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THE UNIFORM DIMENSION OF THE LEVEL SETS
OF A BROWNIAN SHEET

By ROBERT J. ADLER?
CSIRO

Let Wn(t) denote the N-parameter Brownian sheet (Wiener process)
taking values in Rl. For 0<T <1, set A(T)={teRVN:0< 4 =T,i=
1, .-, N} and let E(x, T) = {te A(T): Wn(t) = x}, the set of t where the
process is at the level x. Then we show that, with probability one, the
Hausdorff dimension of E(x, T) equals N — 4 for all 0 < T < 1 and every
x in the interior of the range of Wx(t), t € A(T). This provides an answer
to a question raised earlier by Pyke.

1. Introduction and main result. Let W, or simply W, denote the N-parame-
ter Brownian sheet (Wiener process) taking values in R'; i.e., W (t, ) is a real
valued, Gaussian random field with mean zero and covariance

E{W (s, 0)Wy(t, w)} = T[], min (s;, t;) ,

wheres = (s, ++-+, Sy), t =(t;, -+, ty),and s, te R,Y, R ¥ = {teR": ¢, = 0}.
For te R.7, let A(t) denote the N-dimensional rectangle {s ¢ R, V: s; < ¢}, and
for T > 0, let A(T') denote the cube {se R,": 5; < T}. In[7], Pyke raised the
question of what dimensional properties are possessed almost surely (a.s.) by the
zero set {t € A(1): W(t) = 0}. The arguments generally used to establish such
results are, like those in our earlier study [1], of a capacitarian form. However,
in this paper, we use arguments based on local time, which will allow us to
obtain a result that holds with probability one for all level sets simultaneously.
In particular, we shall obtain

THEOREM. If E(x,T) = {te A(T): W,(t) = x} denotes the set of t where the
process is at the level x, then, with probability one,

(1.1) dim [E(x, T)] = N — }
for all 0 < T < 1 and every x in the interior of the range of W(t) for t e A(T).

Note that the one-dimensional process X(¢) defined by X(r) = Wy(1, .-+, 1, 1)
is a simple Brownian motion, and thus by the law of the iterated logarithm for
such processes the point x = 0 always lies in the interior of the range of X(¢),
te[0,T] for any T > 0. Hence x = 0 is also always in the interior of the
range of Wy (t), te A(1), and so (1.1) is always true a.s. when x = 0. Thus the
theorem provides an answer to Pyke’s question.

We shall prove the theorem in Section 3. The key to our argument is the
observation made by S. M. Berman (for the case N = 1) that the “uniform
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irregularity” of the sample paths implies the “uniform regularity” of the corre-
sponding local time. We therefore start by considering the properties of local
time for W,.

2. Some results on the local time of W,. We commence by defining a local
time. Let ¢ be an arbitrary positive number, and let W (t) = Wy(t, + ¢, - - -,
ty + ¢). For any Borel set B of R' let x(t, B, w) be the occupation measure of
B defined by

t(t, B, w) = A,{s € A(t): W (s, v)e B},
where we use 2, to denote N-dimensional Lebesgue measure. Then by the lemma
of Tran [9] we have that for almost every o there exists a real valued function
L(x, t, w), jointly continuous in (x, t,, - - -, ty) such that

1t B, w) = {5 L(x, t, 0)dx.

Furthermore, we may, and shall, use the version of L, given by

(2.1) L(x,t, w) = (2r)~' (=, 7™ {,,, eV ds du .
Note that (2.1) can be rewritten as follows (cf. Cairoli and Walsh [4]):
L(x,t, )
(2.2) = (- S {(2m) 7t (2, e N _ e Ve ds du}ds, - - - dsy_,

= (U(s:x, ty, w)ds, - dsy_, .

Here [, is simply the local time of the diffusion Y(¢) = W(s, + ¢, ---, sy, + ¢,
t + ¢). By a result of Ray [8] it follows that [, is a.s. strictly positive for every
x in the interior of the range of Y(r). Now suppose x lies in the interior of the
range of W(t), t e A(T), for some fixed 7 > 0. Then we can choose some point
s € A(T) for which W ,(s) = x and for which W (s) is neither a local maximum
nor a local minimum. Consider now the (N — l)-dimensional subspace
A(co, - -+, 0, 0) of R, ¥. Let s* be the projection of s into this subspace. Then
by the continuity of W, there is an open neighbourhood »* of s* in this subspace,
of positive 1,_, measure, for which for every r € »*, x is contained in the interior
of the range of the diffusion W(r, + ¢, ---,ry_, + ¢, ¢t +¢), t€[0, ty]. Thus,
for every ren*, [(r: x, ty, ®) is a.s. strictly positive, implying, by (2.2), that
the same is true of L(x, t, »). Thus we have

LeEMMA 1. For any te A(1) the local time L(x, t, w) is a.s. strictly positive on
any interval interior to the range of W(s, ), s € A(t).

To establish (1.1) we shall need a uniform Hélder condition on the local time.
This is obtained in Lemmata 2 and 4, which correspond closely to Theorems 3.1
and 4.1 of Berman [3]. For each x¢[0, oo], te R,”, and real valued, continu-
ous, F: R — R we use F({(x, t), (x + A, t + k))) to denote the usual incre-
ment of F over the (N + 1)-dimensional rectangle [x, x + A] X [IX,[t, t; + k],
while for fixed x, F(x, (t, t 4+ k}) denotes the increment of F (considered as a
function of N variables only) over T[Y, [, t; + k,].
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LEMMA 2. Let Y(x, t), xe[0, 1), te A(l), be an (N + 1)-dimensional random
field. Suppose there are positive constants r, b, ¢, d such that:
(2.3) E|Y(x + h, t) — Y(x, t)|"
< b|h|*+e for x, x4+ he[0,1], teA(l),

(2.49) E|Y(x, {t, t + K))|"
< b IIE, |k e for xe[0,1], t, t+kel(l),

(2.5)  E[YK(x 1), (x + A, t + K))|"
< B TN, [k for x, x+he[0,1], t, t+keA(l).

Then for every y < d|r there exists a version of Y, and random variables y and §
which are a.s. positive and finite, such that for all x [0, 1], t, t 4+ ke A(1), and
max |k,| < 7,

(2.6) [Y(x, <t t + k)| < € TTiL kil

Proor. Without losing any generality, we shall establish (2.6) for the nota-
tionally simple case k, = k for all i. Let i denote an integer lattice point in
R,%*1 i.e., each of its components is a nonnegative integer. For each such i,
let i, denote the point (27, - - -, iy,,27"). Now choose a € (0, 1) and put

Ay = {w: Y(((i — l)m in>)| = 2-(an/r)(c+1vd)} .
Then by (2.5) and a suitable form of Tchebychev’s inequality,
P{Am} < bp2—mN+D)—ne(l-a)) —nNd(1-a)

Since ], P{4,;} < oo for all n, it follows from the Borel-Cantelli lemma that
‘there exists an a.s. finite, positive random variable v for which

MaX,g; ..iy, s Y@ — 1), i,))] < 27 (@nv/mnetid

for all n = v. From this it follows in the standard fashion (cf. [5], [10]) that

there exists a constant D, and an a.s. finite random variable 7’ such that for all

7. < acfr, r, < ad|r, and k and k for which |h| < 7/, k| < 7’

(2.7) [Y({(Cxs 1), (x 4 By t + K)))| < Dyfhfraf|7s.

Letting a approach 1 we see that (2.7) in fact holds for all y, < ¢/r, 1, < dJr.
By Corollary 2 of Theorem 2 of [10], (2.4) implies that for each x € [0, 1]and

75 < dJr there exists a finite constant D, and a.s. finite, positive, random 7 such

that '

(2.8) [Y(x, <t t + KD)| = Dilk|"72

whenever |k| < 5. It follows from the fact that (2.4) is uniform in x that D, is

independent of x, so that to establish (2.6) we need only construct an 7 also

independent of x. However, given (2.7) and (2.8) we can follow the form of

the construction given on pages 72-73 of [3] to produce such an 7, as well as
an appropriate &, and thus complete the proof of the lemma.
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LEMMA 3. There exists a finite B > O such that the multiple integral

29 Saceno o Sann §%e 0§70 e )
X Efexp[i $io wW )]} TT3-, du? TT3-, dt

is at most equal to
(2.10) Blk, -« ky|r¥-4=9
for all 6 such that 0 < 6 < N — } and all t and Kk such that t, t + k € A(1).

Proor. Tran [9] has shown that (2.9) is bounded by

B§eY oo St [ty + oo 4 1]y, - dey )

for t, k and ¢ as described in the theorem, and some finite positive B’. Perform-
ing the integration then establishes (2.10).

LEMMA 4. For every ¢ > 0 there is a version of the local time L(x, t, ) jointly
continuous in all N + 1 variables, such that for every interval [a, b] € R, and rec-

tangle (¢, d) = JIY, [c;, d;] € R,", and every y < %, there exist random variables
n and § which are a.s. positive and finite for which
(2.11) IL(x, <t t + kD) < € TTL, [kl

for all xela, b], t, t + ke{c, d), and all k for which max |k;| < 7.

Proor. For simplicity seta=¢,=+---=¢cy=0,b=d, = ... =d, = 1.
We need only show that the conditions of Lemma 2 are satisfied by L,. Choose
0€(0, N — %]. Then by Tran [9], (page 29) and Lemma 3 we have that for
large enough integral n

(2.12) EIL({(X, 1), (x + A, t + KD)|* < By TTiL, [y ¥4
for some finite positive B,. Furthermore, since L(x, ,, - - -, ty) = Oifanys, = 0,
it follows from (2.12) by putting t = 0 and k = t in that expression that
(2.13) E|L(x + h, t) — L(x, t)|* < B,|A*.

Finally, noting that from the definition of L, that the nth moment of L (x,
{t, t + k)) is a maximum at x = 0 for fixed t and k we obtain, using (2.12) and
letting d tend to zero, that for large enough n
(2.14) E|L(x, (t,t +Kk>)|* < B, [T, |k|*¥ ).

We now choose specific values of n and 6. For a given y < 4, let d be a posi-
tive number satisfying 6 < N — } — 7. Then choose n (even) so large that the
following three inequalities hold:

nN—%—0)>1

né > 1

r<(N—4%—20)—n1t.
Putb=B,,r=nc=nd —1,d=nN-— 11— 06)— 1. These are all positive.
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Then substituting these into (2.12)—(2.14) ensure that conditions (2.3)—(2.5)
are satisfied by L,, and we are done.

The following result is an N-dimensional version of Lemma 6.1 of [3]. For
any compact set 4 C RY we call a function G: 4 — R* a distribution function
if it is bounded on A and has nonnegative increments on rectangles in R".

LEMMA 5. Let G(t) be a distribution function on a compact set A C R", satisfying
a Holder condition of order y < 1 at each point of A, If B C A, and dim [B] = B,
where 8 < N — 1 + 7, then

{5dG(t) =0.

Proor. If B < N — 1 the result is trivial. Suppose 8 = N — 1. From the
definition of Hausdorff dimension for every 8’ > 8 and every n there is a cover-
ing of B by open balls 1, of diameter d,,, k = 1,2, - such that d,, < n™* for
each k and

limn—vw Zl?=l (dnk)ﬁ, < o .
If y > p’ — N + 1, then
limn—woo Zl?:l (dnk)N_1+7 = 0 *

For any &[N — 1, N — 1 + 7] choose §’ so that 8 < ' < N — 1 4 7. 'fhen
by the above limit result and the uniform Hélder condition on G we have
§5dG(t) < limsup,_., 27>, §;,, dG(t)
< const. lim,_,, X5, (d,,)" 17
0

LEMMA 6. With probability one, the set
{x:dim[seA(t): Wy(s) = x] < B}
is included in the set of zeroes of L(x, t) for any te A(l) and any B < N — }.

Proor. The local time L, is, for every ¢ > 0, a.s. a distribution function in t
over A(1) for every x. Furthermore, it follows from Lemma 1.5 of [3] and (2.2)
that, for each x, L(x, t) has its support contained in {s € A(t): W (s) = x}. If
this set has dimension less than 8, then since L, satisfies an a.s. Holder condition
of order y for every y < 4 (Lemma 4) it follows from Lemma 5 that L (x, t) = 0
a.s., and the lemma is established.

The following lemma will be used to provide an upper bound on the dimen-
sion of the level sets of W. It corresponds to the type of bound provided by
results such as Lemma 7.2 of [3] in the case N = 1, although it is actually con-
siderably stronger than that result; and may in fact be of some interest in its
own right. Deﬁnirig the local time of a nonrandom function exactly as for a
random function, we can state

LeEMMA 7. Let F: RY — R* satisfy a uniform Hélder condition of every order less
than y, 0 < v < 1, on A(1), and for every ¢ > O possess a jointly continuous local
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time L., Then for every real x
dim[teA(l): F(t) = x] < N — 7.
ProOF. For each n < 1 and each integer lattice point i = (i, - - -, i) for
which 1 < i; < 2~ for each j, set
Ju = (€M) [ty = (i, = P2 S 2700, j =1, .-, N},
Jh={ted):|t; — (i, —$)2| < (2 —nt)y"0 j=1, ..., N}.
Then J,, C J¥, and the J}; are open. Furthermore, the sets J* for which at least
one point of the set F~(x) = {t e A(1): F(t) = x} lies in J,; form an open cover-
ing of F~'(x). For any $, 0 < 8 < N, the sum of the gth powers of the diame-
ters of these J3; is proportional to
(2.15) (2 —n")" x #{i: F(t) = x for some teJ,}.
By hypothesis, for every 6 < y there exists a D > 0 such that
|F(t) — F(s)| < D[t —s|*,  for s, tel,,
for large enough n and any i. Thus, for large enough n (2.15) is not greater than
(2.16) (2 —n )" x #{i: |F(t) — x| £ D2~ , forall telJ,].

We shall now establish that (2.16) tends to zeroasn — oo, if 8 > N — 4. Since
d is an arbitrary number smaller than y, this would complete the proof. Assume
that (2.16) does not tend to zero, so that for some 7 > 0 (2.16) exceeds 7 for
infinitely many n. Then from the definition of local time it is clear that for
small enough ¢ the following inequality also holds for infinitely many n.

(2 — no) e S Ly, 1) dy > .
But this contradicts the continuity of L,, which implies that the left-hand side
of the above inequality is not greater than
2D max, L (y, 1)2-"="(2 — n~1)=# .
= 2D max, L(y, 1)2~C+/=¥(1 — 1/(2n))="*
which tends to zero as n — co. This completes the proof of the lemma.

3. Proof of the theorem. Without losing any generality, we shall establish
(1.1) for the case T = 1. Let W~'(x) denote the set {t e A(1): W,(t) = x} and
RW the interior of the range of W,(t), t e A(1). For each ¢ > 0 we have by
Lemma 1 that L(x, 1) > 0 for all x e RW a.s. so that by Lemma 6
3.1 dim[W-(x)] = N — 4} for all xeRW a.s.

However, it follows from the results of [6] that W, satisfies an a.s. uniform
Holder condition over A(1) of order y for every y < 4. Thus, by Lemmas 4 and
7 we have

dim W-x) < N — 1 forall x, a.s.,

which, together with (3.1), completes the proof.
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