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CONVERTING DEPENDENT MODELS INTO INDEPENDENT
ONES, PRESERVING ESSENTIAL FEATURES!

By N. LANGBERG, F. PROSCHAN AND A. J. QUINZI
The Florida State University and Temple University

Let T denote the life length of a series system of n components having
respective life lengths T3, - - -, T, not necessarily independent. We give
necessary and sufficient conditions for the existence of a set of independent
random variables {H;}, I a subset of {1, - - -, n}, such that the life length of
the original series system and the occurrence of its failure pattern (set of
components whose simultaneous failure coincides with that of the system)
have the same joint distribution as the life length of a derived series system
of components having life lengths {H;} and the occurrence of the corre-
sponding failure pattern of the derived system. We also exhibit explicitly
the distributions of these independent random variables {Hy}. This extends
the results of Miller while using more elementary methods.

1. Introduction and summary. Because it is generally easier to analyze a
model involving independent random variables than one involving dependent
ones, it is useful to have ways of converting models involving dependent vari-
ables into models involving independent ones. Of course it is desirable to make
such a conversion by preserving essential features of the original (dependent)
model. Esary and Marshall (1974) provide such a result by showing that, given
a set of (dependent) random life lengths with exponential minima, there exists
a set of independent random life lengths such that the distribution of any co-
herent life function of the original life lengths is preserved. Langberg, Proschan
and Quinzi (1977) simplify the methods of Esary and Marshall, display explicitly
the distributions of the independent life lengths, and extend the Esary-Marshall
result to include additional classes of life distributions. Miller (1977) replaces a
dependent model by an independent one, while simultaneously preserving the dis-
tribution of the minimum and the probabilities corresponding to certain “failure
patterns.” Tsiatis (1975) proves a similar result in the context of competing risk
theory by assuming that the joint distribution function in the dependent model
has continuous partial derivatives. In this paper we extend Miller’s result to
include (i) necessary as well as sufficient conditions for the replacement of a
dependent model by an independent one and (ii) an explicit form for each of the
distributions in the dependent model, whereas Miller (1977) proves existence
only. An advantage of our approach over that of Miller’s is that we are able to
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obtain more general and more useful results by employing techniques which
are more elementary.

In Section 2 we present some preliminaries. Section 3 is devoted to illustrating
the key idea behind the proof of the main result. In Section 4 we state the main
result plus several implications. Section 5 consists of proofs of the results in
Section 4.

2. Preliminaries. Throughout this paper we use the following notation. Let
* denote the collection of all nonempty subsets of {1, .- ., n}. For each collec-
tion {H;, I € .~} of random variables, the symbol H denotes the vector of H,’s,
where the subscripts / are ordered lexicographically. For random variables X
and Y, X =,, Y indicates that X and Y have the same distribution. A life length
T is a nonnegative random variable such that lim,_, P(T > 1) = 0.

Let T = (T, ---, T,) be the vector of component life lengths of an n-com-
ponent system. We say that failure pattern I occurs if the simultaneous failures
of the components in subset /and of no other components causes (i.e., coincides
with) the failure of the system. Define

§T)y=1 if failure pattern I occurs;
=@ otherwise.

Thus, for example, if T = min (T,, 1 < i < n) is the random life length of an
n-component series system, then £(T) = {i} if and only if T, < T, for each j = i.
Let S and T represent the vectors of component life lengths of two systems whose
system life lengths are S and T, respectively. We say that the two systems are
equivalent in life length and patterns (S =, T) if P(S > 1,4(S) = 1) = P(T > t,
§(T) = I) for each ¢ > 0 and each /e _#. Thus, two systems which are equi-
valent in life length and patterns are such that (i) their life lengths have the same
distribution and (ii) the corresponding failure patterns in the two systems have
the same probability of occurrence. It is important to note that although we
have chosen to employ the language of reliability theory (series system, com-
ponent, etc.) the results presented here apply to any model where observations
include (1) the time at which a particular event occurred and (2) which cause(s)
(among a finite number of causes) resulted in the occurrence of the event.
The main result of Miller (1977) can be paraphrased as follows:

THEOREM 2.1 (MILLER). Let T, be the life length of component i,i =1, ..., n,
and let T be the life length of the corresponding series system. Define F(t) = P(T > t).
Assume that the functions
(2.1) F(ty=PT <t,§T)=1), Ie 7,
have no discontinuities in common and that P[T; = T;] = Oforall i # j. Then there
exists a vector S = (S,, - - -, S,) of independent random variables such that T =, S
and at least one of the S, is almost surely finite. The distributions of S,, - - -, S, are
uniquely determined on {x: F(x) > 0}.

Thus, whenever the functions (2.1) have no common discontinuities and there
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are no ties, then one can replace the vector T = (T}, - - -, T,) of (dependent) life
lengths by a vector S = (S,, - - -, S,) of independent random variables such that
S =,, T. In Section 5 we show that the assumption of no common disconti-
nuities is a necessary as well as a sufficient condition for the replacement of a
dependent model by an independent one. Moreover, we provide explicit expres-
sions for the appropriate distributions in the independent model.

*3. Illustration of key ideas. In this section the reasoning used to arrive at the
general result is illustrated by considering two special cases.

For simplicity we consider the case of a two-component system. Let T, and
T, denote the component life lengths (in general, mutually dependent) in a two-
component series system. Let T = min (T, T,) denote the corresponding system
life length. If F,(.) denotes the survival probability corresponding to the time
of occurrence of failure pattern /, then

. FI(I)ZP(T>I,T1<T2),
(3.1) Fz(t) = P(T >t6T, < Tl) s
F()=PT>t,T,=T,),

where we write F, for F;,, i = 1,2, and F, for F,,. We do not exclude the
possibility that P(T, = T,) > 0. The problem is to replace the vector T =
(T, T,) of life lengths by a vector S = (S,, S;) such that S =, T, where the
components of the vector S are expressible in terms of independent random
variables.

Let S, and S, denote the component life lengths in a two-component series
system. Suppose that each component fails if it receives a shock. Independent
sources of shock are present in the environment—one source for each of the three
nonempty subsets of {1, 2}. A shock from source I simultaneously kills all com-
ponents in subset /and no other components, / = {1}, {2}, {1, 2}. One can imagine
each shock bemg originated by a corresponding “hammerman.” Let H, denote
the time (measured from the origin) until a shock from source / occurs, Ie . 7.
Then S, = min (H,, H,,), S, = min (H,, Hy,), and min (S,, S;) = min (H,, H,, H,,).
The two-component model described here is the bivariate “fatal shock” model
introduced by Marshall and Olkin (1967). Let H = (H,, H,, H,,) and let

E¥(H) =1 if H, < H, foreach J=#1I,
=Q otherwise.
Then P(S > 1,&(S) = I) = P(T > t,§(T) = I) if and only if
(3.2) PH>t,6*(H)=1)=P(T > t,§T) =1
for each + > 0 and each 7 = {1}, {2}, {1, 2}, where H = min (H,, H,, Hy,).
(3.2) holds for every subset I of {1, 2}, 'we write H =, T, where now the com-
ponents of H are the random times until shocks occur. Hence, the problem will

be solved if we determine independent random variables H,, H,, and H,, such
that (3.2) holds for every 7 = 0 and every subset / of {1, 2}.
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Let F(t) = P(T < t,&T) = {i}), i = 1, 2,12. To illustrate the idea behind
the general result (Theorem 4.1), we consider the case where F; has density f;
with respect to Lebesgue measure.

Let G,(t) = P(H; > 1) = 1 — G(¢) and let g, be the density of G, with respect
to Lebesgue measure, i = 1,2,12. Let F(f) = P(T > t). In order that (3.2)
above hold, we must have that

(3.3) fi=9:11;2:6G;, i=1,2,12.

If H=,T, it follows from (3.3) that

(3.4) g./G, =fi]F, i=1,2,12.

We obtain a solution by inegrating both sides of (3.4):

(3.5) G(1) = exp[— ¢ (fux)/F(x))dx], i=1,2,12.

ExaMPLE 3.1. Suppose that the vector (T, T,) has the Marshall-Olkin bi-
variate exponential (BVE) distribution with survival probability:

P(T, > t,T, > t,) = exp[—A4,t; — 4,1, — A, max (1, )],
fort, >20,i=1,2,and 4, > 0,i = 1,2,12. Then T, and T, are exponentially
distributed and mutually dependent. Assuming that T, and T, represent the
component life lengths in a two-component series system as above, we conclude

from (3.5) that the original system is equivalent in life length and patterns to a
system involving independent times H,, H,, and H,, until shock, where

(3.6) G(r) = P(H, > 1) = exp(—=4,1), i=1,2,12.

We remark that (3.6) is consistent with the well-known characterization of the
BVE given by Theorem 3.2 of Marshali and Olkin (1967), namely 7, = min (H,,
H,,) and T, = min (H,, H,,).

4. Main result. The main result oi this paper is

THEOREM 4.1. Let T = min (i}, | < i < n) denote the life length of an n-com-
ponent series system, where T, represents the life length of component i, i =1, - - -, n.
Define F(t) = P(T > 1, &T) = I), F)(t) = P(T < t,&T) = I), F(t) = P(T > 1),
and a(F) = sup {x: F(x) > 0}. Then the following statements hold:

(i) A necessary and sufficient condition for the existence of a set of independent
random variables (H;, I € .#) which satisfyH =, T, where H = min (H,, [ € ./"),
is that the sets of discontinuities of the F, be pairwise disjoint on the interval [0, a(F)).

(ii) The distributions of (H,, 1€ .#) in (i) are uniquely determined on the interval
[0, a(F)) as follows:

(4.1)  P(H, > 1) = G,(t) = exp[— |} (dF,°/F)]
X IHau.irse {F(a(I, j))[[F(a(l, j)) + f(a(l, j)]} »

0 < t < a(F), where F,° is the continuous part of F;, {a(/, j)}; is the set of dis-
continuities of F,, and f,(a(/, j)) is the size of the jump of F; at a(/, j).
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The proof of Theorem 4.1 is given in Section 5. The remainder of this section
is devoted to several remarks related to Theorem 4.1.

REMARK 4.1. The sufficient part of Theorem 4.1(i) above is equivalent to
the first part of Theorem 2.1.

REMARK 4.2. A series system is one example of a more general system in
reliability known as a cokerent system [see, for example, Barlow and Proschan
(1975)]. A result similar to Theorem 4.1 also holds for arbitrary coherent sys-
tems. In Theorem 4.1, if we replace the life length 7" of a series system by the
life length of a coherent system, then (i) and (ii) of Theorem 4.1 hold. Fora
proof of this remark, see the end of Section 5.

If T represents the vector of component life lengths of a system with system
life length T, we say that failure pattern / is a nonoccurring pattern if F(1) =
P(T < t,&(T) = 1I) = 0 for each r = 0. For example, in a two-component series
system, if P(T, = T,) = 0, then failure pattern {1, 2} is a nonoccurring pattern,
since then P(T < 1,4(T) = {1,2}) = P(T < t,T,=T,) = 0 for each r = 0.

REMARK 4.3. In (4.1) of Theorem 4.1, if F;(f) = O for some /€ . and each
t = 0, then the corresponding survival probability G, is identically one on the
interval [0, a(F)), where we define the product over an empty set as unity.
Here, failure pattern / is a nonoccurring pattern. The corresponding random
variable H; in (4.1) is almost surely (a.s.) infinite, corresponding to a hammer-
man who never strikes, and, for our purposes, can be ignored. In the same way,
every nonoccurring pattern can be associated with a hammerman who never
strikes. It follows from Theorem 4.1 that if the original system has exactly r oc-
curring failure patterns, 1 < r < 2" — 1, then the original system is equivalent in
life length and patterns to a system involving the same number r of independent
hammermen (random variables) (H,;, 1 < i < r).

5. Proofs. The proof of Theorem 4.1 is based on four lemmas. Throughout
this section we use the following notation. For every Lebesgue-Stieltjes measure
Q, Q° denotes the continuous part of Q, O(t) = Q(¢, o), and J(17) = O(f) +
q(1), where ¢(7) is the size of the jump (possibly 0) of Q at . Let C(Q) and D(Q)
be the sets of continuity points and discontinuity points, respectively, of the
nondecreasing right continuous function associated with Q.

LEMMA 5.1 For every Lebesgue-Stieltjes measure Q such that Q < 1and Q(0-) =
1, and every t = 0, the following holds:

(5.1) —In O(1) = §4(dQ°/0) + Ta,s In [O(a)/0(a))]
where {a,}, = D(Q).

For a proof of Lemma 5.1, see Lee and Thompson (1975), page 8, or Peterson
(1975), page 118.

To prove the sufficiency in (i) of Theorem 4.1, it suffices to find a set of pro-
bability distributions (G,, I € .#) on [0, co) for the random variables (H;, I € .*)
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which satisfy
(5'2) Hlef G_I(t) = F'(t) , 120,

and
(- (dG,[G,) = Vi~ (@F,JF), Te.”, 0<1<a(F).
To see this, note that if, for each Ie.”, H, has distribution G, satisfying
(5.2), and if the H,’s are independent, then
PH>t,éx(H)=1)=PH >t H < H, foreach J 1)
= (¥ [lser G-JdGI =7 (F/G-I) dG; = S?dFI = Fl(t) >
sothat H =,, T.
LEMMA 5.2. If the sets of discontinuities of the F, are pairwise disjoint on
[0, a(F)), then (G, I € #) defined by (4.1) satisfy (5.2).
PRrooF. Suppose 0 < ¢ < a(F). Then

IL; G(t) = T1: a.nse (F(all, j)/IF (@ J) + fula(L, )]} exp[— 6 (dF,°/F)]
= exp[— §§ (dF°/F)] Tl pr [F(a5)/F(a;7)] = F(1)
by Lemma 5.1.

To complete the proof, we must verify the second equality in (5.2). It follows
from (4.1) that Gy (a)/G,(a~) = F(a)/[F(a) + f1(a)],0 < a < a(F), [e€..#. Hence,
D(F;) = D(G,) for every Ie._#. Consequently,

S[o,t]anp (dGI/GI) = S[o,t]anp (dFI/F) .

By Lemma 5.1 again,

1(dG,%/G)) = —In G(1) — Tz In[Gi(a(l, )7/ Gla(T, )]
= —InG,(1) + Zairins: In F(a(l )IF(aL ])) + fia(l: )]}
= (§(dF,°|F) . 0
LEMMA 5.3. There is at most one collection (G, 1€ 7)) of distributions which
satisfies (5.2) on the interval [0, a(F)).
Proof. For ¢ in the interval [0, a(F)), define
M([0, 1)) = ;- (dG,/G)) -

We view M as a measure on the Borel field of [0, a(F)). By (5.2), it suffices to
show that the measure M uniquely determines G, on the interval [0, a(F)). This
s immediate since by Lemma 5.1,

—In G,(1) = M([0, 1] 0 C(M)) + Faur s In Mia(l )} + 1)
for every ¢ in the interval [0, a(F)), where {a(/, j)]; = D(F;). [
LEMMA 5.4. In order that a collection (G,, I € 7)) of distributions satisfy (5.2), it

is necessary and sufficient that the sets of discontinuities of the F, be pairwise disjoint
on [0, a(F)).



180 N. LANGBERG, F. PROSCHAN AND A. J. QUINZI

Proof. The sufficiency was shown in Lemma 5.2. To prove the necessity,
let (G,, I e .”) be a collection of distributions satisfying (5.2). Then

1L & dG, = F(O) = 20 ¢ 1swr GJ dG, .

In the above expression, the term on the left represents the measure on the posi-
tive orthant in (2* — 1)-dimensional space. The term on the right represents the
measure of a subset of the positive orthant. Hence the remainder has measure
zero, i.e.,

S[o,awn HK*I;K;bJ G-K(I)GJ(I) dGI(’) =0

for every J = I, which implies that [0, a(F)) n D(G;) N D(G,;) = ¢ whenever
J # 1. The conclusion follows since D(F;) = D(G,) for every Ie .”. []

PROOF OF THEOREM 4.1. In Lemmas 5.2, 5.3, and 5.4, note that F = Y, F,
and define F(A) = P(Te A, T =T, foriel, T + T ,forigl), I 7, for every
subset A of the interval [0, a(F)), where T}, - - -, T, and T are as specified in the
hypotheses. Then part (i) of the theorem follows from Lemma 5.4, and part (ii)
follows from Lemmas 5.2 and 5.3. ]

To prove Remark 4.2, simply replace T in the proof of Theorem 4.1 by the
life length of the coherent system.

REMARK 5.5. In Theorem 4.1, the possibility exists that for some I,
lim,_, P(H, > t) > 0. Suppose H=,, T. Then (min (H,, /e ) =, min(T;,
1 £ i < n). Since each T, is a life length, it follows that lim, ., P(H; > t) =0
for at least one I.

In this remark we state three conditions each of which is sufficient for all of
the random variables (H;, I € .”) in Theorem 4.1 to be almost surely finite.

(i) Clearly, if the distribution of at least one 7, has finite support, then the
distribution of min (7;, 1 < i < n) has finite support, and a(F) < oo in Theorem
4.1. If we define G,(r) = O for every t = a(F) and every I € _#, then each of the
random variables H; in (4.1) is almost surely finite.

(ii) Assume now that the distribution of T, has finite support and that P(T, =
T;) = 0 whenever i == j. If T}, ..., T, are exchangeable random variables, the
survival probabilities represented in (4.1) are all equal. By Remark 4.3, the
original system is equivalent in life lc?ngth and failure patterns to a system in-
volving n independent random variables H;, 1 < i < n. Since at least one H, is
almost surely finite, it follows that each H, is.

(iii) In Theorem 4.1, assume that the functions F,, I € ., have no common
discontinuities in the interval [0, a(F)), where a(F) = oo, and that P(T;, = T,) =
0 whenever i # j. In addition, suppose that for each I € 7, the indicator func-
tion yg¢(q,~71 Of the event [§(T) = I] and the random variable T = min (T;, 1 <
i < n) are independent. By Remark 4.3, the original system is equivalent in
life length and failure patterns to a system involving n independent random
variables H;, 1 < i < n. It was conjectured by Miller (1977) that under the
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above assumptions each H; may be chosen to be almost surely finite. We.prove
his conjecture as follows.

Let 7, = P(§(T) = i), 1 <i < n. Since T and y are independent, F(r) =
n,F(r) for every 1 > 0 and every i, 1 <i < n. If n =1, then the conclusion
holds since then there is exactly one random variable H; and, by the argument
above, it must be almost surely finite. Hence suppose n = 2. Then F is con-
tinuous since the functions F,(.), 1 < i < n, have no common discontinuities.
Hence, (4.1) can be expressed as

G((t) = exp[—n; §¢ (dF/F)] = [F(1)],
which completes the proof. »
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