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A PATH DECOMPOSITION FOR MARKOV PROCESSES!

By P. W. MILLAR

University of California, Berkeley

Let X = {X;, t > 0} be a right continuous strong Markov process with
state space E; let f be a continuous real valued function on E x E; and let
M be the time at which the process { f(X;-, X;)} achieves its (last) ultimate
minimum. Then conditional on Xy and the value of this minimum, the
process { X4} is Markov and (conditionally) independent of events before
M.

Let (Q, &, &, X,, 6,, P*) be a right continuous, strong Markov process with
left limits, and with compact metric state space (E, &). A point A € E has been
set aside as the terminal absorbing state; and { = inf {t: X, = A}. The transi-
tions P,(x, f) = E®f(X,) are assumed Borel: if f is bounded, continuous then
x — E*f(X,) is &-measurable. Assume also that Py(x, {x}) = 1 for all x. The
sigma fields &, are the usual right continuous completions of general Markov
theory ([1]). Let f be a real, jointly continuous function on E X E and define

(1) I? = inf,, f(X,_, X,)
I =1lim,__I® = inf, f(X,_, X,).

Assume
) f(x, 8) = oo
3) : I> —oco0 a.s.

Define I, = I?,. Evidently ¢t — I, is right continuous and decreasing. Define
M, =sup{s: f(X,, X,) = L}
M, = sup{s: f(X,_, X,) = I
M_ =sup{s: f(X,_, X,_) =1}

and set

4) M = max{M_, M, M} .

Because of the continuity of f, M is the last instant ¢ at which the process X was
at the ultimate minimum of { f(X,_, X,)}.

A random time R is a nonnegative . -measurable random variable. The
sigma fields #(R), F(R+) are defined by

&) F(R) = o{Z,: {Z,} is a well-measurable process}
F(R+) = o{Z,: {Z,} is a progressive process} .
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Here of- - -} denotes the sigma field generated by whatever appears between the
braces.

(6) THEOREM. The process {X(M + t), t > 0} is conditionally independent (P*)
of F(M), given (I, X)) and, given these variables, this post-M process is Markov
relative to the right continuous sigma fields & (M + t+): for bounded measurable g

E{g(X(M + 1) | F(M + s+)} = S 9)H (XM + 5), I, dy),  s>0
E{g(X(M + 1))| F (M)} = § 9(»)Q X I dy)

where H,(x, a; dy) is for each a a family of transitions, and Q,(x, a; dy) is for each
X, a an entrance law for {H}.

More information on the form of H,, Q, is given in (8), (9) below. Special
cases of this decomposition have been given before. In [3], [8], a decomposition
for real diffusions was given with f(u, v) = min {#, v}; in [5] such a decomposi-
tion was given for general real Markov processes and the same f (but here the
conditional independence was proved only for a broad class of processes, not
all); in [6], decompositions were given for X an h-transform of k-dimensional
Brownian motion, with f = &, but here also conditional independence was proved
only for a few processes in the class considered.

The decompositions in the references just cited were proved more or less from
first principles, and because of this the proofs, while long and involved, contain
further valuable structural information in the special cases treated. Here the
proof is quite short, and the end result is much more general; but it rests on a
substantial mountain of general theory.

Decompositions of real diffusions at their ultimate minimum (i.e., f(u, v) = v)
were used as a key but difficult tool by Williams ([8]) in his ingenious study of
Brownian local time. Decompositions at other “minimal” times promise to be
equally useful; in particular the decomposition of a general process at the time
it is closest to a set A4 for the last time ( f(¥, v) = min {g(), g(v)} with g(u) =
d(u, A) and d a metric on E) is of particular interest and will be studied elsewhere.

ProoF. Let (R, &%) denote the real line with the sigma field of Borel sets.
For x ¢ E, ac R and bounded real g on (E, &) X (R, &) define

(7N K((x, a), 9) = E*g(X,, I, \ a).
Then (x, a) — K,((x, a), g) is measurable and {K,} is a semigroup of transition
functions. Indeed, since [, (o) = I,(w) A I(6,0),
K, ((x,a), 9) = E*9(X,1q I11s N Q)
= EXE*{g(X,(0.), 1. A 1(0.) N @) | )}
= E*K((X,, I, A a), g)
= K, K((x, a), 9) -

For each real number b the right continuous process {(X,, /, A b)} with state
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space E X R is strong Markov relative to the sigma fields Z,, and has transi-
tions {K,}:
E{g(Xryir Iree A B)| 1) = EHg(Xd0r), Ir A 1{07) 1 B)| -1}
= Kt(XT, I N b, g) .

Moreover the random time M is a “coterminal time” for the (X, I;) process
(but not for the {X,} process; the vector process (X,, I;) here is not given in
canonical form—in particular the relevant shift operator is not the same as that
of {X,}; we do not dwell on this familiar problem). Of course, I, = I for t > M.
By Pittenger-Shih, Getoor-Sharpe ([7], [2]), {(Xy+:> 1), t = 0} is conditionally
independent of .57, given (X, 1), and {(X,,,,, 1), t > 0} is strong Markov rela-
tive to the right continuous sigma fields (M + 1+), with transitions
(8) H((x, a); dydz) = P>*{(X,, I,) e dydz, t < T}P**T = oo}[P"¥(T = o)
where T = inf{s > 0: f(X,, X,) = I, or f(X,_, X,) = I, or f(X,_, X, ) = L} and
where P is the P* distribution of the strong Markov process {(X,, I, A a), t = 0}

on its canonical function space. One can express (8) in terms of the original P*
measures. Indeed when x = X,,, a = I, (8) may be deciphered as

) Pe(X, e dy, t < T)PHT, = oo}/ PH{T, = oo}

where 7, = inf {t > 0: f(X,_, X,) < a, or f(X,, X,) < aor f(X,_, X, ) < a}. The
entrance law Q,((x, a), dy) is a regular conditional distribution of X, ,, given
Xops D)

Various extensions of the argument of Theorem (6) are possible. Some of
these were pointed out to me by R. K. Getoor and J. Azéma (the latter via the
Associate Editor, J. Walsh). Here is one extension. If R* is k-dimensional
Euclidean space, let & be a Borel function from R* x R* to R* satisfying

h(x, k(y, 2)) = h(h(x, y), z) -
Let /, be an adapted, right continuous functional of X with values in R*. Assume
for all optional T and all real s > 0:

Iry, = h(IT, 1,0 0T) .
Then the calculations of Theorem (6) show, without change, that (X, I,) is

strong Markov. Interesting choices of /, include additive functionals, multipli-
cative functionals, and, if X is real, the (vector) extremal functional

(10) I, = (inf,g, X,, sup,s, X,) -
The results of [2], [7] may now be applied to the process (X, I;) as in the proof
of Theorem (6) to obtain interesting decompositions. For example, application

to the functional (10) in a natural way yields a decomposition of X at the time
at which it attains its (last) extreme value.
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