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A PROOF OF KAKUTANP'S CONJECTURE ON RANDOM
SUBDIVISION OF LONGEST INTERVALS

By W. R. VAN ZWET
University of Leiden

Choose a point at random, i.e., according to the uniform distribution,
in the interval (0, 1). Next, choose a second point at random in the largest
of the two subintervals into which (0, 1) is divided by the first point. Con-
tinue in this way, at the nth step choosing a point at random in the largest
of the n subintervals into which the first (n — 1) points subdivide (0, 1).
Let F, be the empirical distribution function of the first n points chosen.
Kakutani conjectured that with probability 1, F, converges uniformly to
the uniform distribution function on (0, 1) as n tends to infinity. It is

shown in this note that this conjecture is correct.

1. Introduction. Let X, be uniformly distributed on (0, 1). Forn =2,3,...,
the conditional distribution of X, given X,, - -, X, _, is uniform on the largest of

the n subintervals into which X;, - .., X,_, subdivide (0, 1). Let F, denote the
empirical distribution function (df) of X, - .-, X,, thus F,,(x) = n™* 37, 1 4 <,

THEOREM. With probability 1
(1.1) lim, ., sup,c ., |[Fa(x) — x| = 0.

At first sight the truth of this statement seems intuitively obvious. The
Glivenko-Cantelli theorem tells us that (1.1) holds with probability 1 if X,
X,, .. are independent and identically distributed (i.i.d.) according to the
uniform distribution on (0, 1). Compared with this case, one feels that F, should
converge to the uniform df even faster in the present situation, because at each
step one is putting a point where it is needed most, i.e., in the largest subinter-
val. At the same time, however, it is clear that the procedure by which the
points are chosen makes their joint distribution extremely complicated. To be
convinced of this, one only has to try and write down what happens in just the
first few steps.

The main idea of the proof is the introduction of a stopping rule for which
the stopped sequence has an essentially simpler character than the original one.
For r¢(0, 1), let N, be the smallest natural number n for which X, ..., X,
subdivide (0, 1) into (n 4 1) subintervals of length < ¢. Correspondingly, define
N, =0 for r > 1. The basic property of the stopped sequence X, ---, X, is
that any (sub-) interval appearing during its construction will receive another
random point before the sequence is stopped, if and only if its length exceeds 7.
It follows that the joint distribution of N, and the set {X,, ---, X Nt} remains un-
changed if at each step the next point is chosen at random in any one of the
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134 W. R. VAN ZWET

existing subintervals of length > ¢ rather than in the largest subinterval as pre-
scribed by the original procedure. In the first place this implies that for 7 € (0, 1),
the conditional distribution of (N, — 1) given X, = x is that of the sum of the
numbers of random points needed to subdivide the intervals (0, x) and (x, 1) inde-
pendently and in the prescribed way into subintervals of length < r. By blowing
up these intervals to length 1 and replacing ¢ by #/x and #/(1 — x) respectively
one sees that

(1.2) LN X, = x) = LN, + Nyjuwy + 1), 0<r<1,

where for N, and N,,_,, independent copies are chosen.

Another consequence of the abovementioned property of the stopped sequence
is the following. Take x (0, 1) and let N,(x) denote the number of values in
(0, x] among X, ..., X, , thus Ny(x) = N,Fy (x). Suppose that 0 < ¢ < x and
let & be the first value in the interval [x — #, x] occurring in the sequence
X, oo, szt- If from the N,(x) values in (0, x] we delete all values in (&, x], the
number remaining is distributed as the number of random points needed to sub-
divide (0, x] into subintervals of length < ¢ in the prescribed way, i.e., as N,,.
If also r < 1 — x, the same argument applied to the interval (x, 1) shows that
there exist copies of N,, and N,,,_,, such that

(1'3) Ny, = Nt(x) =N, — Nyao

with probability 1. This clearly holds for all ¢ since N,, = 0 for ¢ > x and
Nyg—wy =0forr =1 — x.

2. Proof of the theorem. For ¢ [%, 1), the stopped sequence X, - -, sz,
never returns to a subinterval it has left. Hence the Markov inequality yields

@1 PN >R =AUV (- U} > <@, b=r<d,

where U,, U,, - - - arei.i.d. with a uniform distribution on (0, 1), so that E{U, v
(1 —U)} = 3. It follows that EN," < oo for every m > 0 and § < t < 1. For
s, 1€ (0, 1), N,, is stochastically smaller than a sum of (N, + 1) copies of N, and
hence EN,™ < oo for m = 0and 0 < ¢ < 1. Since EN,™ is nonincreasing in ¢,

(2.2) SUP, <1<i EN,™ < o0 for 0<7,<1 and m=0.

Clearly EN,” = O for t > 1 and m = 0 because N, = 0 for 1 > 1. Another con-
sequence of (2.1) is that for § < r < 1

PN, > k) < Tt PU, v (1 — U)} > 1) < 2(1 — 1)),

1
EN, = J7P(N. > k)< — .
2t — 1
Since N, > 1 a.s. for t < 1, it follows that
(2.3) lim,,;, EN, = 1.

Define 1(f) = EN,. Fort > 1, p(f) = 0 and in view of (1.2) one finds that
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foro< <1,
24 e = Sé{#( ) + #(

)+1}dx:2§},p<_:7>dx+l
_ZSt/.t< >dx—|-1——2t§‘ #) gy 41

Now sup,; #(y) < oo for t > 0 because of (2.2) and hence (2.4) implies that p
is continuous and even differentiable on (0, 1) with

)~ 1Y _E0) ) =1 )
(=) =4

t I I
or
U
u(t) + 1 t
Together with (2.3) this yields
(2.5) py=2_-1 for 0<t<1.

t

Let v(7) denote the variance of N, and apply (1.2) again, this time also using
the independence of N,, and N,,,_,, in (1.2). In view of (2.5) one obtains for
0<t<4,

o(t) = E(Nt - _f_ + 1>2

J— 2
= S(I)E<Nt/z + Nia-o) — gtf _A=x - X) + 2> dx
— S;E( e — _2tf.|_ 1>2dx + SéE(Nm = 2(1 ;—x) n l>2dx
+ 2 S(:;E<Nt/'x - ’2; + 1> E <Nt/(1—z> - '2"‘(“1—;_—{)" + l> dx

2
- 2§5E<N,/x - 27"+ 1> dx

where the cross-product term vanishes because of (2.5) and because either
t/x < lort(l —x)<1forre(0,4]and xe (0, 1), x # 4. So for te(O, 11,

(2.6)  w(1) = 2§ u(tfx) dx + 2 (2:‘ 1> dx = 1v§));)dy 4+

Because of (2.2), sup,,, v(y) < oo for ¢ > 0, and together with (2.6) this ensures
that v is continuous on (0, ] and differentiable on (0, 4) with
(U(I)> _ v _ E(L) — %0
t t &
or
| v _ 1
V(1) t
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Hence, if ¢ = {v(}),
(2.7) v(t):_ct, for 0<1<%.

For m=2,3, ..., define M,, = N,—» and M, (x) = N,-s(x) for xe (0, 1).
Then (2.5), (2.7) and the Bienaymé-Chebyshev inequality imply that

2
P(M,, — 2m* + 1| = mi) < M) _ oot
m?3s

By the Borel-Cantelli lemma

limsup,, m=3|M,, — 2m*| < 1 a.s.

so that
. M
2.8 lim, . —= =1 a.s.,
(2:8) 2m?
(2.9) lim,  Mnsi _1 g
M

m

For fixed x € (0, 1) and t = m~?, the reasoning leading to (2.8) may also be
applied to each of the three terms on the left- and right-hand sides of (1.3).
Since the argument does not involve joint distributions for different values of
m, it follows without further specification of the copies chosen in (1.3) that for
any fixed x e (0, 1)

lim,,_,, M"'_(x) =Xx a.s.,
2m’
or, in view of (2.8),
(2.10) lim, _, Fy (x) =x a.s.

ForM,<n<M

m+1?

Fux) — x| < M iF, () — x| 4 "= Mn (xv (1 — x))

< Fu(®) =+ (1= M)

m+1

and together with (2.8), (2.9) and (2.10) this implies that for every fixed x € (0, 1),
(2.11) lim,_., F,(x) = x a.s.

By a standard argument this yields (1.1) and the theorem is proved.

Acknowledgment. The author recalls with pleasure the 1976 stochastics
meeting at Oberwolfach where R. M. Dudley introduced the participants to
Kakutani’s conjecture and proceeded to shoot down our combined attempts at
solving the problem.
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Note added in proof. After this paper was submitted it has come to the author’s
attention that J. Komlos and G. Tusnady had also arrived at the conclusion that
Kakutani’s conjecture can be proved by the method employed in this paper.
More recently essentially the same proof was given again independently in
Lootgieter (1977a); an outline of this paper is given in Lootgieter (1977b). For
the solution of a related nonrandom problem the reader is referred to Kakutani
(1975), Adler and Flatto (1977) and Lootgieter (loc. cit.).
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