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A STRONG INVARIANCE THEOREM FOR THE STRONG
LAW OF LARGE NUMBERS!

By JoN A. WELLNER
University of Rochester

Let X1, Xz, - -+ be i.i.d. random variables with mean 0 and variance 1.
Let Su = X1 + - -+ + Xn, and let {Hy} be the standard partial sum processes
on [0, o) defined in terms of the S,’s and normalized as in Strassen. Each
function of the ‘‘tail’’ behavior of the process H, is the dual of a function
of the ““initial”” behavior of the process H., the duality being induced by
the time inversion map R. The dual role of ““initial’’ and “‘tail”’ functions
is used to exploit an extension of Strassen’s invariance theorem for the law
of the iterated logarithm due to Wichura, and thereby obtain limit theo-
rems for a variety of functions of the ““tail’’ behavior of the sums S,. For
example, with probability one,

lim sups-w (1/2 log log n)é MaXngk<o (K~18k) = 1
and

lim supn—. n~1max {k = 1: k-18}, = 6(2 log log ninty = 6-2.

1. Introduction. Let X,, X, - .. be i.i.d. rv’s with mean 0 defined on a com-
mon probability space (Q, &, P). Let S, = X, 4+ -.. + X,; the well-known
strong law of large numbers then asserts that with probability one (w.p. 1)

(1) lim,_ n'S, =0.

If the X,’s have finite variance (1 without loss of generality), the law of the
iterated logarithm (Hartman and Wintner (1941), Strassen (1964)) yields a rate
for the convergence in (1): w.p. 1 n~1S, = O((n~" log log n)t, or, more precisely,

2) limsup,_., (n/2 log log n)}(n~*S,) =1 w.p.1.
But the strong law (1) also has a variety other consequences; for example

(3) lim, ., max,g; . (k7'S,) =0 w.p. 1,
and, for any ¢ > 0

4 max{k = 1: k'S, =2 ¢} < o0 w.p. 1.

Our object in this note is to show that when the X,’s have variance 1 then
(3) and (4) can be strengthened in much the same way that (2) strengthens (1).
To do this we make use of an extension of Strassen’s (1964) invariance principle
for the law of the iterated logarithm which is due to Wichura (1974). We then
exploit this theorem by way of a duality relationship induced by time inversion
to obtain iterated logarithm type limit theorems for a variety of “tail”” functions
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of the §,’s. Strengthened versions of (3) and (4) emerge as special cases of this
general duality in Examples 2 and 3 in Section 3.

2. The main results. Define functions H,, n = 3, on [0, o) in terms of the
sums S, by

Ho() = (S + (18 — [#1])X(0y,2)/(2n log log ), r20.

H, takes values in C[0, co), the space of continuous functions on [0; o). Let
Po(t) = (¢ VvV 1), py(t) = ((t v 3) loglog (¢t Vv 3))t for t = 0, and set

B, = {x e C[0, o0) : supyg;ce. [X(1)|/pi(t) < o0}
i = 0, 1. Define the metric p, for functions x, y € B; by

(%, ¥) = SUPogica [X(£) — y(2)|/pu(?) i=0,1.
Let

K = {x & C[0, 0): x(0) = 0, §¢%(s) ds, {5 %(s)*ds < 1} .

THEOREM 1 (Strassen-Wichura). With probability one the sequence {H,},., is
relatively compact in the topology induced by the metric p, on C[0, co) and has limit
set K.

For the (easy) proof of Theorem 1 as a consequence of Strassen’s (1964) in-
variance theorem see Wichura (1974). Our primary interest here is in the metric
po; since p, = p, (for all r = 0) and hence p(x, y) < py(x, y) for all x, ye B,
Theorem 1 implies that we also have convergence with respect to p,:

CoROLLARY 1. With probability one the sequence {H.,},., is relatively compact
in the topology induced by the metric p, on C[0, o) and has limit set K.

Before proceeding to the consequences of Theorem 1 and Corollary 1 we
should remark that similar theorems hold for a wide variety of processes in
addition to the ‘“partial sum” processes of the preceding discussion. Many
authors have considered similar processes on [0, 1] under a wide range of prob-
abilistic assumptions and have proved analogues of Strassen’s (1964) original
theorem for partial sums: i.e., when properly normalized the processes are,
w.p. 1, relatively compact in the topology of uniform convergence on C[0, 1]
and have limit set K (restricted to [0, 1]). For example, results of this type
have been established for martingales and processes with stationary increments
by Heyde and Scott (1973), and for sums of weakly dependent variables by
Phillip and Stout (1975). But now note that Wichura’s extension of Strassen’s
theorem proceeds by an argument which is independent of the probabilistic
assumptions imposed on the summands, and hence convergence in the topology
on C[0, o) induced by p, follows for any processes of this type which are
relatively compact in the uniform topology on C[0, 1].

A different approach to the convergence question (with respect to p, on [0,0))
is by way of imbedding; e.g., (1.2) of page 2 of Phillip and Stout (1975) or (3.5)
page 123 or (4.5) page 127 of Jain, Jogdeo, and Stout (1975). The point is
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that it is no more difficult to establish convergence with respect to p, on [0, co)
than to establish uniform convergence on finite intervals. Asa consequence, the
following considerations apply to a wide range of processes “like” partial sum
processes.

Now let R be the standard time inversion map defined by

(Rx)(t) = tx(1]t) for 0<t< o
=0 for t=0.

Let C, = {x€ ([0, c0): x(0) = 0, lim,_, t~*x(f) = 0} c B,. Note that K c C,.
The following lemma summarizes some of the useful properties of R.

LeEMMA. The time inversion map R is

(a) anisometry of the metric space (C,, p,); py(Rx, Ry) = py(x, y) for all x, y € Cy;
(b) a continuous function from (C,, p,) to (C,, p,);

(c) its own inverse; R(R(x)) = x for all x e C,;

(d) K-preserving; i.e., R(K) = K.

PROOF. Assertions (a) and (c) are easily verified, and (b) is a consequence of
(a)- To see that R preserves K, note that R preserves Brownian motion and is
continuous; hence, normalizing as in Strassen’s Theorem 1, applying that theo-
rem as extended by Wichura, and considering the resulting sets of limit points
yields R(K) = K. [

Suppose that f(x) (f: C,— R?) is some measure of the “initial” behavior of
functions x in C;. Then the dual function, Df(x), defined by

(Bf)(x) = f(R(x)), xeC,
will be a corresponding measure of the “tail” behavior of x (and vice versa).
The examples considered in Section 3 illustrate this duality between “initial”
and “tail” functions. .

In view of (i) the duality connection between “initial”’ functions and “tail”
functions via the time inversion map R; (ii) the fact that R is continuous and
preserves K; and (iii) Corollary 1, it is easily seen that iterated logarithm limit
theorems for “tail” functions of the processes H, can easily be deduced from
the corresponding results for “initial” functions. The following theorem makes
this more precise. If a function f: (C,, o) — (R, | |) is continuous at every
point of B C C,, we say that f is B-continuous on (Cj, p,)-

THEOREM 2. Suppose that f is a K-continuous function on (C,, p,) and that {H,},.,
is, W.p. 1, relatively compact with respect to p, with limit set K. Then

(a) Df = f o R is K-continuous on (C,, p,);

(b) w.p.1{f(H,)}nz: and {Df(H,)},s, are relatively compact with the same limit
set f(K) = f(R(K)) = Df(K); and

(c) if éupzeK f(x) = f(xo), x,€ K, then sup, ¢ Df(x) = Df(Rx,) = f(x,).

Note that if, for some subsequence n’, w.p. 1 {H,},. ., is relatively compact
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with R-invariant set of limit points K* c K (so R(K*) = K*), then (ii) and (iii)
remain true with K replaced by K*; see Example 7 in this connection.

3. Examples. All of the following “initial” functions f: C[0, 1] —» R*, with
the exception of Examples 3 and 6 were considered by Strassen (1964). In view
of Theorem 2, we need only to translate his results for “initial” functions f to
the “tail” functions Df. We draw freely in this section on Strassen’s results
concerning sup,.x f(x) and the x’s in K for which the supremum is obtained
for the various functions f. Even though the functions considered in Examples
3 and 4 are not K-continuous, one can verify that the asserted lim sup results
hold by reasoning as in Example (v), pages 223-224 of Strassen (1964).

ExaMPLE 1. Let fi(x) = x(s,) with 0 < 5, < 1 fixed. Then Df,(x) = #,7'x(t,)
where 1 < 1, = 5,7 < o0, sup,.g f1(¥) = s, = fi(x,) with x,(¢) = 5,74 A 5t e K.
Hence sup, g Dfy(x) = Dfy(Rx,) = 1,7t with Rx,(t) = t,~# At eK,

limsup, ... H,(s,) = st w.p. 1,
and
lim sup, ., t,7*H,(t)) = t,7t w.p. 1;

further, for n large H,(s,) and t,7'H,(t,) are close to s} = ¢,~% iff H, is close to
x, or Rx, respectively.

EXAMPLE 2. Let fy(X) = sup,g<, X(t). Then Dfy(x) = sup,g,c. (:7'%(2)),
sup, .k fo(x) = 1 = fiy(x,) with x,(t) = t A 1€ K, and sup, g Dfy(x) = 1 = Dfy(x,)
since Rx, = x,. Note that

fo(H,) = (max, <, S;)/(2n log log n)}
and

Df(H,) = (n/2 log log n)! max, g, .. (k7'S}) .
Hence Theorem 2 implies that

lim sup,,_., (2n log log n)~}(max, .., S,) =1 w.p. 1,
and
lim sup,_., (n/2 log log n)t max, ., ... (k7'S,) =1 w.p.1;

furthermore for large n f,(H,) and Df,(H,) are close to 1 iff H, is close to x, = Rx,.
This example strengthens (3) in the presence of a second moment.

ExaMPLE 3. For @ > 0let fy(x) = (inf {t = 0: x(¢t) = 6})~* where the infimum
equals + oo if the set is empty (and hence f;(x) = 0). Then Dfy(x) =sup{r = 0:
t71x(t) = 6}, sup, g fo(X)=072= fy(x;) with x(t) =60""t A 6 € K, and sup, . Dfy(x)=
6% = Dfy(Rx,) with Rx,(t) = 6t A 6~'. Note that
P(lim sup,_... Dfy(H,) = limsup, . n~*max {m = 1: m~'S,, = 6(2 log log n/n)}})

=1

and hence

lim sup, .. n~' max {m = 1: m~'S,, = 6(2loglog n/n)}} = 6=* w.p.1;
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furthermore, for large n Dfy(H,) is close to 62 iff H, is close to Rx,(f) = 6t A 6.
This example strengthens (4) in the presence of a finite second moment.

ExaMpPLE 4. ForO<c<lletfx) =201t <1: x(t) = et} = (§ Liapecty @t
where 21 denotes Lebesgue measure. Then Dfy(x) = §7 1i,—1,050-#1572 d5,
sup,.x fux) =1 — exp(—4(c? — 1)) = 1 — 5, = fi(x,) where x,(t) = cs,7%¢, ct?,
caccording as 0 <t <55, s, <t < 1,0r1 <t < oo and Rx(t) = ct, ct?, cs,7?
accordingas 0 <t < 1,1 £t < 5,7 or s, £t < oo. Hence

limsup, ., Df(H,) =1 — exp(—4(c*— 1)) w.p. 1.

ExAMPLE 5. If ¢ is a fixed Riemann integrable real function on [0, 1] let
fo(x) = S x()p(t) dt. Then Dfy(x) = {5 t7'x(¢)¢(t)t=* dt where ¢(t) = ¢(1/t) for
1<t < o0, sup, g fo(x) = {15 O(1)* dt}t = g = fy(x,) where x(t) = o~ {§(s A )p(s) ds,
07! {3 s¢(s)dsaccordingas0 <t < lorl <t < oo,and ®(t) = §; #(s) ds. Thus
Rxy(t) = ta=* {7 s73)(s) ds, a7 {5 s7Y(s A t)¢(s)s~*ds according as 0 <t < 1, or
1 £t < oo. Hence it follows from Theorem 2 that

lim sup, .., Dfy(H,) = o w.p.1;
furthermore, for large n Df(H,) is close to ¢ iff H, is close to Rx;.

EXAMPLE 6. Let f(x) = {§t7'x(¢)dt — x(1). Then Dfy(x) = {7 t°x(t) dt —
x(1) = §pt71dx(t), sup,.x foX) = fo(%s) With x,(t) = tlog(1/t), 0 according as
0<t=<1lorl<t< co; and sup,.g Dfy(x) = Dfy(Rxs) = 1 with Rx,(t) =0,
log (t) accordingas 0 <t < lor1 <t < oco. Note that

Df(H,) = (n/2log log n)} S, X, (-—-log (1 - i)) ,

]

and hence it follows from Theorem 2 that
lim sup, _.. (n/2 log log n)} Y15, X, (—10g<1 — L)) =1 wp.1;
i

and, for large n Dfy(H,) is close to 1 iff H, is close to Rx,(t) = log(¢) on [1, o).
This example is related to a type of duality studied by Barbour (1974); see the
discussion in the following section in this connection.

ExampLE 7. This final example illustrates the remark following Theorem 2
concerning R-invariant subsets of K. Fix 8e[—1, 4 1]; for every w in a set with
probability one there is a subsequence {n’} = {n’(w)} such that lim,, ., H,.(1) = §;
further, w.p. 1, the functions {H,},. ., are relatively compact with respect to
p, and have limit set K, = {xe K: x(1) = g}. Note that R(K;) = K,; i.e., K,
is R-invariant. Let fi(x) = sup,g,<, X(f) as in Example 2. Then Dfy(x) =
SUP, << (7'X(7)) as before, but now we have sup, g fi(X) = SUp,.x .u-s
{supese<; X(0)} = (1 + B) = fi(x;) with x (1) =1t 1+ 8 — ¢, 8 according as
0st=(1+pP)2,(1+pR2=st<1,orl £t< oo. Hence SUp, .k, Df(x) =
(1 + B) = Dfy(Rx,) where Rx,(t) = Bt, (1 + B)t — 1, 1 accordingas0 < ¢ < 1,
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1<t <21+ ) or2(l 4+ B)* <t < oo, and it follows from Theorem 2 that
lim sup,, .., (7/2 log log n)t max, g, (k7'S;) = (1 + f) w.p. 1.

Similar questions, involving limit superiors along subsequences and consequent
restrictions to the subsets K, of K, could be raised for each of the five other
examples considered above.

4. Related work. A “weak” invariance theorem for the strong law of large
numbers was proved by Miiller (1968); one of his theorems asserts that the
processes (H,), with the (2loglogn)! factor omitted, converge weakly to
Brownian motion B in (C,, p,). From this he deduced, via time inversion, that

lim, _,, P(n* max, g, <., k7S, < 1) = P(SUpigica t7'B(2) < 4)
= P(supg:, B(1) < 2)
= (2r)* §} exp(—w[2) du,
which is the “weak” version of our Example 2; that

lim, ., P(max {k: k=S, > 6n~t} < An) = P(sup {t: B(f) = 0t} < 2)
= P(inf {t: B(t) = 0} = 277)
= 0§} (2nu)~t exp(—6%u/2) du ,
which is the “weak” version of our Example 3; and that
lim,_,, P(n* max,g,.. (k7'S;) = a|n7'S, = n~4p)
= P(supigic.. (17'B(1)) Z | B(1) = §)
= P(supy.s, B(t) = a|B(1) = p)
= exp(—2a(a — B)) for «a 2520,

which is the “weak” version of our Example 7. The present note was largely
inspired by Miiller’s (1968) paper.

IfY,, Y,, - - - are independent rv’s with mean 0 and Var (Y,) = ¢,% then it is
well known that Y=, 0,2 < oo implies that };7.,Y, < oo w.p. 1. Barbour
(1974) studied the relationship between limit theorems for the “initial” sums
S, = Y, Y, and the “tail” sums T, = Y}, Y;. His results depend on a duality
induced by the map G from C, (say) to C, defined by

Gx(t) = tx(1/t) — {1 u?x(u) du t>0.

G plays much the same role in Barbour’s paper that R plays in ours; G preserves
K and Brownian motion, is continuous, and G o G is the identity. The duality
theme of his paper is similar to ours, but the processes considered by Barbour
are different than the processes considered here. It would be interesting to know
of other K-preserving mappings, and their interrelations and uses.
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