy XP{|X] > x} = o(A(x)) »

since for any ¢ in (0, 1)
C oD piix| > x) = - 15 PN > ) dy = 28— 1= o).
(x) ﬂ( ) £(x)

But (9)' conjoined with (7) yields
b,
£(b,)
and the conclusion follows from Corollary 1.

In case (ii), b,/n 7 and in similar fashion slow variation of p yields (9)" with

2 replaced by p, so that (2) follows analogously and Theorem 1 yields the
conclusion. []

nP{IX| > b,) = —2n_ P{|X] > b,} = o(1)
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ReMARK 1. Clearly, slow variation of x implies that of E|X|[y,.,;, and it
follows from the proof of Theorem 2 [5, page 275] that conversely slow variation
of E|X|I;, x <. €nsures the analogue of (9)’ and hence slow variation of x. Likewise,
2 is slowly varying iff E|X|I; x5, is slowly varying. Of course, slow variation
of x[1 — F 4 (x)] implies that of x or z, but not conversely [5].

REMARK 2. In case (ii), slow variation of y implies that of b,/n.

THEOREM 2. Let {X, X,, n = 1} be unbounded i.i.d. random variables and {b,,
n = ny} constants defined by (6). Then according as

(10) () lim,. 25 oo ce0,00], @ slowlyvarying, EX=0 or
EXx+ I[X+>a:]
(i) lim, 22 Jamsa — ce0, 001, p slowly varying, E|X| = oo,
EX* I[X"’Sz]
1 c—1 1 —c¢
11 — 3 X, or .
( ) bﬂZt—l t_)Pc+1 1+C

ProoF. When ¢ = oo, (¢ — 1)/(c + 1) and (1 — ¢)/(1 + ¢) are to be inter-
preted as 1 and —1 respectively. However, in proving (11) it may be supposed
that ¢ < oo since ¢ = oo is the analogue of ¢ = 0 when X is replaced by —X.
Now, in case (i), via (10) (i),

(12) EXI[IXIS:] = —EX*Iy4sn + EX "Ly

d = (¢ — DEX*Iy4s,1 + 0(EXHx45,)
an

(13) E|X|I[|X|>z] = EX+I[X+>:¢] + EX—I[X‘>:¢]
= (1 + OEX Iiyiny + 0(EX Iipis) -
However, recalling that slow variation of /2 ensures (9), it follows that as x — oo,

1 1
—— EXTliyi50 £ —— E| X[z 500 = 1 4 o(1)
£(x) £(x)

and so
b
(%)
Consequently, from (12), (13), (9), and (7)

n
5 EXhinsg = 3| S5 16,) |

== (Ln) S a6 + o(y(b»)]
as n — oo and (11) follows from Corollary 2.
In case (ii), p(x) = E|X|I x5, Via (5), whence as x — oo
1
©(x)

- 0(EXHg45,7) = 0(1) .

c—1
c+1

- 0(EXHiy+<n) = 0(1) .
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Thus, proceeding analogously

1 —
Z:i_ EXI[lxlsb,,] = %‘:1 T ZE‘XV[msb”] + o(ﬂ(bn))jl
1 [1 —c ] 1 —¢
= | — " b b —
[T He + o) |- 15

and the conclusion again stems from Corollary 2. [J
RemARrK 3. If, in case (i), E|X] < oo but EX = 0, (11) is replaced by

c—1
c+1°

(14) —1“ Z?:l X; — 5"1‘ EX—’F

b

The contrast between (i) and (ii) is highlighted by the cases ¢ = 0, oo:

CoROLLARY 3. (i) If EX = 0 and 1 is slowly varying then (1/b,) 3.1 X, —p —1
or 1 according as lim,_,, EX~I;y—s 3/EX* L y+5,) = 0 or co. (ii) If E|X| = oo and
w is slowly varying, then (1/b,) 317_, X, —, 1 or —1 according aslim,_, EX" I,/
EX+I[X+S:€] = 0 or co.

In[2]and[4, page262], Feller presented examples of “unfavorable, fair games,”

that is, random walks S, = Y7, X;,n = 1 with X, = 0 and (S,/n) -, EX < oo,
but such that for some b, = o(n)

lim,_, P{S, —nEX < —(1 —¢)b,} =1, e>0.
Actually, in both examples '

S, — nEX
-z
b

»—1

and (i) of Corollary 3 (see Remark 3) reveals that it is the slow variation of & that
underlies the phenomenon noted by Feller. Part (ii) of Corollary 3 likewise gen-
eralizes the St. Petersburg game for which Feller showed [4] that S,/nLogn —, 1
where Log denotes logarithm to the base 2.

3. Generalized laws of the iterated logarithm. Two preliminary lemmas will
be needed in establishing the main results.
The first lemma is reminiscent of comparable results in [7], [14], [12].

LEmMA 1. Ler S, = Y7, X, where {X,, n = 1} are independent random variables
with EX, = 0, EX,* =02 5, = 10 IfP{X,<C}=1,n=1 where 0 <

n n

C, 1, then forany x > 0

tCyp __ —
(15) P{maxlsjsﬂsj z x} é exp{_tx + sﬂ2<e ;2 tC'n)} .

n

Proor. Since any twice differentiable function ¢(f) = ¢(0) + t4'(0) +
(¢ §¥ " (u) du dy, it follows for any random variable X with finite variance and
X < Cthatforr >0

Ee'™ = 1 4 tEX + \{ WEX%e** dudy < 1 + tEX + EX*{} {§ e* du dy
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and so EX; = O and C; 1 ensure thatfor1 <j<nand¢ >0
C; tCp —
por < xp o (1= 11D 5 rpfor (==
J n
Consequently, observing that exp{tS;}, 1 < j < n is a submartingale, the sub-
martingale inequality guarantees that for ¢ > 0
P{max,;., S; = x} = P{max,_;., €% = e'*} < e~**Ee*»
“n — tC, — 1
< exp{—tx + S"2<£‘—“é_iﬂ—)} . 0
Case (ii) of the next lemma is essentially the first lemma and proposition of
[1].
LEMMA 2. Let b, be defined by (6) and suppose in case (i) that p(x) = {7 P{|X| >
y} dy is slowly varying at co. Then
(16) D P{|X| > ¢b,} = o0, e>0.
Proor. Set a(x) = x/i(x) and ¢ > 1. For all large x, slow variation of s
yields
a(ex) = a(x) = a_(zs_x)
3

and it follows that Ea(|X]) < oo iff Ea(e|X|) < oo, all ¢ > 0.

Now if E|X|/g(]X]) < oo and F denotes the distribution of |X| then (9)’ holds,
implying
17) E|Xi/\ix y dF(y) < oo .
However, (17) contradicts the Abel-Dini theorem in view of E|X| < co. Con-
sequently, Ea(|X|) = oo which, as just seen, is equivalent to Ea(|X|/¢) = oo,
¢ > 0, which, in turn, is tantamount to (16).

In case (ii), it suffices to choose a(x) = x/u(x) and note that a(x) 1 whereas
x~'a(x) | . Then (16) follows by an analogous argument employing the other
part of the Abel-Dini theorem corresponding to E|X| = oco. []

THEOREM 3. Let{X, X,,n = 1} beunboundedi.i.d. random variables with EX = 0
and let (1 be as in (4). If

Xt
(18) . < oo,
A(XY)

(19) £2(x) ~ f(xlog, x) as x-— oo,
then
(20) lim sup,,_., bl X, =1, as.,

lim i 1 <.

iminf,_ 5 r. X, = —oo0, a.s.

where {b,, n = ng} are constants defined by (6).
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ProOF. In view of (18),

EX*Ly+s, = Ep(X™) ~(~Xn+_) Iiys = p(X)E g( X+)

Thus, since (19) entails slow variation of j and hence 9),
EX—I[X‘>4:] = ElXII[tXt>z] - EX+I[X+>:::] = ;Z(x) + o(ﬂ(x))
implying as x — oo that

EX Lx-5 _ (1L +o0(W)pa(x) |
Ex+I[X+>x] EX+I[X+>::]

Iix+sa = 0(f(x)) .

Thus, Corollary 3 guarantees

(21 b X, —p 1
which, in turn, ensures
(22) lim sup, ., b— >r. X, =1, as.

n

To prove the reverse inequality of (22), note at the outset via (19) (recall (8))
that

(23) £(x), p(b,) areslowly varying

x
i -——" ) ~ a(x) ~ a(x(log, x)?) .
# (iop ) ~ 79 ~ A(x(iog. )
Set
_ b, b,
~ (log,b,)*  (log, ny?
and note that in view of (23)
(24) EXI[X< d] - Zl IEX I[X >d] Zl 1E|X|I[|X|>d]
~ ”E’X[I[|X|>dn] ~ np(d,) ~ ng(b,) =b,.

Define
Y, = XnI[anlsd.n] - EXI[lesd,,,]
W, = X'nI(X,n>b,n]
Z, = XnI[d,,<X,,5b,,] - EXI[dn<Xsb,,] '
By virtue of EX = 0 and (24)
(25) X =0 (Vi + 2o+ W+ Xy gy — EXIiye gy — EXIigss))
LY+ DiaZi 4+ Zia Wi+ b.(1 + o()).
Consequently, if each of the sums on the right side of (25), when normalized
by b4,, has a nonpositive upper limit, a.s. it follows that

(26) limsupgl— X, <1, as.

n
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Now, (18) is tantamount to

(27) i PIXT > b, < oo
whence }7 W, = O(1) with probability one and so

1
’b“ Zf Wi a.s. 0 .

Next, for any a in (1, 2¢) and all large x, slow variation of b,/x guarantees
that b,, > a2tb, and hence by, = b (a2})*, k = 0. Thus, for all large n,

n_ Cn—1)
bﬂ2a2k - b"Z

n

Dia by = T DT 07 S X5 2°1(by) ™ £ Do
where C = 2a’/(a’® — 1). Consequently, for some positive constant C,,
1
2 Be EX’ly cxsh) = 2n= EX*ly,,_ <xsy,1 25=a 07"
g Cl + C Z;;z (n - l)P{bn—l < X § bn}
=G+ CRLPX> b} < oo
in view of (27). Thus, 3}, Z,/b, converges a.s. by the Khintchine-Kolmogorov
theorem, and invoking Kronecker’s lemma,
1
b

n

tZ; 5. 0.
Thirdly, in view of
(28) EX?lyy<o) = —\§ yA{E\X| I x50}
= —XE|\X|I;jx5.1 + $§ E\X|Ij x50 dy = 0(XE|X| I x1501)
it follows, setting S, = >7_, Y, and 5,2 = X7, o%,» that
S = 251 EX%yxigay S NEX L y54,) = 0(nd, E|X|Ix5q,1)
= o(nd, fi(d,)) = o(d,b,) .

Hence, if g(x) = x%(¢* — 1 — x) and d is a positive constant,

s,}(log, n)? g < 2d, log, n) — 0 (a’,,(log2 n)? g( 2 )) = o(1)

b, ob, b, 3 log, n
and so choosing t = (2(log, n)/0b,), x = 06b,, in (15) of Lemma 1,
€ 2
(29) P {maxlg,.g,, S, > Tb,‘} = Gog " e>0.

Therefore, setting n, = 3, k = 0 and choosing K large and such that b
2(b,,_)/34(b,,) > } for k = K, it follows from (29) that

"‘k—l/b"‘k =

Ll o e
Zk=K P{maxnk_1<'n§nk Sn > Eb'nk_l} § Zk:K P{maxlgnsnk S'n > _4— bnk}’

2
< i -
< Dix gy <
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Thus, by the Borel-Cantelli lemma, for all ¢ > 0
P{S, > ¢b,, i.0.} < P(max, ... S,>c¢b, , i.o. (k)} =0

implying

k-1

S

lim sup, ., 5 <0, as.

Consequently, (26) obtains and in conjunction with (22) yields the first half
of (20).
To prove the second half of (20), note that when E|X| < oo

n—mo—_n_ =1 ’
bn—l

since 1 = b,_,/b, = (1 — (1/n))a(b,_,)/(b,) = 1 — (1/n). Hence, if

(30) lim

(31) 1imsupwbl * (=X, =,, C, finite,

this would entail

(32)  limsup,.. (—bXﬂ> — limsup, .. < - £=1 X | Z}?:;‘ Xi) <C+1

n n

n

via (30) and the portion of the theorem already proved. But (32) and the Borel-
Cantelli lemma clearly imply

Zina PlX, > eb,} < oo, e>C4+1,
while (27) ensures

Dw  PIXt > ¢b,} < o0, ex=1.
Consequently, both series would converge for ¢ > max [1, C + 1] which is in-
compatible with Lemma 2. Therefore, (31) is untenable and the zero-one law
guarantees

lim sup,_., bi 71(—X;) = o0, as.

n

which is tantamount to the latter part of (20). []

THEOREM 4. Let {X, X,, n = 1} be i.i.d. random variables with E|X| = co and
let p be asin (4). If
X+

(33) < oo
#(X)
(34) ©(x) ~ p(x log, x) as x-— oo
then
(35) lim sup,_., —bl— DiaXy= -1, as.,
lim inf 1 X, = — a.s
noe P Lui=1 i = - s .8.

n

where {b,, n = n} are constants defined by (6).
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Proor. Choose 0 < ¢, 1 oo such that EX*[,ig, 5= o(p(x)). Then (33)
entails

(36) Ex+1[x+5z] = Ex+1[x+sc + E#( +) (X*) [c, <xtsgs]

= o(p(x) + H*)E —— ( X+) I <xsa = 0(1(x)) -

Thus, since (34) implies slow variation of x and hence the analogue of (9),
EX"lix-sa = ElX|yxisa) — EX lixrga
= p(x) + 0(u(x) ,
and therefore as x — co,

EXhy-g _ (L+o(W)p(x)
EX+I[x+5z] EX+I[X+sz]

Thus, according to Corollary 3,
1 "

(37) e
and so
(38) lim supnw_b_ X, =z —1, as.

n

Define d,, Y,, Z, and W, exactly as in Theorem 3. In view of (36),
EXI[-d,,sxs%] = EXI[—d,,‘sXsO] + EXI[0<Xsb,,]

_E|X|I[IX|§d,‘] + 2EX+I[X+S,,“]

—p(d,)(1 + o(1)) + o(u(b,))

IA

Il

implying via (34) that

2iia1 EXI[—diSXSbi] < —npd)(1 + o(1)) = —b,(1 + o(1)) .
Thus, the analogue of (25) of Theorem 3 is
(39) Z?:l Xi = =1 (Yi + Zi + Wi + XiI[Xi<-di] + EXI[~diSX5bi])

SO Yo+ Dl Zo+ Zia W — bu(1 + 0(1)) .
Exactly as in Theorem 3, (1/6,) X1 W, —, , 0. Moreover, slow variation of
u entails that of E|X|[; <., Whence
St = D%a10y; S NEX g0, = 1 §§n Xd{E|X| Iy 51501}

n[d,E|\X|Iyx <1 — $in E|X|jix 50 dX]
= o(nd'nElXII[lXISd,,,,]) = o(ndnﬂ(dn)) = o(dnbn)

Il

and so the argument of Theorem 3 carries over, mutatis mutandis, yielding
lim sup, .. (1/b,) 241 Y; 20, as,
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Furthermore, since (b,/n) 1

1 1
2 b’i EXzI[dn<Xsbn] = c Z:ﬂ EXZI[b,,_1<Xsb,,] Z?:n 72‘
" j
SGX.(m—1D)PP,, <X <b}
= C Xa PlX > bn} < o0,

whence (1/b,) 33%., Z; —,. 0.

Thus, (39) elicits the reverse inequality of (38) and the first half of (35)
follows.

Finally, (37) and X,/b, —,0 ensure (1/b,) ;22! X; —, —1, and thus the
argument of Theorem 3 carries over to the last half of (35), since b,_,/b, =
b, Xt X /byt, 21T X, —p 1L [

4. Relation of the normalizing constants to the distribution of the sum. In
Section 2, it was shown that if EX = 0, g is slowly varying and (10) holds, then
(1/b,) X7 X, —p (¢ — 1)/(c + 1). Theorem 5 asserts under identical conditions
that (1/b,)E(X? X,)* —» max [1/(1 + ¢), ¢/(1 4 ¢)].

THEOREM 5. Let{X, X,,n = 1} be unbounded i.i.d. random variables with EX =0
and {b,, n = n} constants defined by (6). If pi is slowly varying and

EX—I[X‘>:¢] —

40 lirnﬁ,ﬂ‘,0 ——x7>2) = ¢ €0, 0],

( ) EX+I[X+>:¢] [ ]

then, setting S, = 3.1 X,

(41) lim, 1 ES,* = max[ 1 , ¢ ] .
b, l+c¢ 1+4e¢

ProoF. Define
S, = Z?=1 XjI[|Xj|>bn] ’ S, = Z?:ijI[axjasb,,] .
Recalling (28),
E(S," — ES,") < nEX’lyx 5,y = 10(0,4(b,)) = 0(b,?) -

Thus, noting that ES, = 0 (whence E|S,| = 2ES,*), |E|S,| — E|S,’ — ES,/|| =
E|S,” — ES,”| = o(b,) and so to establish (41), it suffices to verify that
(1/b,)E|S,’ — ES,’| — 2max [1/(1 + ¢), ¢/(1 + ¢)]. To this end, observe that as
in the proof of Corollary 2,

(42) nP{|X| > b,} = o(l);
while via the proof of Theorem 2,

1 _
EX+I[X+>b,,,] ~ m 2(b.,) .
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Thus,
E|S,) — ES,'| £ E|S,/| + |ES,| .
(43) S (L + o(1)a(b,) + [EXT x5y — EX"Iix—s, ]
1 c |
— n(b, [1 1 |__ - ——]
nfi(b,) | 1+ o(1) + i

1 ¢ .
—2 1)).
b"(“’“[l T 1+c]+0( ))

To obtain the reverse inequality of (43), set
B = NiallXl =6, Ay = (XG> 6. NE X = bal} s
and note that via (42)
Too PlAus) = nPAL) < nP(IX] > b)) = o(1)
P{B,} > 1
as n — oo. Thus,
ElS,) — ES,)| =z EIS,) — ES)/|I5, + Zi-1 E(IS/| — |ESJ Ly, ;

= |ESI[A{B,} — 25 P{An ;1] + D5 EIXGIL,, ;
= |ES,'|(1 + o(1)) + nE|X||I,, | , ”
= |ES”’|(1 + 0(1)) + ”E|X|I[|X|>b,,]P{n?=z [le{ = b»]}
= (1 + o(1))[np(b,) + |ES.'(]

1 c
=2b y — 1
”<max[1+c 1+c:l+0( )>

exactly as in (43) and the theorem follows.
Since the common hypothesis (with ¢ = oo) of Theorems 2 and 5 is implied
by that of Theorem 3, there follows

~ COROLLARY 4. Under the hypotheses of Theorem 3,

lim sup, .. bl » X, =,. 1=1lim,__E Sbf

S,/b, —, 1.

n
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