The Annals of Probabzlzty
1978, Vol. 6, No. 3, 388-397

ON CONJECTURES IN FIRST PASSAGE
PERCOLATION THEORY

By JouN C. WIERMAN AND WOLFGANG REH
University of Minnesota and Universitdt Mannheim

We consider several conjectures of Hammersley and Welsh in the
theory of first passage percolation on the two-dimensional rectangular
lattice. Our results include: (i) a proof that the time constant is zero when
the atom at zero of the underlying distribution is one-half or larger; (ii)
almost sure existence of routes for the unrestricted first passage times;
(iii) almost sure limit theorems for the first passages so» and bon, the reach
processes y; and y¥, and the route length processes N and NZ; (iv) bounds
on the expected maximum height of routes for so. and £, when the atom
at zero of the underlying distribution is one-half or larger.

0. Introduction. The results of this paper verify two conjectures posed by
Hammersley and Welsh [4] in the theory of first passage percolation, and pro-
vide partial solutions to other conjectures. For a summary of the notation used
the reader is referred to [4] and [8]. Recent progress toward the solution of the
Hammersley and Welsh conjectures is contained in [8], [9], [10], and [12].

Hammersley and Welsh [4] proved that routes exist for the first passage times
to, and s, for all n with probability one for every time coordinate distribution.
Almost sure existence of routes was shown for g, and b,, in the case where
time coordinates were bounded above and bounded below away from zero.
Hammersley and Welsh [4] conjectured that the almost sure existence of routes
for a,, and b,, also held for all distributions. Smythe and Wierman [9] verified
the conjecture except for distributions with an atom at zero equal to the critical
percolation probability. The authors have independently proved the conjecture
in full generality. Reh’s proof is presented. The reader should note that in
Section 1 one can do without assuming the existence of a finite first moment for
U, an assumption which is tacitly made throughout the paper.

At the time of the original paper by Hammersley and Welsh, it was claimed
(Sykes and Essam [11]) that the critical percolation probability C for the square
lattice is 4. This led to the conjecture [4] that the time constant is zero for
Beronulli time coordinate distributions, with atom at zero of size one-half or
larger. The value of the critical probability has in fact not yet been determined.
Harris [5] proved that C > }, and Hammersley [1] has given the upper bound
C < 1 — 1/4, where 2is the connectivity constant of the square lattice. Smythe
and Wierman [9] verified the spirit of the conjecture by showing that ¢(U) = 0
if U(0) > C for any time coordinate distribution U. The conjecture is verified
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FIRST PASSAGE PERCOLATION 389

here by a symmetry argument, with no reference to the concept of critical prob-
ability. The dual graph technique employed also yields a bound on the expected
maximum height of routes for s,, and ¢, when U(0) = 1.

In Section 3, results of [3] on superconvolutive distributions are used to show
almost sure convergence of s,,/n and b,,/n for any time coordinate distribution.
These results are used to improve theorems on convergence of the reach pro-
cesses y, and y,*, and the route length processes N, and N,’.

The authors would like to express their appreciation to R. T. Smythe for much
useful discussion concerning these problems, and Bert Fristedt for suggesting the
application of Remark 2.1 to percolation problems.

1. Existence of routes. We state a theorem which solves Conjecture 8.1.5 in
[4]. The terminology of Harris [5] will be used.

Let B, denote the square {(x, y): |x| < n, |y| < n}, and let bd(A4) denote the
boundary of a subset 4 of the Euclidean plane.

Let the links of the square lattice L be partitioned into active links and passive
links. We can make the following observation:

REeMARK 1.1. If there does not exist an infinite active chain beginning at the
origin, then there exists a positive integer n such that (0, 0) cannot be connected
with bd(B,) by an active chain.

Let P; denote the point (i, 0), and let u; be the time coordinate corresponding
to the link between P,_, and P;,. For any box B = B,, let #(B) denote the first
passage time from (0, 0) to bd(B).

THEOREM 1.2. Fix a positive integer n.

(a) Suppose there exists x > 0 such that U(x) < }. Then for any positive integer
k, with probability one there exists a box B* = B, for some i, such that t(B*) > kx.

(b) Suppose U(0) = . Then with probability one there exists a circuit having
total travel time equal to zero which contains P, i = 0,1, ..., n strictly in its
interior.

PrRoOF. Case (a): Define a link in the square lattice L to be active if the cor-
responding time coordinate u satisfies # < x. This allows reference to the results
of Harris [5].

Theorem 1 of [5] and Remark 1.1 yield the almost sure existence of a minimal
positive integer n, = n,(») such that bd(B, ) cannot be reached from the origin
by an active chain. Define B' = B, .

Proceed by induction. Assume B*~' to be defined with probability one as
well as the random variable n,_,, which is finite almost surely. Let R}, j =
1,2, ---,8i, be the vertices of L which lie on bd(B;). Let A, be the event that
none of the vertices R is the endpoint of a connected infinite set of active links.
We know from [5] that P(4;) = 1. Denoting the set {w: n,_, = i} by A4,(k) we
find that for any w € Uz, (4; N A,(k)) there exists a minimal box B* (= B; for
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some j) so that #(B*(w)) > kx. To complete the proof of (a), notice that

P(UZ, (A: 0 Ay(k))) = 2z, P(A4: 0 Ak))
= L P(Ay(K))
= P(n,_, finite)
=1.

Case (b): Define a link to be active if the corresponding time coordinate u is
positive, and passive if # = 0. The probability of a given link being active is
then no greater than . Considering the lattice dual L* of L, from Theorem 1
of [5] we conclude that the probability of belonging to a CISAL in L* is equal
to zero for any given point P* = (i — 1, 4). Thus there exists a box B* in L*
such that bd(B*) cannot be reached from P* by an active chain in L*. Now,
following the reasoning in Appendix 2 of [5], we consider the finite dual graph
B of B* which consists of (i) links of L lying strictly inside bd(B*) and (ii) links
crossing bd(B*) extended to meet at a common vertex. B* contains a special
cut set $* of passive links. Applying Whitney’s theorem to B* and B, the links
of L crossing the links of $* form a passive circuit in B lying strictly inside
bd(B*). Thus a passive circuit in L exists with probability one.

The same procedure applies conditionally, given that any specified set of links
near P;* are active. Hence, with probability one there exists a passive circuit
containing P;, i = 0, 1, - - -, n strictly in its interior simultaneously.

CoRrOLLARY 1.3. Routes exist for a,, and b,, for all positive integers n with prob-
ability one for every time coordinate distribution.

Proor. For n fixed define the event
R = {v: routes of a,,(w) and b, (w) exist}.

In Case (a) for any natural number k choose B* according to Theorem 1.2 for
o € Q(k), where P(Q(k)) = 1. Any route from (0, 0) to bd(B*) has a first passage
time exceeding kx for any w € Q(k) and only finitely many routes do not cross
bd(B¥). Hence

fu, + -+ +u, < kx}nQk)< R,
and thus

P(R) = lim,_, U*(kx) = 1.

In Case (b) obviously it is sufficient to restrict ourselves to the finitely many
routes in the interior of the circuit the existence of which is provided by Theo-
rem 1.2 with probability one. Again P(R) = 1.

2. Evaluation of the time constant. For a fixed positive integer n, construct
a finite graph G as the portion of the two-dimensional rectangular lattice con-
tained within 0 < x < nand 0 < y < n — 1, including the vertices on the lines
x = 0and x = n. A dual graph G* can be constructed by connecting the vertices
(i+%Hj+%; i=0-..,n—1; j=—-1,0,...,n— 1, by horizontal and
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vertical unit line segments, except those links on the lines y = —4 and y =
n — 4. The dual graph is isomorphic to the original graph.

Let each link in G be passive with probability p and active with probability
1 — p, independent of all other links in G. Partition the links in G* by the fol-
lowing: A link in G* is passive if it crosses an active link in G. A link in G*
is active if it crosses a passive link in G.

REMARK 2.1. For any partition of G into active and passive links, there is
either a passive chain in G connecting x = 0 and x = n or a passive chain in

G* connecting y = —% with y = n — 1.

Proor. The observation may be proved for any rectangle R with dual R* by
induction on the sum of the dimensions of the rectangle. Recall the definition
of the reach process y, = sup {n: s, < 1}.

LEMMA 2.2. For a time coordinate distribution with U(0) = %,

E(y,) = oo .

Proof. Fix a positive integer n, and consider the graphs G and G* when
p = % By symmetry when p = 1, the probability of a passive chain crossing G
is equal to the probability of a passive chain crossing G*. Hence, the probability
of such a chain is §.

To use this result in the first passage percolation theory, consider the lattice
L with time coordinates from U associated with the links. Links with positive
time coordinates are defined to be active. Links with zero time coordinates are
passive. Thus there is probability 4 that G is crossed from x = 0to x = nbya
chain of links which has travel time zero.

Let s,,(i, G) denote the first passage time from (0, /) to x = n on paths which
are contained entirely within G and do not intersect x = 0 except at the initial
vertex. Then for some ie{0,1, ..., n — 1},

P(s(i, G) = 0) = L.
2n

Letting s,,(i) denote the cylinder point-to-line first passage time from (0, i) to
X = n, it is clear that

. 1
P(sy () = 0) = —.
(unl) = 0) = 5
By stationarity,
1
P =0=_—.
(son- =0 = 2n

For all n, P(s,, = 0) = P(y, = n). Therefore 35, P(y, = n) = 3., 1/2n = co.

THEOREM 2.3. Let U be a time coordinate distribution with U(0) = L. Then
w(U) = 0.

Proor. The proof requires the following results.
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LEMMA 2.4. Let U be a time coordinate distribution which is bounded above.

Then if n(U) > 0,
lim,_., £ (2*) = lim, .. E(%) = L
‘ )" WO

NoTe. Smythe and Wierman [9] prove this result for y, in Theorem 5.4.

Fatou’s lemma, together with Theorems 4.1 and 5.4 of [9], yields the conclu-
sion for x,.

Let p(p) denote the time constant of the Bernoulli distribution with parameter
p:P(B:O):l—P(B:I).

LeEMMA 2.5. For any time coordinate distribution U,

E(u,)
1 —U©)

Note. This is Theorem 2.1 of Wierman [12].

©(U) = p(U(0))

To prove Theorem 2.3, first consider a Bernoulli distribution with p > 1. By
Lemma 2.2, E(y,) = oo. Since the Bernoulli distribution is bounded, E(y,) = o
implies p(p) = 0 by Lemma 2.4. Apply Lemma 2.5 to obtain #(U) = 0 for a
non-Bernoulli distribution with U(0) > 1

Let 4,(r) denote the maximum distance of the route r for s,, from the x-axis,
and let R, denote the set of routes for s,,. Define the height process {4,} by
h, = min {A,(r): re R,}. Thus 4, is the maximum helght of routes which remain
closest to the x-axis.

THEOREM 2.6. Let U be a time coordinate distribution with U(0) = 4. Then
{(h./n)*} is uniformly integrable for all a > 0. In particular, E(h,/n) < 8V n =
1,2,3,...

Proor. For each n, consider subgraphs G, (k = 1,2, - - -) of the square lattice,
each isomorphic to G in the discussion beginning this section, where G, is bounded
by the lines x = 0, x = n, y = kn, and y = (k — )n + 1.

By the reasoning in the proof of Lemma 2.2, with probability at least , there
is a path from x = 0 to x = n in G, with zero travel time. Such a path is a
barrier which the routes of interest cannot cross. By independence, the first
index k for which G, contains such a barrier is a random variable with a geo-
metric distribution with parameter at least one-half. The same reasoning applies
to barriers in subgraphs H, below the x-axis. Define X as the first index k for
which G, contains a barrier, and Y ,as the first k for which H, contains a barrier.

Then

tr < max {x, 1)
n

and X and Y are independent geometric random variables with parameter > %
Thus all moments of 4, /n exist and are uniformly bounded in n, so {(#,/n)*} is uni-
formly integrable for all @ > 0. A simple calculation shows E(max {X, Y}) =
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3. Almost sure convergence of s, /n and b, /n. Hammersley and Welsh [4]
proved that the first passage time process s,,/n converges in probability to the
time constant y, and

(3.1) lim supn_,w@ =p as.,
n

for any time coordinate distribution. Smythe and Wierman [9] proved the cor-
responding results for b,,/n. The main results of this section prove that for both
processes the convergence is almost sure. As a consequence, almost sure con-
vergence of the corresponding reach processes and route length processes is
obtained.

For each positive integer n, define a random variable z,, a modification of
Son» @s the first passage time between the origin and the line x = n through paths
which are contained entirely in the cylinder 0 < x < n except for the terminal
endpoint. This allows the paths for z, to leave the origin on any of three links
rather than only one as is required for s,,. By the method of Section 1 in [12],
the process {z,} is seen to have finite third moments for all n, for any time co-
ordinate distribution U.

THEOREM 3.2. Let U be any time coordinate distribution. Then

z

lim n
n

noo = /,t(U) a.s.

Proor. The proof requires the following result which is a special case of the
lemma and Remark 2 in Note 7 of [3].

Lemma 3.3. Let X, (s = 1,2, ---) be a monotone sequence of real nonnegative
random variables with distribution functions F, and finite second moments. Suppose
that (for each pair of positive integers s and t) there exists a random variable X,
satisfying:

(i) X, has distribution function F,,

(ii) X, and X, are independent,
and

(iii) F,,, = F,« F, for all s and 1.

Then there exists a constant y such that limi,_, X /s = r a.s.

In the first passage percolation model, define z,, ,, as the first passage time from
the endpoint of the route of z, to the line x = n 4+ m through paths contained
entirely in the cylinder n < x < n 4 m except for the terminal point. Then
z, . has the same distribution as z,,.. The observation

’
zm+n é Zy + zn,m

implies the superconvolutive property (iii) for the distributions of {z,}. Inde-
pendence of z, ,, from z, is shown by the following:
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Let P(w) = i if (n,i)is the endpoint of the route of z,(w). For any fixed integer
i, let z,, , be the first passage time from (n, i) to the line x = n 4 m through paths
in the cylinder n < x < n + m. Then for any two real numbers a and b,

Pz, <a,z,,<b)=33_.Pz,<a,P=i72,=<0b).
By independence, then stationarity,
a, P =i)P(z,, <0b)
a, P = i)P(z,, < b)

Pz, La,P=1iz,<b) =Pz, =

:P(Z”

A II

for each i.
Therefore

P(z,<a,2,,<b)=Pz,<b) Y2 Pz, <a,P=i
= P(z,, < b)P(z, < a).

Applying Lemma 3.3 with X, = z, and X, = z,, we find there exists a

constant y such that

. z
lim " — 7 a.s.

n

n—00

Further observe that
b < zn é so'n, 9

om =
and by convergence in probability of s,,/n and b,,/n to (U), we obtain

lim, . Z» = p(U) in probability,
n
and hence there exists a subsequence along which the convergence is almost

sure. Therefore y = p(U).

COROLLARY 3.4. For any time coordinate distribution U,

lim,_,, S = #(U)  a.s.
n

n—00

Proor. For each n, z, < s,, < t,,, and both z,/n and 1,,/n converge almost

surely to p#(U).

REMARK 3.5. Smythe and Wierman [10] consider time coordinate distribu-
tions which allow negative travel times. For a nonnegative time coordinate
distribution function U, and a real number r, the distribution function U@ r
is defined by

UDr(x)=U(x—r) Vx.
If r < 0, the time constant (U @ r) exists when p(—r) < 1/4, where

p(y) = inf,, (& e =™ dU(x) ,

and 4 is the connectivity constant of the square lattice. Where the sample point
o = (w,, ®,, - - -) denotes a sequence of time coordinates, w @ r is the sequence
(w0, + r, @, + r, - -+). Using the general form of Kingmann’s ergodic theorem
for subadditive processes [6], it is shown that #,,(w @ r)/n converges almost
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surely to y(U @ r). With this result, the methods of Theorem 3.2 and Corollary
3.4 apply to prove that lim, ., $,,(0 @ r)/n = p(UDr) a.s.

COROLLARY 3.6. For any time coordinate distribution U,

lim, .. % = wU) as.

Proof. When p(U) = 0, the conclusion holds by domination by the process
{t,n}, sO we assume that p(U) > 0.

It was noted in [9] that the route of b,, divides into two distinct parts. Let
P,(w) denote the point on the y-axis where the route of b,,() last intersects the
y-axis. The absolute value of the y-coordinate of P, will be denoted by |P,|.
From [9] we know that when ¢(U) > 0

tim, . P <1 as.

n

N—00

Use a,(1) and a,(|) to denote the first passage times from (0, 0) to (0, n) and
(0, —n) respectively. Clearly these random variables have the same distribution
as a,,. Thus

Let d,(1) and d,(]) denote the first passage time from (1, 0) to (1, n) and (1, —n)
respectively through paths lying entirely in the half-plane x > 1. It is shown
in [9] that

3&
—~
—

lim

oo = ¢ a.s.

The basic inequality needed for the proof appears in [9]:
Son = bon = Sou — U + aIPnl(Tl) - du’n\(”) .

Let Q' be the event where all of the following occur:

(i) Routes exist for by,, a,(1), a.(]), d.(1), and d,(|) for all n.
(if) 1im, .. a,(1)fn = p(U) and lim, . a,([)/n = p(U).
(iii) lim,_. d,(1)/n = #(U) and lim,_,, d,(])/n = p(U).
(iv) limsup,_ .. |P,|/n < 1.
(v) The time coordinates of all links are finite.

The event Q' has probability one.
Fix an ¢ > 0 and o € Q’. Then there exists an n(®) such that for alln > n(w):

(i) w(w)/n e,
(i) |an(TL)/n — pm(U)] <,
(ili) | (T1)/n — w(U) <,
(iv) |P,l/n < 2.
There exists M(w) such that max,,., d,(1|)(w)/n < ¢ for n = M(w). Define
N(w) = max {n(w), M(w)}.
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Suppose n = N(w). If |P,| = n(w), then

> S _ 5,
n

\Y%

|

Son < Don < Son Uy ap (1)) _ dp (T |P.
i 7+<m| ,h>n

If |P,| < n(w), then

S > bon > Sty BT S S

n n n n n n

[

Therefore, on ', for every ¢ > 0,

n—00

. S, . b . .
lim,_, =* > lim sup,,_,, -2* > liminf,__, bon = lim Som 5,
n n n n

By almost sure convergence of s,,/n to p(U), letting ¢ tend to zero yields the
conclusion.

REMARK 3.7. Almost sure convergence of b,,/n holds for distributions U@ r
with negative time coordinates under the conditions specified in Remark 3.5.

We now strengthen the renewal theorems for the reach processes y, and y,*.
Here, if (U) = 0 and f(r) = 0, the statement “lim,_,, f(f) = 1/#(U)” will mean
that f(r) grows without bound as t — oo.

CoOROLLARY 3.8. For any time coordinate distribution U,

lim,_mﬁ = __1-_ a.s.
V)
and
1

lim,_,m!lf = ——— a.s.
t wU)

Proor. Since s,,/n and b,,/n converge almost surely to #, the conclusion fol-
lows from the general observation: If {v,},. is a sequence of random variables
with v,/n converging to a nonnegative constant x# almost surely, then r,/t con-
verges almost surely, where r, = sup {n: v, < 1} is the associated reach process.

The route lengths N,* and N,° are defined as the number of arcs in the shortest
path which is a route for s,, and b,, respectively. For a time coordinate distri-
bution U, the function (U @ r) is concave [10], and thus has left and right
derivatives at each point, which we denote by u~(r) and x*(r) respectively;
these are nonincreasing and 4~ is left continuous, p* is right continuous, with
p~(r) = p*(r) except possibly at countably many points. '

CoROLLARY 3.9. Suppose U is a time coordinate distribution with U(0) < 1/A. Then
#+(0) < liminf,_., Y@ < timsup,_. M=) < 4-0) as.
n n
and

b 8
¢*(0) < liminf, N.(@) < limsup,_. No(@) < ¢ (0) as.
n n
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Proof. The conclusion follows by the method of Theorem 4.1 of [10].

REMARK 3.10. As in [10], the results on route length provide bounds on the
height process, and also extend to time coordinate distributions which allow
negative time coordinates.
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