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CHARACTERIZATION OF SUBCLASSES OF CLASS
L PROBABILITY DISTRIBUTIONS

By A. KUMAR AND B. M. SCHREIBER!
Northeastern lillinois University and Wayne State University

The subclasses of class L probability distributions recently studied by
K. Urbanik are characterized by requiring that certain functions be convex
and have derivatives of some fixed order. The extreme points of certain
compact convex sets of probability measures are determined, and this
information is then used to obtain a representation of the characteristic
functions of the probability distributions in those classes, in the same
manner as Urbanik has proceeded for the class L.

0. Introduction. The set of self-decomposable, orclass L, probability measures
plays a fundamental role in the description of the limit laws of sequences of
random variables. It is well known that a probability measure on the real line
is self-decomposable if and only if certain functions obtained from its Lévy
measure are convex and that all stable probability measures are self-decomposa-
ble (see, e.g., [3], Section 23). In recent years the self-decomposable measures
have been the object of further study by Urbanik and by the authors, some of
this work appearing in [1], [2] and [5].

In [6] Urbanik has subclassified the self-decomposable distributions inductively
so as to obtain a decreasing sequence {L,} of classes, each of which is closed
under shifts, changes of scale, convolution and passages to weak limits, such
that their intersection L_ is the smallest class closed under these operations
containing the stable distributions. He obtained a characterization of the
measures in each of these classes in terms of their components.

In this paper, we begin in Section 2 by characterizing each of these classes
L, (1 £ m < o) in terms of the functions referred to above. These characteri-
zations are then used in Section 3 to find the extreme points of the compact
convex sets of Lévy probability measures corresponding to distributions in
each of the classes L,. For the entire class of self-decomposables, this pro-
gram was carried out by Urbanik in [5]. Finally, in Section 4, we point out
how this information leads to the representation of the characteristic functions
of the measures in each of the classes L,,, obtained in [6] by other methods.

In a sequel to this paper we shall use the results of Section 3 and the methods
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280 A. KUMAR AND B. M. SCHREIBER

of [2] to represent the corresponding subclasses of the class L on higher-di-
mensional spaces and certain Banach spaces.

1. Preliminaries and notation. Let X, j=1,2,...,n,n=1,2,3, ... be
a triangular array of uniformly asymptotically negligible random variables such
that for each n the X, ,, j=1,2, ..., nare independent. Following [6], we say
that a triangular array as above is generated by a sequence {X,} if for each n and
Jj» X,; is distributed as X, and we call two triangular arrays equivalent if they
have the same limiting distribution. It follows that a triangular array {X,;} is
equivalent to an array generated by a sequence {X,} if and only if for suitably
chosen @, and b, the sequences

Lyrx,—a and  Lypix s,
n n
have the same limiting distribution.

Now define S,, (m = 0, 1, 2, - ..) inductively as follows. Let S, be the class
of sequences {X,} of independent random variables generating convergent tri-
angular arrays. Then S, is the class of sequence {X,} of independent random
variables such that for suitably chosen constants a,, (1/n) 3%, X, — a, hasa
limit distribution. Define S, (m = 1,2, 3, -..) to be the class of all sequences
{X,} such that {X,} € S, and for every positive real number c the triangular array
X,; = Xien1+; is €quivalent to an array generated by a sequence from §,, ;. Let
L. = %o Ln, where L, is the set of all possible limit distributions of normed
sums (1/n) ¥7_, X, — a, where {X,} € S,, and a, are real constants. We define
L_, to be the set of all probability measures on the real line R. It is clear that
the S,, form a decreasing sequence of sets and hence the L, form a decreasing
sequence.

For a probability measure #, T, p, @ > 0, and f are defined to be the proba-
bility measures given by T,p(A4) = p(a~'A4), where a4 = {a~'x: x € 4}, and
#(A) = p(—A). The following theorem was proved by Urbanik in [6], page 227.

THEOREM 1.1. A probability measure p belongs to L, (m=0,1,2, ..., c0) if
and only if for each c € (0, 1) there exists a probability measure p, € L,,_, such that

p=Topx*p,.
Here = denotes the convolution between two probability measures. The

measures g, are called the components of .
Let {X,} € S,. Consider the normed sums

Yn:El_ZZﬂXk_an n=12,...,

where a, are real, b, > 0 and the random variables X, /b, (k = 1,2, ..., n) are
uniformly asymptotically negligible. It is well known that the class of all
limiting distributions of such sequences Y, coincides with the class L, of all
self-decomposable distributions. The problem of describing the probability
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measures in L, was solved by Lévy, who obtained an explicit representation of
the characteristic functions of those measures. Namely, the function ¢ is the
characteristic function of a distribution from L, if and only if ¢ is the charac-
teristic function of an infinitely divisible probability measure and the functions

2 2

Q%) = §ormy jy’ du(y),  Qu%) = nm jy du(y)

are convex functions on R, where p is the finite Borel measure on R determined
uniquely by the Lévy-Khintchine representation. For details see [3], pages
323-326.

The aim of this paper is to characterize the classes L, (m=1,2,3, ..., 00)
by requiring Q,(x) and Q,(x) to be not only convex but also have derivatives of
order m at every point. We then use this characterization to find the extreme
points of a certain compact convex set in a somewhat similar fashion as Urbanik
has done for L,. After finding the extreme points we characterize the L,, by their
Lévy-Khintchine representations.

Let us make some further definitions. If ¢ is the characteristic function of
an infinitely divisible probability distribution, then the Lévy-Khintchine repre-
sentation of ¢ is given by

— ; w w1y I+ }

8 = exp {irt + 57 (e — 1 — 20 y,) 15 du)
where ¢ is a finite Borel measure and y is a real constant. The function ¢
uniquely determines p and y. We shall call g the Lévy measure of ¢. Let R
be the compactified line [ — oo, co], and if p is a measure on R we define z as
before. Let the symbol y stand throughout the remainder of this section for a
finite Borel measure on R. Consider the one-parameter group {S.},,, of trans-
lation operators on functions on R given by S, f(x) = f(x — logc). We denote
the identity S, by . Now we define sets M,,, M,°, K, and K, °, and the functions
Jn(#) and Q (x) as follows:

1 2 )
Qu(x) = V(2,000 b du(y), xeR.

2
M, = {¢: Q,(x) and Q(x) are convex functions}.

M, = {p: [T (I — S,,)Qu(x) and JJr, (I — S, )Qu(x) are convex
functions for every ¢, ---, ¢, €(0, 1)}, m=1,2,3,....

M= {p: peM, and p is concentrated on R}, m=20,1,2,....
K, ={¢:peM, and p isa probability measure}, m=20,1,2,...
K,'=K,nM,, m=20,1,2, ...

J.(u) = “<lo i)m Y dy , ueR,m=0,1,2,....
(u) = 3 gy' 1+y,y
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Note that J,(—u) = J,(x), and one can easily check that if # > 0, then
Ju(u) £ (¥ (loguly)y"ydy = m/2 {E* (logu — t)y"~'e* dtform = 1,2, .... Thus
since J,(u) = }log (1 + u?), we conclude that J,,(u) is finite for every u.

2. Characterization of L,. In this section we obtain some convexity con-
ditions on Q,(x) and Q;(x) which characterize the classes L,,.

PROPOSITION 2.1. Let A be an infinitely divisible probability measure on R. Then
A is in L, if and only if for every c€(0, 1), v, = v — T,v is a nonnegative Borel
measure on R, where (E) = {; (1 + y*)/y*) du(y) and p is the Lévy measure of 2.

ProoF. We know by Theorem 1.1 that 1€ L, if and only if 2 = T, 4% 4, for
every ce (0, 1). Since 2 and 4, are infinitely divisible by [3], page 323, we have

. i o y*au(y)
Ary = exp[ ct (r + (1= ia (1 + (1 + ~V2)>

+ SR<e“" —1—5 ifyz)ch(y)]

X exp [irct + Sz (e"”‘ -1 - Ti{ty) dvc(y)J .

Thus A€ L,ifand only if v = T,» + v,. Hence that for every ce (0, 1) v — T,v
is a nonnegative Borel measure on R is a necessary and sufficient condition for
2 to belong to L,.

THEOREM 2.1. Let 2 be an infinitely divisible probability measure on R. Then
2eL,(m=0,1,2,...) if and only if its Lévy measure p belongs to M, °.

Proor. We proceed by induction on m. The proof in case m = 0 is well
known, but we include it for completeness. Let m = 0 and Ae L,. Then by
Proposition 2.1,

YE) — TUE) = Sﬂ%id#(y) — Serp - du(y) 2 0

2

for every ce (0, 1) and E a Borel set in R. Take E = (e*™*, ¢*], ¢ = e™* and
h > 0. Then we obtain

Q,(x — h) — 20,(x) + Q,(x + h) = 0.
Hence Q,(x) is convex. By taking E = (—e”, —e*"*] we obtain
Qu(x — k) — 203(x) + Qa(x + 1) 2 0.

Hence Q, and Q; are convex which proves that e M.

Now assume the induction hypothesis, namely that ¢ L,,_, implies g e M, _,.
If AeL,, by Theorem 1.1 2, €L, _, for every ce (0, 1), so g, € M, _,. But for
any ¢ we have

0,(x) = (e, ) and  Qy(x) = (—o0, —¢7)).
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Therefore
Q. (%) = ve((e, 00))

(1) = (€%, 00)) — ¥((c 7", 0))
= Q,(x) — Q. (x — logc)
= (1 - Sc)Q#(x) >
and similarly '

Qs (x) = (I — S.)Qu(¥) -
It follows that pe M,°.

To prove the sufficiency assume again that m = 0 and Q,(x) and Q;(x) are
convex. Then there exists a nonnegative, nonincreasing function g(y) such that

Q,x) =T 9(y)dy.
Consequently, for every £ > 0 and 0 < a < b we have

1 2 1 ?
s%%%@mzmuﬁimw

Thus v(a, b] = v(e*a, e*b]. Similarly we can show v(a, b] = v(e*a, €'b] if a <
b < 0, this time using the convexity of Q;(x). By Proposition 2.1, ie L,.
Assume that pe M,° and that pe M}, _, implies that ie L, _,. It follows im-
mediately from (1) that p, e MJ_,, so 4, € L,,_,, once we show that 1¢ L, so g,

exists. To do this, observe that Q,(x) — 0 as x — co. Hence
Q#(x) = lim_+ (I — Sc)’”Qy(x)

is convex, and the same holds for Q,(x). Now by Theorem 1.1, 2¢e L,. This
completes the proof of the theorem.

In the next two theorems we characterize the classes M, ° by means of deri-
vatives of order m of the function Q,(x). To do this we require the following
lemma whose proof is left for the reader.

LeMMA 2.1. Let f be a convex or concave function such that the right-hand
derivative, D*f, and left-hand derivative, D~f, of f are continuous. Then fis differ-
entiable at every point.

THEOREM 2.2. Let pe M,°, for some 0 < m < oo. Then the mth-order deri-
vatives of Q, and Q;, denoted respectively by Q,™(x) and Q;™(x), exist at every
point.  Furthermore, if m is even (odd) then Q,™(x) and Q;™(x) are convex
(concave) functions.

ProoF. When m = 0 we understand Q,”(x)and Q;”(x) to mean the functions
themselves; in this case there is nothing to prove. Assume the conclusion of
the theorem for m — 1, and let e M,°. Then, since the sets M, ° are decreasing
with m, by Theorems 1.1 and 2.1 ¢ and g, are in M},_,, so by (1) the functions
Q,™Y(x) and

0iz7(x) = Q" (x) — Q,""(x — log )
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exist and are concave (convex) if m is even (odd). Consequently,
D*Q,™(x) = lim,_,- Q;»"(x)/log ¢
and
D-Q,™V(x) = lim,_,- Qi V(x + logc)/logc .
Since the pointwise limit of convex (concave) functions is convex (concave),

Lemma 2.1 implies Q,™(x) exists and is convex (concave) if m is even (odd).
The same argument applies to Q;(x).

THEOREM 2.3. The necessary and sufficient condition for a measure p to belong
to M,°, m=0,1,2, ... is that there exist nonnegative and nonincreasing functions
g(y) and h(y) on R such that

Qux) = S yma(y + x)dy  and  Qu(x) = 7 y"h(y + x) dy .
ProOF. Let pe M, Then yue M, for all k < m since the M,° form a de-

creasing sequence of sets. By Theorem 2.2, Q,*(x) exists at every point and is
convex or concave depending on whether k is even or odd. Hence

Q,(x) = §7 —0, (1) dn = §2 §5, (= 17°Q,¥() dys
— = TR 3, (S )"0 (D) s -

Since Q,™(y) is convex or concave, there exists a function g(y) such that
Q. ™(y) = {7y q(2) dz;

in fact g(z) = —Q,™*(z) except on a countable set. Therefore we can write
(2) 0,(x) =815, -+ §5,, W, (=1 DrQ, ™ (z) dz dyy, - - dy, -

Define g(y) = (m!)"%(—1)"*'D*Q,™(y). One can easily check that A(y) is non-
negative and nonincreasing. By interchange of variables in (2) we obtain

Qux) =2 (y — )9 dy = {7 y"9(y + x) dy .
Similarly we can obtain the desired expression for Q;(x).
Conversely, suppose the conditions given in the theorem are satisfied for
m = 0 and some measure ¢. Then since g(y) is nonincreasing, for x, < x, we
have

Qu(x1 + X))2) = (% 1apin 9(y) dy
= ey 9() + $5,0(0) dy
=< 355 9(0) dy + 3 Va2 900) dy + 15, 9(9) dy
=3 35900) dy + 3 5, 000) dy
= 30u(x) + 3Q,(x) -
Thus Q,(x) is convex. Similarly Q;(x) is convex, so e M.

Now assume that a measure y is given satisfying the conditions of the theo-
rem for some m and that a measure satisfying those conditions for m — 1 must
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lie in MY _,.
Qux) = §&ym9(y + x)dy = m {3 §¥ 1™ g(y + x)dtdy
=mz (T 1" 9(y + x)dydt = m 7 (2, 1™ 9(y) dydt .
Set §(y) = m {; g(f) dt. Then g(y) is nonnegative and nonincreasing and
0. (%) = T y"7'9(y + x)dy.
Proceeding similarly for Q;(x), we conclude that u € M}, _,, so u, exists for each
ce (0, 1). Moreover,
0,,(x) = & y" (I — S.)4(y + x)dy

(I = S)g(y) = m §y7'°% g(1) dt

is nonincreasing and nonnegative since g was assumed to have these properties.
The same observation applies to Q; (x), so we see that u, € M’_,. Thus ze M,°,
and the theorem is proved.

We now characterize the set M_.° = N5_, M,.° by means of the functions Q,
and Q;.

Then

and

THEOREM 2.4. A measure p is in M,° if and only if Q,(x) and Q;(x) are com-
pletely monotonic functions on R.

Proor. Let peM,'. Then peM,°’ for every m =0,1,2, .... Hence by
Theorem 2.2, Q™ (x) and Q;™(x) exist at every point and (—1)"Q,™(x) = 0
and (—1)"Q;™(x) = 0. Thus the functions Q, and Q; are completely monoto-
nic. Conversely, suppose Q, and Q; are completely monotonic. Then for each
m one can prove as in Theorem 2.3 that

Qux) = &y gn(y + x)dy  and  Qu(x) = §§ y"h.(y + x) dy
for some nonnegative, nonincreasing functions g,(y)and #,(y). Thus by Theo-
rem 2.3, pe M,°. Hence pe M_°.

3. Extreme points of K. This section is devoted to showing that the sets K,
are compact and convex and to finding the extreme points of the sets X,,. .

LemMma 3.1. The sets K,,, m =0, 1,2, ... are compact and convex.

Proor. The convexity of K, follows easily from the definition. Since the
class of all probability measures on [ — oo, co] is weakly compact it is sufficient
to prove that the sets K, are closed. So let {¢,} be a sequence in K,, converging
weakly to . Then for all x which are continuity points of Q (x),

lim,_, Q, (x) = Qux).
If m=0,let F(x) = Q, (x)and F(x) = Q,(x). If m>1ande¢, ---,¢,e(0, 1)
are given, let

F'n(x) = [ (l - Sck)Q#,.(x)
and let F(x) be defined analogously with 4 in place of y,. Then since Q,(x) is
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decreasing we see that

lim,_, F,(x) = F(x)
for all but countably many real numbers x. By Theorem 2.1 each of the
functions F,(x) is assumed to be convex. Therefore, by [4], page 47, the above
convergence is uniform on bounded intervals, and it follows that F(x) is convex

also. A similar argument applies to z, and z. Since ¢, - - -, ¢, were arbitrarily
chosen, we conclude that p e K,,.

LEMMA 3.2. The set K, = N5, K,, is compact and convex.
Proor. The intersection of compact convex sets is compact and convex.

LemMMA 3.3. The extreme points of K,, m=10,1,2, ..., co, are measures
concentrated on one of the following sets: {— oo}, {0}, {+ o0}, (0, o0), (— o0, 0).

Proor. The result is obvious as soon as we realize that if x ¢ K, then so is
its normalized restriction to each of the given sets on which it is nonzero. This
follows immediately from Theorems 2.3 and 2.4.

Since y is an extreme point of K,, if and only if 4 is, it is clear from Lemma
3.3 that to find the extreme points of K, it suffices to consider those ¢ which are
totally concentrated on (0, co). So consider sucha pecK, >, m=20,1,2,....
Then by Theorem 2.3, if m > 1 we can write

0,(x) = - 7 yaly + X) dy = §2 15yl + ) dydr .
Hence
(3) ©((a, b)) = igéf‘:%e—u iy lg(y + dydt, 0<a<b< .
Conversely, every nonnegative, nonincreasing function g(y) satisfying

2t m—1
(4) % 507 i G 90+ ndydt =12 {7 ——lgfry)e;,_m didy < oo
defines a measure A concentrated on (0, co) given by (3) with 2 in place-of p.
Furthermore this 1 belongs to M, °.
Denote by m_,,, m, and m,, the probability measures concentrated at — oo, 0
and oo, respectively. If u € R, denote by m, the probability measures given for
eachm=20,1,2, ... by

1
Tu(¥)

3 €0 (1o ) 5

where C,(¢) denotes for # > 0 the indicator function of the interval (0, ) and
for u < 0 the indicator function of the interval (u, 0). J,(u)is as defined in Sec-
tion 1. Notice that m_,

Now we shall find the extreme points of K,. Denote by ¢(K,) the set of
extreme points of K.

m(E) = m,™(E) =

il

= m,.
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LemMmA 3.4. e(K,) Cc {m,: ue[—oco0, 0]}, m=0,1,2, ...

ProoF. Let pee(K,). Itis sufficient to assume y is concentrated on (0, co).
Furthermore, if m = 0 the theorem follows from [5], page 212. Solet m > 1.
Now since ¢ € K,,° (3) holds and we must have

§=. §7

i + mg(y-l— Hdydt=1.

Let
L(y) = ¢ —2(—,7dt
Then (4) yields
©) Ve K(Y)W(y)dy = 1.
Since it is immediate from (4) that {3 I,(y) dy = oo for every a ¢ R, we conclude
that 4(y) cannot be a nonzero constant function on (a, oo) for any a. Suppose

there exists a real number v such that g( y) is not constant on both of the intervals
(—o0,v) and (v, o). Then by (5),

¢ = \ta gn(y) dy + §2 9(N)n(y) dy € (0, 1) .
Define the functions 4, and 4, by

h(y) = ¢7'g(») if y<v
= c7'g(y) if y>v
h(y) = (1 =) g(y) —9(v)) if y<v
= 0 lf y >y,

The functions A, and k, are nonnegative and nonincreasing, and they satisfy
(5)- Hence they define two probability measures s, and g, as in (3). It is easy
to see that # = ¢y, 4 (1 — ¢)py and g, # p,. But this contradicts the assumption
that  is an extreme point. Hence for every a, g(y) is constant on either (— oo,
a) or (a, o). Hence sup{a: g(y) is constant on (—oo,a)} = inf{a: g(y) is
constant on (a, co)}. Now let log #, u > 0, be the point of decrease of 9(y), so
that g(y) would be a constant K on (— oo, log #) and zero on (log 4, o). From
(4) and (5) we now have
t'm—l

T e

— K Slogu logu—t

1:Kslogu by fdy

e m— K
1 —|—e2‘y 1dydt=;‘]m(u)v

i.e., K = m/J,(u). Consequently from (3) we have for 0 < a < b < u,

(@ b)) = T gt gpeeymes € gy gy
T () [t e
= m((a,8)),

meaning that z = m,. Thus the lemma has been proved.
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THEOREM 3.1. ¢(K,)={m,: ue[—o0, 0]}, m=0,1,2, -...

Proor. We must show m, € ¢(K,,), —oo < u < oo. Once again it is sufficient
to consider m, for 0 < u < oo. Suppose m, is not an extreme point. Then it
follows from the proof of Lemma 3.4 that there exist functions 4, and 4, which
are nonnegative and nonincreasing and satisfy (5) such that A, # &, and for
some c € (0, 1),

9(9) = mIn(] o rogu(¥) = chi(y) + (1 — )h(y) -

(Here I denotes indicator function.) Thus

Chl(.y) = g(y) - (1 - c)hz(y) .

It follows that if A,(y) was not a constant function on (—oo,logu) and on
(log u, o) then k,(y) would be increasing. Hence h,(y) is a constant function
on each of these intervals and so is 4,(y). Thush, = h, = g. This contradiction
implies m, must be an extreme point.

Now we proceed to find ¢(K,). By Theorem 2.4 and Bernstein’s theorem [7,
page 155], £ e M,? if and only if we can write

(©) Qux) = (T e™do(y),  Qux) = {§e ™ dr(y),

where ¢ and 7 are finite Borel measures on [0, c0). Consequently,
Qu(x) = §2 15 yerv da(y) dt .

Thus for 0 < b < oo,

(0, 0)) = §8° 3 {7 yerv do(y) dt

= {7 (08— ye~v' drdo(y)
e

=ww{+ﬁwwm-

Similarly, for —co < a < 0 we obtain

= e yt T
#((a,0)) = & {& 11 ¢ dtd -

Moreover, since

dt
5 1-|-t2

is finite if and only if y e (0, 2), we conclude that in (6) ¢ and r must be concen-
trated on (0, 2). Thus

™) MOW—SVy’ S drdo(y).
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Denote by p, the probability measure given by

Py(E) = SR et "'

C(t) dr,

where y e (—2,0) U (0, 2) and C(¢) is the indicator function of the interval o,
o) if y is positive and (— oo, 0) if y is negative. We denote by p_, p_.., and Pa
the probability measures concentrated at {co}, {— oo}, and {0}, respectively.

THEOREM 3.2. ¢(K,) = {p,: ye{—oo} U (—2,0) U (0, 2] U {oo}}.

PROOF. Once again it is sufficient to consider those y € K, which are concen-
trated on (0, o). It is easy to see from (7) that such a p is an extreme point
of K, if and only if ¢ is concentrated at one point y ¢ (0, 2) such that

) yol0D) 7 e — 1.

Since the integral appearing in (8) is equal to /2 sin (wy/2), the theorem is
proved by considering (7) for such measures o.

4. The Urbanik representation of measures in L. In this section we shall
use the results of Section 3 to obtain a formula for the characteristic function
of a probability measure in L,,. Our representation is the same as that obtained
by Urbanik in [5] for m = 0 and in [6] for all m.

LeEMMA 4.1. The mapping u — m, is @ homeomorphism of [ — oo, o] onto e(K,,)
foreachm=0,1,2, ....

ProoF. Since the functions J,,(u) are clearly continuous, it is easy to see we
have continuity at each ue R. To show continuity at + oo, suppose first that
f is a continuous function on R with compact support disjoint from 0. Then
there exists C > 0 such that |7|/(1 + ) < C/|t| whenever f(f) # 0. It follows

- that for such a function fand for « > 0,

u 1 i " ; = ™ — .
©) gof(t)< og ) = 0((log ) as u— oo
On the other hand, for # > 1 we have
dr
> 1 ot - m+l
() 2 3§t <0g ) C T 1)(Ogu)
Thus
(10) lim, ., {¢ fdm, = 0.

Now, the collection of all such functions f, considered as functions in C(R),
is uniformly dense in

= {f € C(R): f10) = fixo0) = 0} .
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Hence (10) holds for all fe C,, and we may proceed similarly as ¥ — —oo. Let

di(x) =1 x<0
=1—x 0<x<l
=0 le

and ¢,(x) = ¢,(—x). Then any fe C(R) can be written uniquely in the form

f=g+a‘|‘b¢1+c¢2,

where g € C,. If u > 0, then {° ¢,dm, = 1, and it is easy to see that the estimate
(9) holds for f= ¢,, so we have (10) for f = ¢,. Hence {5 fdm, — f(c0) as
u — oo forall fe C(R), and a similar argument applies as ¥ — —oco. Thusu —
m, is continuous, so a homeomorphism.

LemMMA 4.2. The mapping y — p, is a homeomorphism of (—2, 0) U (0, 2] into
e(K,.).

Proor. Set ¢, = p,, where y = (sgnz)(2 — |z]), 0 < |z| < 2, g, = p,, and
g+ = Piw- We shall show that z — g, is a continuous map (hence a home-
omorphism) of [ —2, 2] onto ¢(K.,), from which our lemma follows immediately.
Continuity at all points except 0, +2 is easily verified.

Let fbe a continuous function on R with compact support disjoint from 0.
The dominated convergence theorem then implies that

VA2) = (=fdg.
is continuous on [—2, 2]. Recalling the notation established in the proof of
Lemma 4.1, we conclude that ¥, is continuous for all fe C,. Forall 0 < z <
2 we have ¥, (z) = 1, and one can readily check that
lim, ,¥,(z) =0 and lim,_, ¥, (z)=1.
Hence ¥, is continuous on [0, 2] for all fe C(R). Proceed similarly on [—2, 0].

LemMAa 4.3. 4 measure pisin M,°, m=0,1,2, ..., oo, if and only if there

m

exists a finite Borel measure w,, on R such that for all bounded measurable functions
fonR,

0 f0) dp(x) = 170 (57 f(X) dm, ™ (x) dv (1)
form=20,1,2, ..., and for m = oo,
2 f(X) dp(x) = 125 (17 f(x) dpy(x)) dwn(y) -

ProoF. By Lemmas 4.1 and 4.2 ¢(K,,) is homeomorphic to [ — oo, o0], m =

0,1,2, ..., and there is a one-to-one bimeasurable mapping of e(K.) onto
(—2,0) U (0,2] U {+o0}. Therefore, by the Krein-Milman-Choquet theorem,
a measure ¢ is in K,,, m = 0, 1, 2, - .. if and only if there exists a probability

measure ,, on R such that

(11) §af(x) dp(x) = & (§2 f(x) dm,™(x)) dw,(u)
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for all continuous functions on R. Moreover, the measure o, will assign zero
mass to {+ oo} if and only if ;2 does so. Furthermore the formula (11) with R
replaced by R extends to all bounded measurable functions f on R. One can
proceed similarly for m = co.

THEOREM 4.1. A function ¢ is the characteristic function of a probability measure
from L,, m=0,1,2, ... if and only if
#(t) = exp [irt + it {=, <§g elts <log i>m+l dx — (m + 1)! tan‘1u>
x
dw(u) :I
(log (1 + [ufmsyms1 )’

where r is real and w is a finite Borel measure on R. The function ¢ uniquely
determines r and w.

ProOF. We know from Theorem 2.1 that 1e L, m=0,1,2, ..., if and
only if 2 is infinitely divisible and its Lévy measure y belongs to M,°. Thus
by Theorem 3.1 and Lemma 4.3 this happens if and only if there exist 7 € R
and a finite Borel measure » on R such that (with an obvious convention at 0)

A1) = exp :irt + §% <e“’” S L > 1+ x dy(x)}

14+ x/ x
. —. o = itz ltx 1 + x2 "
= exp _trt + 0% (% <e e m) o dm,™(x) dw(u)]
- - o [t ix \14x
= exp _zrt — 30({0D? + o0 §% <et —-1- 1+ x2> x2
(12) X Cy(x)(log ufx)" —=— dx dw(u)]
14+ x2 J,(u)

) . ., e itx m dx d(l) u

_ exp[lrt i S$’<e —1_ T x2>(logu/x) YK(”))]

= ex [irt—|—it< ! S“e""(lo u>m+1dx
= P 14+ m ° g?

s g £)4) 40

For two functions fand g on (— oo, o) let us say fand g are equivalent and
write f~ g if there exists C > 0 such that f(x) < Cg(x) and g(x) < Cf(x) for
all x. Let

) =11 —-l=st=1
1
|1
and
¥ (u) = u? —l=u<l1

=1+ (log |u)™** |u=1.
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Then [f|/(1 + #*) ~ ¢(¢), from which it follows by integration by parts that
J,(u) ~ ¥, (u), which in turn is equivalent to log™+'(1 + u*™*!). Let ¢ be the
measure given by

do(uy = 108"+ ) 4wy
Tn(¥)

Then ¢ is a finite measure if w is, and conversely, and we may replace
J, " N(u) do(u) in (12) by log=™"*(1 + u*™*')do(u). Finally, further integration
by parts shows that the new integrand in (12) is equivalent to the integrand
appearing in the statement of the theorem (cf. [6], page 233).

The uniqueness of w and r follow from the uniqueness assertions in the Krein-
Milman-Choquet theorem and the Lévy-Khintchine representation, respectively.

THEOREM 4.2. A function ¢ is the characteristic function of a probability measure
from L, if and only if

(13) B(1) = exp [m +§tysin Ty 55 (16 e“’v_ Law

dx

X1+l

— ittan™! x> dw(y)} ,
where r is real and w is a finite Borel measure on (—2,0) U (0, 2]. The function ¢
uniquely determines r and w.

Proor. Proceed by analogy with (12), using Theorem 3.2, and note that it
can be shown ([3], page 330; [6], page 236) that the w-integrand in (13) con-
verges to —nt*/4 as y — 2.

Theorem 4.2 can be refined ([6], pages 236-237) to read as follows.

THEOREM 4.3. A function ¢ is the characteristic function of a probability measure
from L, if and only if

(1) = exp [irt — %, <|t|lul <cos %y — %sin % y> + ify) ld‘i_(/r;l] .

where r and w are as in Theorem 4.2 and the integrand is defined as its limiting values
(7/2)|t| + itlog |t| F it when y = +1.
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